1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
//! The virtual memory representation of the MIR interpreter.
use std::borrow::Cow;
use std::convert::{TryFrom, TryInto};
use std::fmt;
use std::hash;
use std::iter;
use std::ops::{Deref, Range};
use std::ptr;
use rustc_ast::Mutability;
use rustc_data_structures::intern::Interned;
use rustc_data_structures::sorted_map::SortedMap;
use rustc_span::DUMMY_SP;
use rustc_target::abi::{Align, HasDataLayout, Size};
use super::{
read_target_uint, write_target_uint, AllocId, InterpError, InterpResult, Pointer, Provenance,
ResourceExhaustionInfo, Scalar, ScalarSizeMismatch, UndefinedBehaviorInfo, UninitBytesAccess,
UnsupportedOpInfo,
};
use crate::ty;
/// This type represents an Allocation in the Miri/CTFE core engine.
///
/// Its public API is rather low-level, working directly with allocation offsets and a custom error
/// type to account for the lack of an AllocId on this level. The Miri/CTFE core engine `memory`
/// module provides higher-level access.
// Note: for performance reasons when interning, some of the `Allocation` fields can be partially
// hashed. (see the `Hash` impl below for more details), so the impl is not derived.
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub struct Allocation<Prov = AllocId, Extra = ()> {
/// The actual bytes of the allocation.
/// Note that the bytes of a pointer represent the offset of the pointer.
bytes: Box<[u8]>,
/// Maps from byte addresses to extra provenance data for each pointer.
/// Only the first byte of a pointer is inserted into the map; i.e.,
/// every entry in this map applies to `pointer_size` consecutive bytes starting
/// at the given offset.
provenance: ProvenanceMap<Prov>,
/// Denotes which part of this allocation is initialized.
init_mask: InitMask,
/// The alignment of the allocation to detect unaligned reads.
/// (`Align` guarantees that this is a power of two.)
pub align: Align,
/// `true` if the allocation is mutable.
/// Also used by codegen to determine if a static should be put into mutable memory,
/// which happens for `static mut` and `static` with interior mutability.
pub mutability: Mutability,
/// Extra state for the machine.
pub extra: Extra,
}
/// This is the maximum size we will hash at a time, when interning an `Allocation` and its
/// `InitMask`. Note, we hash that amount of bytes twice: at the start, and at the end of a buffer.
/// Used when these two structures are large: we only partially hash the larger fields in that
/// situation. See the comment at the top of their respective `Hash` impl for more details.
const MAX_BYTES_TO_HASH: usize = 64;
/// This is the maximum size (in bytes) for which a buffer will be fully hashed, when interning.
/// Otherwise, it will be partially hashed in 2 slices, requiring at least 2 `MAX_BYTES_TO_HASH`
/// bytes.
const MAX_HASHED_BUFFER_LEN: usize = 2 * MAX_BYTES_TO_HASH;
// Const allocations are only hashed for interning. However, they can be large, making the hashing
// expensive especially since it uses `FxHash`: it's better suited to short keys, not potentially
// big buffers like the actual bytes of allocation. We can partially hash some fields when they're
// large.
impl hash::Hash for Allocation {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
// Partially hash the `bytes` buffer when it is large. To limit collisions with common
// prefixes and suffixes, we hash the length and some slices of the buffer.
let byte_count = self.bytes.len();
if byte_count > MAX_HASHED_BUFFER_LEN {
// Hash the buffer's length.
byte_count.hash(state);
// And its head and tail.
self.bytes[..MAX_BYTES_TO_HASH].hash(state);
self.bytes[byte_count - MAX_BYTES_TO_HASH..].hash(state);
} else {
self.bytes.hash(state);
}
// Hash the other fields as usual.
self.provenance.hash(state);
self.init_mask.hash(state);
self.align.hash(state);
self.mutability.hash(state);
self.extra.hash(state);
}
}
/// Interned types generally have an `Outer` type and an `Inner` type, where
/// `Outer` is a newtype around `Interned<Inner>`, and all the operations are
/// done on `Outer`, because all occurrences are interned. E.g. `Ty` is an
/// outer type and `TyS` is its inner type.
///
/// Here things are different because only const allocations are interned. This
/// means that both the inner type (`Allocation`) and the outer type
/// (`ConstAllocation`) are used quite a bit.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, HashStable)]
#[rustc_pass_by_value]
pub struct ConstAllocation<'tcx, Prov = AllocId, Extra = ()>(
pub Interned<'tcx, Allocation<Prov, Extra>>,
);
impl<'tcx> fmt::Debug for ConstAllocation<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// This matches how `Allocation` is printed. We print it like this to
// avoid having to update expected output in a lot of tests.
write!(f, "{:?}", self.inner())
}
}
impl<'tcx, Prov, Extra> ConstAllocation<'tcx, Prov, Extra> {
pub fn inner(self) -> &'tcx Allocation<Prov, Extra> {
self.0.0
}
}
/// We have our own error type that does not know about the `AllocId`; that information
/// is added when converting to `InterpError`.
#[derive(Debug)]
pub enum AllocError {
/// A scalar had the wrong size.
ScalarSizeMismatch(ScalarSizeMismatch),
/// Encountered a pointer where we needed raw bytes.
ReadPointerAsBytes,
/// Partially overwriting a pointer.
PartialPointerOverwrite(Size),
/// Partially copying a pointer.
PartialPointerCopy(Size),
/// Using uninitialized data where it is not allowed.
InvalidUninitBytes(Option<UninitBytesAccess>),
}
pub type AllocResult<T = ()> = Result<T, AllocError>;
impl From<ScalarSizeMismatch> for AllocError {
fn from(s: ScalarSizeMismatch) -> Self {
AllocError::ScalarSizeMismatch(s)
}
}
impl AllocError {
pub fn to_interp_error<'tcx>(self, alloc_id: AllocId) -> InterpError<'tcx> {
use AllocError::*;
match self {
ScalarSizeMismatch(s) => {
InterpError::UndefinedBehavior(UndefinedBehaviorInfo::ScalarSizeMismatch(s))
}
ReadPointerAsBytes => InterpError::Unsupported(UnsupportedOpInfo::ReadPointerAsBytes),
PartialPointerOverwrite(offset) => InterpError::Unsupported(
UnsupportedOpInfo::PartialPointerOverwrite(Pointer::new(alloc_id, offset)),
),
PartialPointerCopy(offset) => InterpError::Unsupported(
UnsupportedOpInfo::PartialPointerCopy(Pointer::new(alloc_id, offset)),
),
InvalidUninitBytes(info) => InterpError::UndefinedBehavior(
UndefinedBehaviorInfo::InvalidUninitBytes(info.map(|b| (alloc_id, b))),
),
}
}
}
/// The information that makes up a memory access: offset and size.
#[derive(Copy, Clone)]
pub struct AllocRange {
pub start: Size,
pub size: Size,
}
impl fmt::Debug for AllocRange {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "[{:#x}..{:#x}]", self.start.bytes(), self.end().bytes())
}
}
/// Free-starting constructor for less syntactic overhead.
#[inline(always)]
pub fn alloc_range(start: Size, size: Size) -> AllocRange {
AllocRange { start, size }
}
impl AllocRange {
#[inline]
pub fn from(r: Range<Size>) -> Self {
alloc_range(r.start, r.end - r.start) // `Size` subtraction (overflow-checked)
}
#[inline(always)]
pub fn end(self) -> Size {
self.start + self.size // This does overflow checking.
}
/// Returns the `subrange` within this range; panics if it is not a subrange.
#[inline]
pub fn subrange(self, subrange: AllocRange) -> AllocRange {
let sub_start = self.start + subrange.start;
let range = alloc_range(sub_start, subrange.size);
assert!(range.end() <= self.end(), "access outside the bounds for given AllocRange");
range
}
}
// The constructors are all without extra; the extra gets added by a machine hook later.
impl<Prov> Allocation<Prov> {
/// Creates an allocation initialized by the given bytes
pub fn from_bytes<'a>(
slice: impl Into<Cow<'a, [u8]>>,
align: Align,
mutability: Mutability,
) -> Self {
let bytes = Box::<[u8]>::from(slice.into());
let size = Size::from_bytes(bytes.len());
Self {
bytes,
provenance: ProvenanceMap::new(),
init_mask: InitMask::new(size, true),
align,
mutability,
extra: (),
}
}
pub fn from_bytes_byte_aligned_immutable<'a>(slice: impl Into<Cow<'a, [u8]>>) -> Self {
Allocation::from_bytes(slice, Align::ONE, Mutability::Not)
}
/// Try to create an Allocation of `size` bytes, failing if there is not enough memory
/// available to the compiler to do so.
///
/// If `panic_on_fail` is true, this will never return `Err`.
pub fn uninit<'tcx>(size: Size, align: Align, panic_on_fail: bool) -> InterpResult<'tcx, Self> {
let bytes = Box::<[u8]>::try_new_zeroed_slice(size.bytes_usize()).map_err(|_| {
// This results in an error that can happen non-deterministically, since the memory
// available to the compiler can change between runs. Normally queries are always
// deterministic. However, we can be non-deterministic here because all uses of const
// evaluation (including ConstProp!) will make compilation fail (via hard error
// or ICE) upon encountering a `MemoryExhausted` error.
if panic_on_fail {
panic!("Allocation::uninit called with panic_on_fail had allocation failure")
}
ty::tls::with(|tcx| {
tcx.sess.delay_span_bug(DUMMY_SP, "exhausted memory during interpretation")
});
InterpError::ResourceExhaustion(ResourceExhaustionInfo::MemoryExhausted)
})?;
// SAFETY: the box was zero-allocated, which is a valid initial value for Box<[u8]>
let bytes = unsafe { bytes.assume_init() };
Ok(Allocation {
bytes,
provenance: ProvenanceMap::new(),
init_mask: InitMask::new(size, false),
align,
mutability: Mutability::Mut,
extra: (),
})
}
}
impl Allocation {
/// Adjust allocation from the ones in tcx to a custom Machine instance
/// with a different Provenance and Extra type.
pub fn adjust_from_tcx<Prov, Extra, Err>(
self,
cx: &impl HasDataLayout,
extra: Extra,
mut adjust_ptr: impl FnMut(Pointer<AllocId>) -> Result<Pointer<Prov>, Err>,
) -> Result<Allocation<Prov, Extra>, Err> {
// Compute new pointer provenance, which also adjusts the bytes.
let mut bytes = self.bytes;
let mut new_provenance = Vec::with_capacity(self.provenance.0.len());
let ptr_size = cx.data_layout().pointer_size.bytes_usize();
let endian = cx.data_layout().endian;
for &(offset, alloc_id) in self.provenance.iter() {
let idx = offset.bytes_usize();
let ptr_bytes = &mut bytes[idx..idx + ptr_size];
let bits = read_target_uint(endian, ptr_bytes).unwrap();
let (ptr_prov, ptr_offset) =
adjust_ptr(Pointer::new(alloc_id, Size::from_bytes(bits)))?.into_parts();
write_target_uint(endian, ptr_bytes, ptr_offset.bytes().into()).unwrap();
new_provenance.push((offset, ptr_prov));
}
// Create allocation.
Ok(Allocation {
bytes,
provenance: ProvenanceMap::from_presorted(new_provenance),
init_mask: self.init_mask,
align: self.align,
mutability: self.mutability,
extra,
})
}
}
/// Raw accessors. Provide access to otherwise private bytes.
impl<Prov, Extra> Allocation<Prov, Extra> {
pub fn len(&self) -> usize {
self.bytes.len()
}
pub fn size(&self) -> Size {
Size::from_bytes(self.len())
}
/// Looks at a slice which may contain uninitialized bytes or provenance. This differs
/// from `get_bytes_with_uninit_and_ptr` in that it does no provenance checks (even on the
/// edges) at all.
/// This must not be used for reads affecting the interpreter execution.
pub fn inspect_with_uninit_and_ptr_outside_interpreter(&self, range: Range<usize>) -> &[u8] {
&self.bytes[range]
}
/// Returns the mask indicating which bytes are initialized.
pub fn init_mask(&self) -> &InitMask {
&self.init_mask
}
/// Returns the provenance map.
pub fn provenance(&self) -> &ProvenanceMap<Prov> {
&self.provenance
}
}
/// Byte accessors.
impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
/// This is the entirely abstraction-violating way to just grab the raw bytes without
/// caring about provenance or initialization.
///
/// This function also guarantees that the resulting pointer will remain stable
/// even when new allocations are pushed to the `HashMap`. `mem_copy_repeatedly` relies
/// on that.
#[inline]
pub fn get_bytes_unchecked(&self, range: AllocRange) -> &[u8] {
&self.bytes[range.start.bytes_usize()..range.end().bytes_usize()]
}
/// Checks that these bytes are initialized, and then strip provenance (if possible) and return
/// them.
///
/// It is the caller's responsibility to check bounds and alignment beforehand.
/// Most likely, you want to use the `PlaceTy` and `OperandTy`-based methods
/// on `InterpCx` instead.
#[inline]
pub fn get_bytes_strip_provenance(
&self,
cx: &impl HasDataLayout,
range: AllocRange,
) -> AllocResult<&[u8]> {
self.check_init(range)?;
if !Prov::OFFSET_IS_ADDR {
if self.range_has_provenance(cx, range) {
return Err(AllocError::ReadPointerAsBytes);
}
}
Ok(self.get_bytes_unchecked(range))
}
/// Just calling this already marks everything as defined and removes provenance,
/// so be sure to actually put data there!
///
/// It is the caller's responsibility to check bounds and alignment beforehand.
/// Most likely, you want to use the `PlaceTy` and `OperandTy`-based methods
/// on `InterpCx` instead.
pub fn get_bytes_mut(
&mut self,
cx: &impl HasDataLayout,
range: AllocRange,
) -> AllocResult<&mut [u8]> {
self.mark_init(range, true);
self.clear_provenance(cx, range)?;
Ok(&mut self.bytes[range.start.bytes_usize()..range.end().bytes_usize()])
}
/// A raw pointer variant of `get_bytes_mut` that avoids invalidating existing aliases into this memory.
pub fn get_bytes_mut_ptr(
&mut self,
cx: &impl HasDataLayout,
range: AllocRange,
) -> AllocResult<*mut [u8]> {
self.mark_init(range, true);
self.clear_provenance(cx, range)?;
assert!(range.end().bytes_usize() <= self.bytes.len()); // need to do our own bounds-check
let begin_ptr = self.bytes.as_mut_ptr().wrapping_add(range.start.bytes_usize());
let len = range.end().bytes_usize() - range.start.bytes_usize();
Ok(ptr::slice_from_raw_parts_mut(begin_ptr, len))
}
}
/// Reading and writing.
impl<Prov: Provenance, Extra> Allocation<Prov, Extra> {
/// Reads a *non-ZST* scalar.
///
/// If `read_provenance` is `true`, this will also read provenance; otherwise (if the machine
/// supports that) provenance is entirely ignored.
///
/// ZSTs can't be read because in order to obtain a `Pointer`, we need to check
/// for ZSTness anyway due to integer pointers being valid for ZSTs.
///
/// It is the caller's responsibility to check bounds and alignment beforehand.
/// Most likely, you want to call `InterpCx::read_scalar` instead of this method.
pub fn read_scalar(
&self,
cx: &impl HasDataLayout,
range: AllocRange,
read_provenance: bool,
) -> AllocResult<Scalar<Prov>> {
// First and foremost, if anything is uninit, bail.
if self.is_init(range).is_err() {
return Err(AllocError::InvalidUninitBytes(None));
}
// Get the integer part of the result. We HAVE TO check provenance before returning this!
let bytes = self.get_bytes_unchecked(range);
let bits = read_target_uint(cx.data_layout().endian, bytes).unwrap();
if read_provenance {
assert_eq!(range.size, cx.data_layout().pointer_size);
// When reading data with provenance, the easy case is finding provenance exactly where we
// are reading, then we can put data and provenance back together and return that.
if let Some(&prov) = self.provenance.get(&range.start) {
// Now we can return the bits, with their appropriate provenance.
let ptr = Pointer::new(prov, Size::from_bytes(bits));
return Ok(Scalar::from_pointer(ptr, cx));
}
// If we can work on pointers byte-wise, join the byte-wise provenances.
if Prov::OFFSET_IS_ADDR {
let mut prov = self.offset_get_provenance(cx, range.start);
for offset in 1..range.size.bytes() {
let this_prov =
self.offset_get_provenance(cx, range.start + Size::from_bytes(offset));
prov = Prov::join(prov, this_prov);
}
// Now use this provenance.
let ptr = Pointer::new(prov, Size::from_bytes(bits));
return Ok(Scalar::from_maybe_pointer(ptr, cx));
}
} else {
// We are *not* reading a pointer.
// If we can just ignore provenance, do exactly that.
if Prov::OFFSET_IS_ADDR {
// We just strip provenance.
return Ok(Scalar::from_uint(bits, range.size));
}
}
// Fallback path for when we cannot treat provenance bytewise or ignore it.
assert!(!Prov::OFFSET_IS_ADDR);
if self.range_has_provenance(cx, range) {
return Err(AllocError::ReadPointerAsBytes);
}
// There is no provenance, we can just return the bits.
Ok(Scalar::from_uint(bits, range.size))
}
/// Writes a *non-ZST* scalar.
///
/// ZSTs can't be read because in order to obtain a `Pointer`, we need to check
/// for ZSTness anyway due to integer pointers being valid for ZSTs.
///
/// It is the caller's responsibility to check bounds and alignment beforehand.
/// Most likely, you want to call `InterpCx::write_scalar` instead of this method.
#[instrument(skip(self, cx), level = "debug")]
pub fn write_scalar(
&mut self,
cx: &impl HasDataLayout,
range: AllocRange,
val: Scalar<Prov>,
) -> AllocResult {
assert!(self.mutability == Mutability::Mut);
// `to_bits_or_ptr_internal` is the right method because we just want to store this data
// as-is into memory.
let (bytes, provenance) = match val.to_bits_or_ptr_internal(range.size)? {
Err(val) => {
let (provenance, offset) = val.into_parts();
(u128::from(offset.bytes()), Some(provenance))
}
Ok(data) => (data, None),
};
let endian = cx.data_layout().endian;
let dst = self.get_bytes_mut(cx, range)?;
write_target_uint(endian, dst, bytes).unwrap();
// See if we have to also store some provenance.
if let Some(provenance) = provenance {
self.provenance.0.insert(range.start, provenance);
}
Ok(())
}
/// Write "uninit" to the given memory range.
pub fn write_uninit(&mut self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult {
self.mark_init(range, false);
self.clear_provenance(cx, range)?;
return Ok(());
}
}
/// Provenance.
impl<Prov: Copy, Extra> Allocation<Prov, Extra> {
/// Returns all provenance overlapping with the given pointer-offset pair.
fn range_get_provenance(&self, cx: &impl HasDataLayout, range: AllocRange) -> &[(Size, Prov)] {
// We have to go back `pointer_size - 1` bytes, as that one would still overlap with
// the beginning of this range.
let start = range.start.bytes().saturating_sub(cx.data_layout().pointer_size.bytes() - 1);
self.provenance.range(Size::from_bytes(start)..range.end())
}
/// Get the provenance of a single byte.
fn offset_get_provenance(&self, cx: &impl HasDataLayout, offset: Size) -> Option<Prov> {
let prov = self.range_get_provenance(cx, alloc_range(offset, Size::from_bytes(1)));
assert!(prov.len() <= 1);
prov.first().map(|(_offset, prov)| *prov)
}
/// Returns whether this allocation has progrnance overlapping with the given range.
///
/// Note: this function exists to allow `range_get_provenance` to be private, in order to somewhat
/// limit access to provenance outside of the `Allocation` abstraction.
///
pub fn range_has_provenance(&self, cx: &impl HasDataLayout, range: AllocRange) -> bool {
!self.range_get_provenance(cx, range).is_empty()
}
/// Removes all provenance inside the given range.
/// If there is provenance overlapping with the edges, it
/// are removed as well *and* the bytes they cover are marked as
/// uninitialized. This is a somewhat odd "spooky action at a distance",
/// but it allows strictly more code to run than if we would just error
/// immediately in that case.
fn clear_provenance(&mut self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult
where
Prov: Provenance,
{
// Find the start and end of the given range and its outermost provenance.
let (first, last) = {
// Find all provenance overlapping the given range.
let provenance = self.range_get_provenance(cx, range);
if provenance.is_empty() {
return Ok(());
}
(
provenance.first().unwrap().0,
provenance.last().unwrap().0 + cx.data_layout().pointer_size,
)
};
let start = range.start;
let end = range.end();
// We need to handle clearing the provenance from parts of a pointer.
// FIXME: Miri should preserve partial provenance; see
// https://github.com/rust-lang/miri/issues/2181.
if first < start {
if Prov::ERR_ON_PARTIAL_PTR_OVERWRITE {
return Err(AllocError::PartialPointerOverwrite(first));
}
warn!(
"Partial pointer overwrite! De-initializing memory at offsets {first:?}..{start:?}."
);
self.init_mask.set_range(first, start, false);
}
if last > end {
if Prov::ERR_ON_PARTIAL_PTR_OVERWRITE {
return Err(AllocError::PartialPointerOverwrite(
last - cx.data_layout().pointer_size,
));
}
warn!(
"Partial pointer overwrite! De-initializing memory at offsets {end:?}..{last:?}."
);
self.init_mask.set_range(end, last, false);
}
// Forget all the provenance.
// Since provenance do not overlap, we know that removing until `last` (exclusive) is fine,
// i.e., this will not remove any other provenance just after the ones we care about.
self.provenance.0.remove_range(first..last);
Ok(())
}
}
/// Stores the provenance information of pointers stored in memory.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)]
pub struct ProvenanceMap<Prov = AllocId>(SortedMap<Size, Prov>);
impl<Prov> ProvenanceMap<Prov> {
pub fn new() -> Self {
ProvenanceMap(SortedMap::new())
}
// The caller must guarantee that the given provenance list is already sorted
// by address and contain no duplicates.
pub fn from_presorted(r: Vec<(Size, Prov)>) -> Self {
ProvenanceMap(SortedMap::from_presorted_elements(r))
}
}
impl<Prov> Deref for ProvenanceMap<Prov> {
type Target = SortedMap<Size, Prov>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
/// A partial, owned list of provenance to transfer into another allocation.
///
/// Offsets are already adjusted to the destination allocation.
pub struct AllocationProvenance<Prov> {
dest_provenance: Vec<(Size, Prov)>,
}
impl<Prov: Copy, Extra> Allocation<Prov, Extra> {
pub fn prepare_provenance_copy(
&self,
cx: &impl HasDataLayout,
src: AllocRange,
dest: Size,
count: u64,
) -> AllocationProvenance<Prov> {
let provenance = self.range_get_provenance(cx, src);
if provenance.is_empty() {
return AllocationProvenance { dest_provenance: Vec::new() };
}
let size = src.size;
let mut new_provenance = Vec::with_capacity(provenance.len() * (count as usize));
// If `count` is large, this is rather wasteful -- we are allocating a big array here, which
// is mostly filled with redundant information since it's just N copies of the same `Prov`s
// at slightly adjusted offsets. The reason we do this is so that in `mark_provenance_range`
// we can use `insert_presorted`. That wouldn't work with an `Iterator` that just produces
// the right sequence of provenance for all N copies.
for i in 0..count {
new_provenance.extend(provenance.iter().map(|&(offset, reloc)| {
// compute offset for current repetition
let dest_offset = dest + size * i; // `Size` operations
(
// shift offsets from source allocation to destination allocation
(offset + dest_offset) - src.start, // `Size` operations
reloc,
)
}));
}
AllocationProvenance { dest_provenance: new_provenance }
}
/// Applies a provenance copy.
/// The affected range, as defined in the parameters to `prepare_provenance_copy` is expected
/// to be clear of provenance.
///
/// This is dangerous to use as it can violate internal `Allocation` invariants!
/// It only exists to support an efficient implementation of `mem_copy_repeatedly`.
pub fn mark_provenance_range(&mut self, provenance: AllocationProvenance<Prov>) {
self.provenance.0.insert_presorted(provenance.dest_provenance);
}
}
////////////////////////////////////////////////////////////////////////////////
// Uninitialized byte tracking
////////////////////////////////////////////////////////////////////////////////
type Block = u64;
/// A bitmask where each bit refers to the byte with the same index. If the bit is `true`, the byte
/// is initialized. If it is `false` the byte is uninitialized.
// Note: for performance reasons when interning, some of the `InitMask` fields can be partially
// hashed. (see the `Hash` impl below for more details), so the impl is not derived.
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub struct InitMask {
blocks: Vec<Block>,
len: Size,
}
// Const allocations are only hashed for interning. However, they can be large, making the hashing
// expensive especially since it uses `FxHash`: it's better suited to short keys, not potentially
// big buffers like the allocation's init mask. We can partially hash some fields when they're
// large.
impl hash::Hash for InitMask {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
const MAX_BLOCKS_TO_HASH: usize = MAX_BYTES_TO_HASH / std::mem::size_of::<Block>();
const MAX_BLOCKS_LEN: usize = MAX_HASHED_BUFFER_LEN / std::mem::size_of::<Block>();
// Partially hash the `blocks` buffer when it is large. To limit collisions with common
// prefixes and suffixes, we hash the length and some slices of the buffer.
let block_count = self.blocks.len();
if block_count > MAX_BLOCKS_LEN {
// Hash the buffer's length.
block_count.hash(state);
// And its head and tail.
self.blocks[..MAX_BLOCKS_TO_HASH].hash(state);
self.blocks[block_count - MAX_BLOCKS_TO_HASH..].hash(state);
} else {
self.blocks.hash(state);
}
// Hash the other fields as usual.
self.len.hash(state);
}
}
impl InitMask {
pub const BLOCK_SIZE: u64 = 64;
#[inline]
fn bit_index(bits: Size) -> (usize, usize) {
// BLOCK_SIZE is the number of bits that can fit in a `Block`.
// Each bit in a `Block` represents the initialization state of one byte of an allocation,
// so we use `.bytes()` here.
let bits = bits.bytes();
let a = bits / InitMask::BLOCK_SIZE;
let b = bits % InitMask::BLOCK_SIZE;
(usize::try_from(a).unwrap(), usize::try_from(b).unwrap())
}
#[inline]
fn size_from_bit_index(block: impl TryInto<u64>, bit: impl TryInto<u64>) -> Size {
let block = block.try_into().ok().unwrap();
let bit = bit.try_into().ok().unwrap();
Size::from_bytes(block * InitMask::BLOCK_SIZE + bit)
}
pub fn new(size: Size, state: bool) -> Self {
let mut m = InitMask { blocks: vec![], len: Size::ZERO };
m.grow(size, state);
m
}
pub fn set_range(&mut self, start: Size, end: Size, new_state: bool) {
let len = self.len;
if end > len {
self.grow(end - len, new_state);
}
self.set_range_inbounds(start, end, new_state);
}
pub fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) {
let (blocka, bita) = Self::bit_index(start);
let (blockb, bitb) = Self::bit_index(end);
if blocka == blockb {
// First set all bits except the first `bita`,
// then unset the last `64 - bitb` bits.
let range = if bitb == 0 {
u64::MAX << bita
} else {
(u64::MAX << bita) & (u64::MAX >> (64 - bitb))
};
if new_state {
self.blocks[blocka] |= range;
} else {
self.blocks[blocka] &= !range;
}
return;
}
// across block boundaries
if new_state {
// Set `bita..64` to `1`.
self.blocks[blocka] |= u64::MAX << bita;
// Set `0..bitb` to `1`.
if bitb != 0 {
self.blocks[blockb] |= u64::MAX >> (64 - bitb);
}
// Fill in all the other blocks (much faster than one bit at a time).
for block in (blocka + 1)..blockb {
self.blocks[block] = u64::MAX;
}
} else {
// Set `bita..64` to `0`.
self.blocks[blocka] &= !(u64::MAX << bita);
// Set `0..bitb` to `0`.
if bitb != 0 {
self.blocks[blockb] &= !(u64::MAX >> (64 - bitb));
}
// Fill in all the other blocks (much faster than one bit at a time).
for block in (blocka + 1)..blockb {
self.blocks[block] = 0;
}
}
}
#[inline]
pub fn get(&self, i: Size) -> bool {
let (block, bit) = Self::bit_index(i);
(self.blocks[block] & (1 << bit)) != 0
}
#[inline]
pub fn set(&mut self, i: Size, new_state: bool) {
let (block, bit) = Self::bit_index(i);
self.set_bit(block, bit, new_state);
}
#[inline]
fn set_bit(&mut self, block: usize, bit: usize, new_state: bool) {
if new_state {
self.blocks[block] |= 1 << bit;
} else {
self.blocks[block] &= !(1 << bit);
}
}
pub fn grow(&mut self, amount: Size, new_state: bool) {
if amount.bytes() == 0 {
return;
}
let unused_trailing_bits =
u64::try_from(self.blocks.len()).unwrap() * Self::BLOCK_SIZE - self.len.bytes();
if amount.bytes() > unused_trailing_bits {
let additional_blocks = amount.bytes() / Self::BLOCK_SIZE + 1;
self.blocks.extend(
// FIXME(oli-obk): optimize this by repeating `new_state as Block`.
iter::repeat(0).take(usize::try_from(additional_blocks).unwrap()),
);
}
let start = self.len;
self.len += amount;
self.set_range_inbounds(start, start + amount, new_state); // `Size` operation
}
/// Returns the index of the first bit in `start..end` (end-exclusive) that is equal to is_init.
fn find_bit(&self, start: Size, end: Size, is_init: bool) -> Option<Size> {
/// A fast implementation of `find_bit`,
/// which skips over an entire block at a time if it's all 0s (resp. 1s),
/// and finds the first 1 (resp. 0) bit inside a block using `trailing_zeros` instead of a loop.
///
/// Note that all examples below are written with 8 (instead of 64) bit blocks for simplicity,
/// and with the least significant bit (and lowest block) first:
/// ```text
/// 00000000|00000000
/// ^ ^ ^ ^
/// index: 0 7 8 15
/// ```
/// Also, if not stated, assume that `is_init = true`, that is, we are searching for the first 1 bit.
fn find_bit_fast(
init_mask: &InitMask,
start: Size,
end: Size,
is_init: bool,
) -> Option<Size> {
/// Search one block, returning the index of the first bit equal to `is_init`.
fn search_block(
bits: Block,
block: usize,
start_bit: usize,
is_init: bool,
) -> Option<Size> {
// For the following examples, assume this function was called with:
// bits = 0b00111011
// start_bit = 3
// is_init = false
// Note that, for the examples in this function, the most significant bit is written first,
// which is backwards compared to the comments in `find_bit`/`find_bit_fast`.
// Invert bits so we're always looking for the first set bit.
// ! 0b00111011
// bits = 0b11000100
let bits = if is_init { bits } else { !bits };
// Mask off unused start bits.
// 0b11000100
// & 0b11111000
// bits = 0b11000000
let bits = bits & (!0 << start_bit);
// Find set bit, if any.
// bit = trailing_zeros(0b11000000)
// bit = 6
if bits == 0 {
None
} else {
let bit = bits.trailing_zeros();
Some(InitMask::size_from_bit_index(block, bit))
}
}
if start >= end {
return None;
}
// Convert `start` and `end` to block indexes and bit indexes within each block.
// We must convert `end` to an inclusive bound to handle block boundaries correctly.
//
// For example:
//
// (a) 00000000|00000000 (b) 00000000|
// ^~~~~~~~~~~^ ^~~~~~~~~^
// start end start end
//
// In both cases, the block index of `end` is 1.
// But we do want to search block 1 in (a), and we don't in (b).
//
// We subtract 1 from both end positions to make them inclusive:
//
// (a) 00000000|00000000 (b) 00000000|
// ^~~~~~~~~~^ ^~~~~~~^
// start end_inclusive start end_inclusive
//
// For (a), the block index of `end_inclusive` is 1, and for (b), it's 0.
// This provides the desired behavior of searching blocks 0 and 1 for (a),
// and searching only block 0 for (b).
// There is no concern of overflows since we checked for `start >= end` above.
let (start_block, start_bit) = InitMask::bit_index(start);
let end_inclusive = Size::from_bytes(end.bytes() - 1);
let (end_block_inclusive, _) = InitMask::bit_index(end_inclusive);
// Handle first block: need to skip `start_bit` bits.
//
// We need to handle the first block separately,
// because there may be bits earlier in the block that should be ignored,
// such as the bit marked (1) in this example:
//
// (1)
// -|------
// (c) 01000000|00000000|00000001
// ^~~~~~~~~~~~~~~~~~^
// start end
if let Some(i) =
search_block(init_mask.blocks[start_block], start_block, start_bit, is_init)
{
// If the range is less than a block, we may find a matching bit after `end`.
//
// For example, we shouldn't successfully find bit (2), because it's after `end`:
//
// (2)
// -------|
// (d) 00000001|00000000|00000001
// ^~~~~^
// start end
//
// An alternative would be to mask off end bits in the same way as we do for start bits,
// but performing this check afterwards is faster and simpler to implement.
if i < end {
return Some(i);
} else {
return None;
}
}
// Handle remaining blocks.
//
// We can skip over an entire block at once if it's all 0s (resp. 1s).
// The block marked (3) in this example is the first block that will be handled by this loop,
// and it will be skipped for that reason:
//
// (3)
// --------
// (e) 01000000|00000000|00000001
// ^~~~~~~~~~~~~~~~~~^
// start end
if start_block < end_block_inclusive {
// This loop is written in a specific way for performance.
// Notably: `..end_block_inclusive + 1` is used for an inclusive range instead of `..=end_block_inclusive`,
// and `.zip(start_block + 1..)` is used to track the index instead of `.enumerate().skip().take()`,
// because both alternatives result in significantly worse codegen.
// `end_block_inclusive + 1` is guaranteed not to wrap, because `end_block_inclusive <= end / BLOCK_SIZE`,
// and `BLOCK_SIZE` (the number of bits per block) will always be at least 8 (1 byte).
for (&bits, block) in init_mask.blocks[start_block + 1..end_block_inclusive + 1]
.iter()
.zip(start_block + 1..)
{
if let Some(i) = search_block(bits, block, 0, is_init) {
// If this is the last block, we may find a matching bit after `end`.
//
// For example, we shouldn't successfully find bit (4), because it's after `end`:
//
// (4)
// -------|
// (f) 00000001|00000000|00000001
// ^~~~~~~~~~~~~~~~~~^
// start end
//
// As above with example (d), we could handle the end block separately and mask off end bits,
// but unconditionally searching an entire block at once and performing this check afterwards
// is faster and much simpler to implement.
if i < end {
return Some(i);
} else {
return None;
}
}
}
}
None
}
#[cfg_attr(not(debug_assertions), allow(dead_code))]
fn find_bit_slow(
init_mask: &InitMask,
start: Size,
end: Size,
is_init: bool,
) -> Option<Size> {
(start..end).find(|&i| init_mask.get(i) == is_init)
}
let result = find_bit_fast(self, start, end, is_init);
debug_assert_eq!(
result,
find_bit_slow(self, start, end, is_init),
"optimized implementation of find_bit is wrong for start={:?} end={:?} is_init={} init_mask={:#?}",
start,
end,
is_init,
self
);
result
}
}
/// A contiguous chunk of initialized or uninitialized memory.
pub enum InitChunk {
Init(Range<Size>),
Uninit(Range<Size>),
}
impl InitChunk {
#[inline]
pub fn is_init(&self) -> bool {
match self {
Self::Init(_) => true,
Self::Uninit(_) => false,
}
}
#[inline]
pub fn range(&self) -> Range<Size> {
match self {
Self::Init(r) => r.clone(),
Self::Uninit(r) => r.clone(),
}
}
}
impl InitMask {
/// Checks whether the range `start..end` (end-exclusive) is entirely initialized.
///
/// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
/// indexes for the first contiguous span of the uninitialized access.
#[inline]
pub fn is_range_initialized(&self, start: Size, end: Size) -> Result<(), AllocRange> {
if end > self.len {
return Err(AllocRange::from(self.len..end));
}
let uninit_start = self.find_bit(start, end, false);
match uninit_start {
Some(uninit_start) => {
let uninit_end = self.find_bit(uninit_start, end, true).unwrap_or(end);
Err(AllocRange::from(uninit_start..uninit_end))
}
None => Ok(()),
}
}
/// Returns an iterator, yielding a range of byte indexes for each contiguous region
/// of initialized or uninitialized bytes inside the range `start..end` (end-exclusive).
///
/// The iterator guarantees the following:
/// - Chunks are nonempty.
/// - Chunks are adjacent (each range's start is equal to the previous range's end).
/// - Chunks span exactly `start..end` (the first starts at `start`, the last ends at `end`).
/// - Chunks alternate between [`InitChunk::Init`] and [`InitChunk::Uninit`].
#[inline]
pub fn range_as_init_chunks(&self, start: Size, end: Size) -> InitChunkIter<'_> {
assert!(end <= self.len);
let is_init = if start < end {
self.get(start)
} else {
// `start..end` is empty: there are no chunks, so use some arbitrary value
false
};
InitChunkIter { init_mask: self, is_init, start, end }
}
}
/// Yields [`InitChunk`]s. See [`InitMask::range_as_init_chunks`].
#[derive(Clone)]
pub struct InitChunkIter<'a> {
init_mask: &'a InitMask,
/// Whether the next chunk we will return is initialized.
/// If there are no more chunks, contains some arbitrary value.
is_init: bool,
/// The current byte index into `init_mask`.
start: Size,
/// The end byte index into `init_mask`.
end: Size,
}
impl<'a> Iterator for InitChunkIter<'a> {
type Item = InitChunk;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.start >= self.end {
return None;
}
let end_of_chunk =
self.init_mask.find_bit(self.start, self.end, !self.is_init).unwrap_or(self.end);
let range = self.start..end_of_chunk;
let ret =
Some(if self.is_init { InitChunk::Init(range) } else { InitChunk::Uninit(range) });
self.is_init = !self.is_init;
self.start = end_of_chunk;
ret
}
}
/// Uninitialized bytes.
impl<Prov: Copy, Extra> Allocation<Prov, Extra> {
/// Checks whether the given range is entirely initialized.
///
/// Returns `Ok(())` if it's initialized. Otherwise returns the range of byte
/// indexes of the first contiguous uninitialized access.
fn is_init(&self, range: AllocRange) -> Result<(), AllocRange> {
self.init_mask.is_range_initialized(range.start, range.end()) // `Size` addition
}
/// Checks that a range of bytes is initialized. If not, returns the `InvalidUninitBytes`
/// error which will report the first range of bytes which is uninitialized.
fn check_init(&self, range: AllocRange) -> AllocResult {
self.is_init(range).map_err(|uninit_range| {
AllocError::InvalidUninitBytes(Some(UninitBytesAccess {
access: range,
uninit: uninit_range,
}))
})
}
fn mark_init(&mut self, range: AllocRange, is_init: bool) {
if range.size.bytes() == 0 {
return;
}
assert!(self.mutability == Mutability::Mut);
self.init_mask.set_range(range.start, range.end(), is_init);
}
}
/// Run-length encoding of the uninit mask.
/// Used to copy parts of a mask multiple times to another allocation.
pub struct InitMaskCompressed {
/// Whether the first range is initialized.
initial: bool,
/// The lengths of ranges that are run-length encoded.
/// The initialization state of the ranges alternate starting with `initial`.
ranges: smallvec::SmallVec<[u64; 1]>,
}
impl InitMaskCompressed {
pub fn no_bytes_init(&self) -> bool {
// The `ranges` are run-length encoded and of alternating initialization state.
// So if `ranges.len() > 1` then the second block is an initialized range.
!self.initial && self.ranges.len() == 1
}
}
/// Transferring the initialization mask to other allocations.
impl<Prov, Extra> Allocation<Prov, Extra> {
/// Creates a run-length encoding of the initialization mask; panics if range is empty.
///
/// This is essentially a more space-efficient version of
/// `InitMask::range_as_init_chunks(...).collect::<Vec<_>>()`.
pub fn compress_uninit_range(&self, range: AllocRange) -> InitMaskCompressed {
// Since we are copying `size` bytes from `src` to `dest + i * size` (`for i in 0..repeat`),
// a naive initialization mask copying algorithm would repeatedly have to read the initialization mask from
// the source and write it to the destination. Even if we optimized the memory accesses,
// we'd be doing all of this `repeat` times.
// Therefore we precompute a compressed version of the initialization mask of the source value and
// then write it back `repeat` times without computing any more information from the source.
// A precomputed cache for ranges of initialized / uninitialized bits
// 0000010010001110 will become
// `[5, 1, 2, 1, 3, 3, 1]`,
// where each element toggles the state.
let mut ranges = smallvec::SmallVec::<[u64; 1]>::new();
let mut chunks = self.init_mask.range_as_init_chunks(range.start, range.end()).peekable();
let initial = chunks.peek().expect("range should be nonempty").is_init();
// Here we rely on `range_as_init_chunks` to yield alternating init/uninit chunks.
for chunk in chunks {
let len = chunk.range().end.bytes() - chunk.range().start.bytes();
ranges.push(len);
}
InitMaskCompressed { ranges, initial }
}
/// Applies multiple instances of the run-length encoding to the initialization mask.
///
/// This is dangerous to use as it can violate internal `Allocation` invariants!
/// It only exists to support an efficient implementation of `mem_copy_repeatedly`.
pub fn mark_compressed_init_range(
&mut self,
defined: &InitMaskCompressed,
range: AllocRange,
repeat: u64,
) {
// An optimization where we can just overwrite an entire range of initialization
// bits if they are going to be uniformly `1` or `0`.
if defined.ranges.len() <= 1 {
self.init_mask.set_range_inbounds(
range.start,
range.start + range.size * repeat, // `Size` operations
defined.initial,
);
return;
}
for mut j in 0..repeat {
j *= range.size.bytes();
j += range.start.bytes();
let mut cur = defined.initial;
for range in &defined.ranges {
let old_j = j;
j += range;
self.init_mask.set_range_inbounds(
Size::from_bytes(old_j),
Size::from_bytes(j),
cur,
);
cur = !cur;
}
}
}
}