core/sync/exclusive.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
//! Defines [`Exclusive`].
use core::fmt;
use core::future::Future;
use core::marker::Tuple;
use core::ops::{Coroutine, CoroutineState};
use core::pin::Pin;
use core::task::{Context, Poll};
/// `Exclusive` provides only _mutable_ access, also referred to as _exclusive_
/// access to the underlying value. It provides no _immutable_, or _shared_
/// access to the underlying value.
///
/// While this may seem not very useful, it allows `Exclusive` to _unconditionally_
/// implement [`Sync`]. Indeed, the safety requirements of `Sync` state that for `Exclusive`
/// to be `Sync`, it must be sound to _share_ across threads, that is, it must be sound
/// for `&Exclusive` to cross thread boundaries. By design, a `&Exclusive` has no API
/// whatsoever, making it useless, thus harmless, thus memory safe.
///
/// Certain constructs like [`Future`]s can only be used with _exclusive_ access,
/// and are often `Send` but not `Sync`, so `Exclusive` can be used as hint to the
/// Rust compiler that something is `Sync` in practice.
///
/// ## Examples
/// Using a non-`Sync` future prevents the wrapping struct from being `Sync`
/// ```compile_fail
/// use core::cell::Cell;
///
/// async fn other() {}
/// fn assert_sync<T: Sync>(t: T) {}
/// struct State<F> {
/// future: F
/// }
///
/// assert_sync(State {
/// future: async {
/// let cell = Cell::new(1);
/// let cell_ref = &cell;
/// other().await;
/// let value = cell_ref.get();
/// }
/// });
/// ```
///
/// `Exclusive` ensures the struct is `Sync` without stripping the future of its
/// functionality.
/// ```
/// #![feature(exclusive_wrapper)]
/// use core::cell::Cell;
/// use core::sync::Exclusive;
///
/// async fn other() {}
/// fn assert_sync<T: Sync>(t: T) {}
/// struct State<F> {
/// future: Exclusive<F>
/// }
///
/// assert_sync(State {
/// future: Exclusive::new(async {
/// let cell = Cell::new(1);
/// let cell_ref = &cell;
/// other().await;
/// let value = cell_ref.get();
/// })
/// });
/// ```
///
/// ## Parallels with a mutex
/// In some sense, `Exclusive` can be thought of as a _compile-time_ version of
/// a mutex, as the borrow-checker guarantees that only one `&mut` can exist
/// for any value. This is a parallel with the fact that
/// `&` and `&mut` references together can be thought of as a _compile-time_
/// version of a read-write lock.
#[unstable(feature = "exclusive_wrapper", issue = "98407")]
#[doc(alias = "SyncWrapper")]
#[doc(alias = "SyncCell")]
#[doc(alias = "Unique")]
// `Exclusive` can't have `PartialOrd`, `Clone`, etc. impls as they would
// use `&` access to the inner value, violating the `Sync` impl's safety
// requirements.
#[derive(Default)]
#[repr(transparent)]
pub struct Exclusive<T: ?Sized> {
inner: T,
}
// See `Exclusive`'s docs for justification.
#[unstable(feature = "exclusive_wrapper", issue = "98407")]
unsafe impl<T: ?Sized> Sync for Exclusive<T> {}
#[unstable(feature = "exclusive_wrapper", issue = "98407")]
impl<T: ?Sized> fmt::Debug for Exclusive<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
f.debug_struct("Exclusive").finish_non_exhaustive()
}
}
impl<T: Sized> Exclusive<T> {
/// Wrap a value in an `Exclusive`
#[unstable(feature = "exclusive_wrapper", issue = "98407")]
#[must_use]
#[inline]
pub const fn new(t: T) -> Self {
Self { inner: t }
}
/// Unwrap the value contained in the `Exclusive`
#[unstable(feature = "exclusive_wrapper", issue = "98407")]
#[must_use]
#[inline]
pub const fn into_inner(self) -> T {
self.inner
}
}
impl<T: ?Sized> Exclusive<T> {
/// Gets exclusive access to the underlying value.
#[unstable(feature = "exclusive_wrapper", issue = "98407")]
#[must_use]
#[inline]
pub const fn get_mut(&mut self) -> &mut T {
&mut self.inner
}
/// Gets pinned exclusive access to the underlying value.
///
/// `Exclusive` is considered to _structurally pin_ the underlying
/// value, which means _unpinned_ `Exclusive`s can produce _unpinned_
/// access to the underlying value, but _pinned_ `Exclusive`s only
/// produce _pinned_ access to the underlying value.
#[unstable(feature = "exclusive_wrapper", issue = "98407")]
#[must_use]
#[inline]
pub const fn get_pin_mut(self: Pin<&mut Self>) -> Pin<&mut T> {
// SAFETY: `Exclusive` can only produce `&mut T` if itself is unpinned
// `Pin::map_unchecked_mut` is not const, so we do this conversion manually
unsafe { Pin::new_unchecked(&mut self.get_unchecked_mut().inner) }
}
/// Build a _mutable_ reference to an `Exclusive<T>` from
/// a _mutable_ reference to a `T`. This allows you to skip
/// building an `Exclusive` with [`Exclusive::new`].
#[unstable(feature = "exclusive_wrapper", issue = "98407")]
#[must_use]
#[inline]
pub const fn from_mut(r: &'_ mut T) -> &'_ mut Exclusive<T> {
// SAFETY: repr is ≥ C, so refs have the same layout; and `Exclusive` properties are `&mut`-agnostic
unsafe { &mut *(r as *mut T as *mut Exclusive<T>) }
}
/// Build a _pinned mutable_ reference to an `Exclusive<T>` from
/// a _pinned mutable_ reference to a `T`. This allows you to skip
/// building an `Exclusive` with [`Exclusive::new`].
#[unstable(feature = "exclusive_wrapper", issue = "98407")]
#[must_use]
#[inline]
pub const fn from_pin_mut(r: Pin<&'_ mut T>) -> Pin<&'_ mut Exclusive<T>> {
// SAFETY: `Exclusive` can only produce `&mut T` if itself is unpinned
// `Pin::map_unchecked_mut` is not const, so we do this conversion manually
unsafe { Pin::new_unchecked(Self::from_mut(r.get_unchecked_mut())) }
}
}
#[unstable(feature = "exclusive_wrapper", issue = "98407")]
impl<T> From<T> for Exclusive<T> {
#[inline]
fn from(t: T) -> Self {
Self::new(t)
}
}
#[unstable(feature = "exclusive_wrapper", issue = "98407")]
impl<F, Args> FnOnce<Args> for Exclusive<F>
where
F: FnOnce<Args>,
Args: Tuple,
{
type Output = F::Output;
extern "rust-call" fn call_once(self, args: Args) -> Self::Output {
self.into_inner().call_once(args)
}
}
#[unstable(feature = "exclusive_wrapper", issue = "98407")]
impl<F, Args> FnMut<Args> for Exclusive<F>
where
F: FnMut<Args>,
Args: Tuple,
{
extern "rust-call" fn call_mut(&mut self, args: Args) -> Self::Output {
self.get_mut().call_mut(args)
}
}
#[unstable(feature = "exclusive_wrapper", issue = "98407")]
impl<T> Future for Exclusive<T>
where
T: Future + ?Sized,
{
type Output = T::Output;
#[inline]
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
self.get_pin_mut().poll(cx)
}
}
#[unstable(feature = "coroutine_trait", issue = "43122")] // also #98407
impl<R, G> Coroutine<R> for Exclusive<G>
where
G: Coroutine<R> + ?Sized,
{
type Yield = G::Yield;
type Return = G::Return;
#[inline]
fn resume(self: Pin<&mut Self>, arg: R) -> CoroutineState<Self::Yield, Self::Return> {
G::resume(self.get_pin_mut(), arg)
}
}