1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
//! The data that we will serialize and deserialize.
//!
//! The dep-graph is serialized as a sequence of NodeInfo, with the dependencies
//! specified inline.  The total number of nodes and edges are stored as the last
//! 16 bytes of the file, so we can find them easily at decoding time.
//!
//! The serialisation is performed on-demand when each node is emitted. Using this
//! scheme, we do not need to keep the current graph in memory.
//!
//! The deserialization is performed manually, in order to convert from the stored
//! sequence of NodeInfos to the different arrays in SerializedDepGraph.  Since the
//! node and edge count are stored at the end of the file, all the arrays can be
//! pre-allocated with the right length.

use super::query::DepGraphQuery;
use super::{DepKind, DepNode, DepNodeIndex};
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::profiling::SelfProfilerRef;
use rustc_data_structures::sync::Lock;
use rustc_index::vec::{Idx, IndexVec};
use rustc_serialize::opaque::{FileEncodeResult, FileEncoder, IntEncodedWithFixedSize, MemDecoder};
use rustc_serialize::{Decodable, Decoder, Encodable};
use smallvec::SmallVec;
use std::convert::TryInto;

// The maximum value of `SerializedDepNodeIndex` leaves the upper two bits
// unused so that we can store multiple index types in `CompressedHybridIndex`,
// and use those bits to encode which index type it contains.
rustc_index::newtype_index! {
    pub struct SerializedDepNodeIndex {
        MAX = 0x7FFF_FFFF
    }
}

/// Data for use when recompiling the **current crate**.
#[derive(Debug)]
pub struct SerializedDepGraph<K: DepKind> {
    /// The set of all DepNodes in the graph
    nodes: IndexVec<SerializedDepNodeIndex, DepNode<K>>,
    /// The set of all Fingerprints in the graph. Each Fingerprint corresponds to
    /// the DepNode at the same index in the nodes vector.
    fingerprints: IndexVec<SerializedDepNodeIndex, Fingerprint>,
    /// For each DepNode, stores the list of edges originating from that
    /// DepNode. Encoded as a [start, end) pair indexing into edge_list_data,
    /// which holds the actual DepNodeIndices of the target nodes.
    edge_list_indices: IndexVec<SerializedDepNodeIndex, (u32, u32)>,
    /// A flattened list of all edge targets in the graph. Edge sources are
    /// implicit in edge_list_indices.
    edge_list_data: Vec<SerializedDepNodeIndex>,
    /// Reciprocal map to `nodes`.
    index: FxHashMap<DepNode<K>, SerializedDepNodeIndex>,
}

impl<K: DepKind> Default for SerializedDepGraph<K> {
    fn default() -> Self {
        SerializedDepGraph {
            nodes: Default::default(),
            fingerprints: Default::default(),
            edge_list_indices: Default::default(),
            edge_list_data: Default::default(),
            index: Default::default(),
        }
    }
}

impl<K: DepKind> SerializedDepGraph<K> {
    #[inline]
    pub fn edge_targets_from(&self, source: SerializedDepNodeIndex) -> &[SerializedDepNodeIndex] {
        let targets = self.edge_list_indices[source];
        &self.edge_list_data[targets.0 as usize..targets.1 as usize]
    }

    #[inline]
    pub fn index_to_node(&self, dep_node_index: SerializedDepNodeIndex) -> DepNode<K> {
        self.nodes[dep_node_index]
    }

    #[inline]
    pub fn node_to_index_opt(&self, dep_node: &DepNode<K>) -> Option<SerializedDepNodeIndex> {
        self.index.get(dep_node).cloned()
    }

    #[inline]
    pub fn fingerprint_of(&self, dep_node: &DepNode<K>) -> Option<Fingerprint> {
        self.index.get(dep_node).map(|&node_index| self.fingerprints[node_index])
    }

    #[inline]
    pub fn fingerprint_by_index(&self, dep_node_index: SerializedDepNodeIndex) -> Fingerprint {
        self.fingerprints[dep_node_index]
    }

    pub fn node_count(&self) -> usize {
        self.index.len()
    }
}

impl<'a, K: DepKind + Decodable<MemDecoder<'a>>> Decodable<MemDecoder<'a>>
    for SerializedDepGraph<K>
{
    #[instrument(level = "debug", skip(d))]
    fn decode(d: &mut MemDecoder<'a>) -> SerializedDepGraph<K> {
        let start_position = d.position();

        // The last 16 bytes are the node count and edge count.
        debug!("position: {:?}", d.position());
        d.set_position(d.data.len() - 2 * IntEncodedWithFixedSize::ENCODED_SIZE);
        debug!("position: {:?}", d.position());

        let node_count = IntEncodedWithFixedSize::decode(d).0 as usize;
        let edge_count = IntEncodedWithFixedSize::decode(d).0 as usize;
        debug!(?node_count, ?edge_count);

        debug!("position: {:?}", d.position());
        d.set_position(start_position);
        debug!("position: {:?}", d.position());

        let mut nodes = IndexVec::with_capacity(node_count);
        let mut fingerprints = IndexVec::with_capacity(node_count);
        let mut edge_list_indices = IndexVec::with_capacity(node_count);
        let mut edge_list_data = Vec::with_capacity(edge_count);

        for _index in 0..node_count {
            let dep_node: DepNode<K> = Decodable::decode(d);
            let _i: SerializedDepNodeIndex = nodes.push(dep_node);
            debug_assert_eq!(_i.index(), _index);

            let fingerprint: Fingerprint = Decodable::decode(d);
            let _i: SerializedDepNodeIndex = fingerprints.push(fingerprint);
            debug_assert_eq!(_i.index(), _index);

            // Deserialize edges -- sequence of DepNodeIndex
            let len = d.read_usize();
            let start = edge_list_data.len().try_into().unwrap();
            for _ in 0..len {
                let edge = Decodable::decode(d);
                edge_list_data.push(edge);
            }
            let end = edge_list_data.len().try_into().unwrap();
            let _i: SerializedDepNodeIndex = edge_list_indices.push((start, end));
            debug_assert_eq!(_i.index(), _index);
        }

        let index: FxHashMap<_, _> =
            nodes.iter_enumerated().map(|(idx, &dep_node)| (dep_node, idx)).collect();

        SerializedDepGraph { nodes, fingerprints, edge_list_indices, edge_list_data, index }
    }
}

#[derive(Debug, Encodable, Decodable)]
pub struct NodeInfo<K: DepKind> {
    node: DepNode<K>,
    fingerprint: Fingerprint,
    edges: SmallVec<[DepNodeIndex; 8]>,
}

struct Stat<K: DepKind> {
    kind: K,
    node_counter: u64,
    edge_counter: u64,
}

struct EncoderState<K: DepKind> {
    encoder: FileEncoder,
    total_node_count: usize,
    total_edge_count: usize,
    stats: Option<FxHashMap<K, Stat<K>>>,
}

impl<K: DepKind> EncoderState<K> {
    fn new(encoder: FileEncoder, record_stats: bool) -> Self {
        Self {
            encoder,
            total_edge_count: 0,
            total_node_count: 0,
            stats: record_stats.then(FxHashMap::default),
        }
    }

    fn encode_node(
        &mut self,
        node: &NodeInfo<K>,
        record_graph: &Option<Lock<DepGraphQuery<K>>>,
    ) -> DepNodeIndex {
        let index = DepNodeIndex::new(self.total_node_count);
        self.total_node_count += 1;

        let edge_count = node.edges.len();
        self.total_edge_count += edge_count;

        if let Some(record_graph) = &record_graph {
            // Do not ICE when a query is called from within `with_query`.
            if let Some(record_graph) = &mut record_graph.try_lock() {
                record_graph.push(index, node.node, &node.edges);
            }
        }

        if let Some(stats) = &mut self.stats {
            let kind = node.node.kind;

            let stat = stats.entry(kind).or_insert(Stat { kind, node_counter: 0, edge_counter: 0 });
            stat.node_counter += 1;
            stat.edge_counter += edge_count as u64;
        }

        let encoder = &mut self.encoder;
        node.encode(encoder);
        index
    }

    fn finish(self, profiler: &SelfProfilerRef) -> FileEncodeResult {
        let Self { mut encoder, total_node_count, total_edge_count, stats: _ } = self;

        let node_count = total_node_count.try_into().unwrap();
        let edge_count = total_edge_count.try_into().unwrap();

        debug!(?node_count, ?edge_count);
        debug!("position: {:?}", encoder.position());
        IntEncodedWithFixedSize(node_count).encode(&mut encoder);
        IntEncodedWithFixedSize(edge_count).encode(&mut encoder);
        debug!("position: {:?}", encoder.position());
        // Drop the encoder so that nothing is written after the counts.
        let result = encoder.finish();
        if let Ok(position) = result {
            // FIXME(rylev): we hardcode the dep graph file name so we
            // don't need a dependency on rustc_incremental just for that.
            profiler.artifact_size("dep_graph", "dep-graph.bin", position as u64);
        }
        result
    }
}

pub struct GraphEncoder<K: DepKind> {
    status: Lock<EncoderState<K>>,
    record_graph: Option<Lock<DepGraphQuery<K>>>,
}

impl<K: DepKind + Encodable<FileEncoder>> GraphEncoder<K> {
    pub fn new(
        encoder: FileEncoder,
        prev_node_count: usize,
        record_graph: bool,
        record_stats: bool,
    ) -> Self {
        let record_graph =
            if record_graph { Some(Lock::new(DepGraphQuery::new(prev_node_count))) } else { None };
        let status = Lock::new(EncoderState::new(encoder, record_stats));
        GraphEncoder { status, record_graph }
    }

    pub(crate) fn with_query(&self, f: impl Fn(&DepGraphQuery<K>)) {
        if let Some(record_graph) = &self.record_graph {
            f(&record_graph.lock())
        }
    }

    pub(crate) fn print_incremental_info(
        &self,
        total_read_count: u64,
        total_duplicate_read_count: u64,
    ) {
        let status = self.status.lock();
        if let Some(record_stats) = &status.stats {
            let mut stats: Vec<_> = record_stats.values().collect();
            stats.sort_by_key(|s| -(s.node_counter as i64));

            const SEPARATOR: &str = "[incremental] --------------------------------\
                                     ----------------------------------------------\
                                     ------------";

            eprintln!("[incremental]");
            eprintln!("[incremental] DepGraph Statistics");
            eprintln!("{}", SEPARATOR);
            eprintln!("[incremental]");
            eprintln!("[incremental] Total Node Count: {}", status.total_node_count);
            eprintln!("[incremental] Total Edge Count: {}", status.total_edge_count);

            if cfg!(debug_assertions) {
                eprintln!("[incremental] Total Edge Reads: {}", total_read_count);
                eprintln!(
                    "[incremental] Total Duplicate Edge Reads: {}",
                    total_duplicate_read_count
                );
            }

            eprintln!("[incremental]");
            eprintln!(
                "[incremental]  {:<36}| {:<17}| {:<12}| {:<17}|",
                "Node Kind", "Node Frequency", "Node Count", "Avg. Edge Count"
            );
            eprintln!("{}", SEPARATOR);

            for stat in stats {
                let node_kind_ratio =
                    (100.0 * (stat.node_counter as f64)) / (status.total_node_count as f64);
                let node_kind_avg_edges = (stat.edge_counter as f64) / (stat.node_counter as f64);

                eprintln!(
                    "[incremental]  {:<36}|{:>16.1}% |{:>12} |{:>17.1} |",
                    format!("{:?}", stat.kind),
                    node_kind_ratio,
                    stat.node_counter,
                    node_kind_avg_edges,
                );
            }

            eprintln!("{}", SEPARATOR);
            eprintln!("[incremental]");
        }
    }

    pub(crate) fn send(
        &self,
        profiler: &SelfProfilerRef,
        node: DepNode<K>,
        fingerprint: Fingerprint,
        edges: SmallVec<[DepNodeIndex; 8]>,
    ) -> DepNodeIndex {
        let _prof_timer = profiler.generic_activity("incr_comp_encode_dep_graph");
        let node = NodeInfo { node, fingerprint, edges };
        self.status.lock().encode_node(&node, &self.record_graph)
    }

    pub fn finish(self, profiler: &SelfProfilerRef) -> FileEncodeResult {
        let _prof_timer = profiler.generic_activity("incr_comp_encode_dep_graph");
        self.status.into_inner().finish(profiler)
    }
}