1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
use crate::mir::graph_cyclic_cache::GraphIsCyclicCache;
use crate::mir::predecessors::{PredecessorCache, Predecessors};
use crate::mir::switch_sources::{SwitchSourceCache, SwitchSources};
use crate::mir::traversal::PostorderCache;
use crate::mir::{BasicBlock, BasicBlockData, Successors, START_BLOCK};

use rustc_data_structures::graph;
use rustc_data_structures::graph::dominators::{dominators, Dominators};
use rustc_index::vec::IndexVec;

#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable, TypeVisitable)]
pub struct BasicBlocks<'tcx> {
    basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
    predecessor_cache: PredecessorCache,
    switch_source_cache: SwitchSourceCache,
    is_cyclic: GraphIsCyclicCache,
    postorder_cache: PostorderCache,
}

impl<'tcx> BasicBlocks<'tcx> {
    #[inline]
    pub fn new(basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>) -> Self {
        BasicBlocks {
            basic_blocks,
            predecessor_cache: PredecessorCache::new(),
            switch_source_cache: SwitchSourceCache::new(),
            is_cyclic: GraphIsCyclicCache::new(),
            postorder_cache: PostorderCache::new(),
        }
    }

    /// Returns true if control-flow graph contains a cycle reachable from the `START_BLOCK`.
    #[inline]
    pub fn is_cfg_cyclic(&self) -> bool {
        self.is_cyclic.is_cyclic(self)
    }

    #[inline]
    pub fn dominators(&self) -> Dominators<BasicBlock> {
        dominators(&self)
    }

    /// Returns predecessors for each basic block.
    #[inline]
    pub fn predecessors(&self) -> &Predecessors {
        self.predecessor_cache.compute(&self.basic_blocks)
    }

    /// Returns basic blocks in a postorder.
    #[inline]
    pub fn postorder(&self) -> &[BasicBlock] {
        self.postorder_cache.compute(&self.basic_blocks)
    }

    /// `switch_sources()[&(target, switch)]` returns a list of switch
    /// values that lead to a `target` block from a `switch` block.
    #[inline]
    pub fn switch_sources(&self) -> &SwitchSources {
        self.switch_source_cache.compute(&self.basic_blocks)
    }

    /// Returns mutable reference to basic blocks. Invalidates CFG cache.
    #[inline]
    pub fn as_mut(&mut self) -> &mut IndexVec<BasicBlock, BasicBlockData<'tcx>> {
        self.invalidate_cfg_cache();
        &mut self.basic_blocks
    }

    /// Get mutable access to basic blocks without invalidating the CFG cache.
    ///
    /// By calling this method instead of e.g. [`BasicBlocks::as_mut`] you promise not to change
    /// the CFG. This means that
    ///
    ///  1) The number of basic blocks remains unchanged
    ///  2) The set of successors of each terminator remains unchanged.
    ///  3) For each `TerminatorKind::SwitchInt`, the `targets` remains the same and the terminator
    ///     kind is not changed.
    ///
    /// If any of these conditions cannot be upheld, you should call [`BasicBlocks::invalidate_cfg_cache`].
    #[inline]
    pub fn as_mut_preserves_cfg(&mut self) -> &mut IndexVec<BasicBlock, BasicBlockData<'tcx>> {
        &mut self.basic_blocks
    }

    /// Invalidates cached information about the CFG.
    ///
    /// You will only ever need this if you have also called [`BasicBlocks::as_mut_preserves_cfg`].
    /// All other methods that allow you to mutate the basic blocks also call this method
    /// themselves, thereby avoiding any risk of accidentally cache invalidation.
    pub fn invalidate_cfg_cache(&mut self) {
        self.predecessor_cache.invalidate();
        self.switch_source_cache.invalidate();
        self.is_cyclic.invalidate();
        self.postorder_cache.invalidate();
    }
}

impl<'tcx> std::ops::Deref for BasicBlocks<'tcx> {
    type Target = IndexVec<BasicBlock, BasicBlockData<'tcx>>;

    #[inline]
    fn deref(&self) -> &IndexVec<BasicBlock, BasicBlockData<'tcx>> {
        &self.basic_blocks
    }
}

impl<'tcx> graph::DirectedGraph for BasicBlocks<'tcx> {
    type Node = BasicBlock;
}

impl<'tcx> graph::WithNumNodes for BasicBlocks<'tcx> {
    #[inline]
    fn num_nodes(&self) -> usize {
        self.basic_blocks.len()
    }
}

impl<'tcx> graph::WithStartNode for BasicBlocks<'tcx> {
    #[inline]
    fn start_node(&self) -> Self::Node {
        START_BLOCK
    }
}

impl<'tcx> graph::WithSuccessors for BasicBlocks<'tcx> {
    #[inline]
    fn successors(&self, node: Self::Node) -> <Self as graph::GraphSuccessors<'_>>::Iter {
        self.basic_blocks[node].terminator().successors()
    }
}

impl<'a, 'b> graph::GraphSuccessors<'b> for BasicBlocks<'a> {
    type Item = BasicBlock;
    type Iter = Successors<'b>;
}

impl<'tcx, 'graph> graph::GraphPredecessors<'graph> for BasicBlocks<'tcx> {
    type Item = BasicBlock;
    type Iter = std::iter::Copied<std::slice::Iter<'graph, BasicBlock>>;
}

impl<'tcx> graph::WithPredecessors for BasicBlocks<'tcx> {
    #[inline]
    fn predecessors(&self, node: Self::Node) -> <Self as graph::GraphPredecessors<'_>>::Iter {
        self.predecessors()[node].iter().copied()
    }
}