1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
use {
regex_automata::meta::Regex,
regex_syntax::hir::{
self,
literal::{Literal, Seq},
Hir,
},
};
use crate::{config::ConfiguredHIR, error::Error};
/// A type that encapsulates "inner" literal extractiong from a regex.
///
/// It uses a huge pile of heuristics to try to pluck out literals from a regex
/// that are in turn used to build a simpler regex that is more amenable to
/// optimization.
///
/// The main idea underyling the validity of this technique is the fact
/// that ripgrep searches individuals lines and not across lines. (Unless
/// -U/--multiline is enabled.) Namely, we can pluck literals out of the regex,
/// search for them, find the bounds of the line in which that literal occurs
/// and then run the original regex on only that line. This overall works
/// really really well in throughput oriented searches because it potentially
/// allows ripgrep to spend a lot more time in a fast vectorized routine for
/// finding literals as opposed to the (much) slower regex engine.
///
/// This optimization was far more important in the old days, but since then,
/// Rust's regex engine has actually grown its own (albeit limited) support for
/// inner literal optimizations. So this technique doesn't apply as much as it
/// used to.
///
/// A good example of a regex where this particular extractor helps is
/// `\s+(Sherlock|[A-Z]atso[a-z]|Moriarty)\s+`. The `[A-Z]` before the `atso`
/// in particular is what inhibits the regex engine's own inner literal
/// optimizations from kicking in. This particular regex also did not have any
/// inner literals extracted in the old implementation (ripgrep <=13). So this
/// particular implementation represents a strict improvement from both the old
/// implementation and from the regex engine's own optimizations. (Which could
/// in theory be improved still.)
#[derive(Clone, Debug)]
pub(crate) struct InnerLiterals {
seq: Seq,
}
impl InnerLiterals {
/// Create a set of inner literals from the given HIR expression.
///
/// If no line terminator was configured, then this always declines to
/// extract literals because the inner literal optimization may not be
/// valid.
///
/// Note that this requires the actual regex that will be used for a search
/// because it will query some state about the compiled regex. That state
/// may influence inner literal extraction.
pub(crate) fn new(chir: &ConfiguredHIR, re: &Regex) -> InnerLiterals {
// If there's no line terminator, then the inner literal optimization
// at this level is not valid.
if chir.config().line_terminator.is_none() {
log::trace!(
"skipping inner literal extraction, \
no line terminator is set"
);
return InnerLiterals::none();
}
// If we believe the regex is already accelerated, then just let
// the regex engine do its thing. We'll skip the inner literal
// optimization.
if re.is_accelerated() {
log::trace!(
"skipping inner literal extraction, \
existing regex is believed to already be accelerated",
);
return InnerLiterals::none();
}
// In this case, we pretty much know that the regex engine will handle
// it as best as possible, even if it isn't reported as accelerated.
if chir.hir().properties().is_alternation_literal() {
log::trace!(
"skipping inner literal extraction, \
found alternation of literals, deferring to regex engine",
);
return InnerLiterals::none();
}
let seq = Extractor::new().extract_untagged(chir.hir());
InnerLiterals { seq }
}
/// Returns a infinite set of inner literals, such that it can never
/// produce a matcher.
pub(crate) fn none() -> InnerLiterals {
InnerLiterals { seq: Seq::infinite() }
}
/// If it is deemed advantageous to do so (via various suspicious
/// heuristics), this will return a single regular expression pattern that
/// matches a subset of the language matched by the regular expression that
/// generated these literal sets. The idea here is that the pattern
/// returned by this method is much cheaper to search for. i.e., It is
/// usually a single literal or an alternation of literals.
pub(crate) fn one_regex(&self) -> Result<Option<Regex>, Error> {
let Some(lits) = self.seq.literals() else { return Ok(None) };
if lits.is_empty() {
return Ok(None);
}
let mut alts = vec![];
for lit in lits.iter() {
alts.push(Hir::literal(lit.as_bytes()));
}
let hir = Hir::alternation(alts);
log::debug!("extracted fast line regex: {:?}", hir.to_string());
let re = Regex::builder()
.configure(Regex::config().utf8_empty(false))
.build_from_hir(&hir)
.map_err(Error::regex)?;
Ok(Some(re))
}
}
/// An inner literal extractor.
///
/// This is a somewhat stripped down version of the extractor from
/// regex-syntax. The main difference is that we try to identify a "best" set
/// of required literals while traversing the HIR.
#[derive(Debug)]
struct Extractor {
limit_class: usize,
limit_repeat: usize,
limit_literal_len: usize,
limit_total: usize,
}
impl Extractor {
/// Create a new inner literal extractor with a default configuration.
fn new() -> Extractor {
Extractor {
limit_class: 10,
limit_repeat: 10,
limit_literal_len: 100,
limit_total: 64,
}
}
/// Execute the extractor at the top-level and return an untagged sequence
/// of literals.
fn extract_untagged(&self, hir: &Hir) -> Seq {
let mut seq = self.extract(hir);
log::trace!("extracted inner literals: {:?}", seq.seq);
seq.seq.optimize_for_prefix_by_preference();
log::trace!(
"extracted inner literals after optimization: {:?}",
seq.seq
);
if !seq.is_good() {
log::trace!(
"throwing away inner literals because they might be slow"
);
seq.make_infinite();
}
seq.seq
}
/// Execute the extractor and return a sequence of literals.
fn extract(&self, hir: &Hir) -> TSeq {
use regex_syntax::hir::HirKind::*;
match *hir.kind() {
Empty | Look(_) => TSeq::singleton(self::Literal::exact(vec![])),
Literal(hir::Literal(ref bytes)) => {
let mut seq =
TSeq::singleton(self::Literal::exact(bytes.to_vec()));
self.enforce_literal_len(&mut seq);
seq
}
Class(hir::Class::Unicode(ref cls)) => {
self.extract_class_unicode(cls)
}
Class(hir::Class::Bytes(ref cls)) => self.extract_class_bytes(cls),
Repetition(ref rep) => self.extract_repetition(rep),
Capture(hir::Capture { ref sub, .. }) => self.extract(sub),
Concat(ref hirs) => self.extract_concat(hirs.iter()),
Alternation(ref hirs) => self.extract_alternation(hirs.iter()),
}
}
/// Extract a sequence from the given concatenation. Sequences from each of
/// the child HIR expressions are combined via cross product.
///
/// This short circuits once the cross product turns into a sequence
/// containing only inexact literals.
fn extract_concat<'a, I: Iterator<Item = &'a Hir>>(&self, it: I) -> TSeq {
let mut seq = TSeq::singleton(self::Literal::exact(vec![]));
let mut prev: Option<TSeq> = None;
for hir in it {
// If every element in the sequence is inexact, then a cross
// product will always be a no-op. Thus, there is nothing else we
// can add to it and can quit early. Note that this also includes
// infinite sequences.
if seq.is_inexact() {
// If a concatenation has an empty sequence anywhere, then
// it's impossible for the concatenantion to ever match. So we
// can just quit now.
if seq.is_empty() {
return seq;
}
if seq.is_really_good() {
return seq;
}
prev = Some(match prev {
None => seq,
Some(prev) => prev.choose(seq),
});
seq = TSeq::singleton(self::Literal::exact(vec![]));
seq.make_not_prefix();
}
// Note that 'cross' also dispatches based on whether we're
// extracting prefixes or suffixes.
seq = self.cross(seq, self.extract(hir));
}
if let Some(prev) = prev {
prev.choose(seq)
} else {
seq
}
}
/// Extract a sequence from the given alternation.
///
/// This short circuits once the union turns into an infinite sequence.
fn extract_alternation<'a, I: Iterator<Item = &'a Hir>>(
&self,
it: I,
) -> TSeq {
let mut seq = TSeq::empty();
for hir in it {
// Once our 'seq' is infinite, every subsequent union
// operation on it will itself always result in an
// infinite sequence. Thus, it can never change and we can
// short-circuit.
if !seq.is_finite() {
break;
}
seq = self.union(seq, &mut self.extract(hir));
}
seq
}
/// Extract a sequence of literals from the given repetition. We do our
/// best, Some examples:
///
/// 'a*' => [inexact(a), exact("")]
/// 'a*?' => [exact(""), inexact(a)]
/// 'a+' => [inexact(a)]
/// 'a{3}' => [exact(aaa)]
/// 'a{3,5} => [inexact(aaa)]
///
/// The key here really is making sure we get the 'inexact' vs 'exact'
/// attributes correct on each of the literals we add. For example, the
/// fact that 'a*' gives us an inexact 'a' and an exact empty string means
/// that a regex like 'ab*c' will result in [inexact(ab), exact(ac)]
/// literals being extracted, which might actually be a better prefilter
/// than just 'a'.
fn extract_repetition(&self, rep: &hir::Repetition) -> TSeq {
let mut subseq = self.extract(&rep.sub);
match *rep {
hir::Repetition { min: 0, max, greedy, .. } => {
// When 'max=1', we can retain exactness, since 'a?' is
// equivalent to 'a|'. Similarly below, 'a??' is equivalent to
// '|a'.
if max != Some(1) {
subseq.make_inexact();
}
let mut empty = TSeq::singleton(Literal::exact(vec![]));
if !greedy {
std::mem::swap(&mut subseq, &mut empty);
}
self.union(subseq, &mut empty)
}
hir::Repetition { min, max: Some(max), .. } if min == max => {
assert!(min > 0); // handled above
let limit =
u32::try_from(self.limit_repeat).unwrap_or(u32::MAX);
let mut seq = TSeq::singleton(Literal::exact(vec![]));
for _ in 0..std::cmp::min(min, limit) {
if seq.is_inexact() {
break;
}
seq = self.cross(seq, subseq.clone());
}
if usize::try_from(min).is_err() || min > limit {
seq.make_inexact();
}
seq
}
hir::Repetition { min, max: Some(max), .. } if min < max => {
assert!(min > 0); // handled above
let limit =
u32::try_from(self.limit_repeat).unwrap_or(u32::MAX);
let mut seq = TSeq::singleton(Literal::exact(vec![]));
for _ in 0..std::cmp::min(min, limit) {
if seq.is_inexact() {
break;
}
seq = self.cross(seq, subseq.clone());
}
seq.make_inexact();
seq
}
hir::Repetition { .. } => {
subseq.make_inexact();
subseq
}
}
}
/// Convert the given Unicode class into a sequence of literals if the
/// class is small enough. If the class is too big, return an infinite
/// sequence.
fn extract_class_unicode(&self, cls: &hir::ClassUnicode) -> TSeq {
if self.class_over_limit_unicode(cls) {
return TSeq::infinite();
}
let mut seq = TSeq::empty();
for r in cls.iter() {
for ch in r.start()..=r.end() {
seq.push(Literal::from(ch));
}
}
self.enforce_literal_len(&mut seq);
seq
}
/// Convert the given byte class into a sequence of literals if the class
/// is small enough. If the class is too big, return an infinite sequence.
fn extract_class_bytes(&self, cls: &hir::ClassBytes) -> TSeq {
if self.class_over_limit_bytes(cls) {
return TSeq::infinite();
}
let mut seq = TSeq::empty();
for r in cls.iter() {
for b in r.start()..=r.end() {
seq.push(Literal::from(b));
}
}
self.enforce_literal_len(&mut seq);
seq
}
/// Returns true if the given Unicode class exceeds the configured limits
/// on this extractor.
fn class_over_limit_unicode(&self, cls: &hir::ClassUnicode) -> bool {
let mut count = 0;
for r in cls.iter() {
if count > self.limit_class {
return true;
}
count += r.len();
}
count > self.limit_class
}
/// Returns true if the given byte class exceeds the configured limits on
/// this extractor.
fn class_over_limit_bytes(&self, cls: &hir::ClassBytes) -> bool {
let mut count = 0;
for r in cls.iter() {
if count > self.limit_class {
return true;
}
count += r.len();
}
count > self.limit_class
}
/// Compute the cross product of the two sequences if the result would be
/// within configured limits. Otherwise, make `seq2` infinite and cross the
/// infinite sequence with `seq1`.
fn cross(&self, mut seq1: TSeq, mut seq2: TSeq) -> TSeq {
if !seq2.prefix {
return seq1.choose(seq2);
}
if seq1
.max_cross_len(&seq2)
.map_or(false, |len| len > self.limit_total)
{
seq2.make_infinite();
}
seq1.cross_forward(&mut seq2);
assert!(seq1.len().map_or(true, |x| x <= self.limit_total));
self.enforce_literal_len(&mut seq1);
seq1
}
/// Union the two sequences if the result would be within configured
/// limits. Otherwise, make `seq2` infinite and union the infinite sequence
/// with `seq1`.
fn union(&self, mut seq1: TSeq, seq2: &mut TSeq) -> TSeq {
if seq1.max_union_len(seq2).map_or(false, |len| len > self.limit_total)
{
// We try to trim our literal sequences to see if we can make
// room for more literals. The idea is that we'd rather trim down
// literals already in our sequence if it means we can add a few
// more and retain a finite sequence. Otherwise, we'll union with
// an infinite sequence and that infects everything and effectively
// stops literal extraction in its tracks.
//
// We do we keep 4 bytes here? Well, it's a bit of an abstraction
// leakage. Downstream, the literals may wind up getting fed to
// the Teddy algorithm, which supports searching literals up to
// length 4. So that's why we pick that number here. Arguably this
// should be a tuneable parameter, but it seems a little tricky to
// describe. And I'm still unsure if this is the right way to go
// about culling literal sequences.
seq1.keep_first_bytes(4);
seq2.keep_first_bytes(4);
seq1.dedup();
seq2.dedup();
if seq1
.max_union_len(seq2)
.map_or(false, |len| len > self.limit_total)
{
seq2.make_infinite();
}
}
seq1.union(seq2);
assert!(seq1.len().map_or(true, |x| x <= self.limit_total));
seq1
}
/// Applies the literal length limit to the given sequence. If none of the
/// literals in the sequence exceed the limit, then this is a no-op.
fn enforce_literal_len(&self, seq: &mut TSeq) {
seq.keep_first_bytes(self.limit_literal_len);
}
}
#[derive(Clone, Debug)]
struct TSeq {
seq: Seq,
prefix: bool,
}
#[allow(dead_code)]
impl TSeq {
fn empty() -> TSeq {
TSeq { seq: Seq::empty(), prefix: true }
}
fn infinite() -> TSeq {
TSeq { seq: Seq::infinite(), prefix: true }
}
fn singleton(lit: Literal) -> TSeq {
TSeq { seq: Seq::singleton(lit), prefix: true }
}
fn new<I, B>(it: I) -> TSeq
where
I: IntoIterator<Item = B>,
B: AsRef<[u8]>,
{
TSeq { seq: Seq::new(it), prefix: true }
}
fn literals(&self) -> Option<&[Literal]> {
self.seq.literals()
}
fn push(&mut self, lit: Literal) {
self.seq.push(lit);
}
fn make_inexact(&mut self) {
self.seq.make_inexact();
}
fn make_infinite(&mut self) {
self.seq.make_infinite();
}
fn cross_forward(&mut self, other: &mut TSeq) {
assert!(other.prefix);
self.seq.cross_forward(&mut other.seq);
}
fn union(&mut self, other: &mut TSeq) {
self.seq.union(&mut other.seq);
}
fn dedup(&mut self) {
self.seq.dedup();
}
fn sort(&mut self) {
self.seq.sort();
}
fn keep_first_bytes(&mut self, len: usize) {
self.seq.keep_first_bytes(len);
}
fn is_finite(&self) -> bool {
self.seq.is_finite()
}
fn is_empty(&self) -> bool {
self.seq.is_empty()
}
fn len(&self) -> Option<usize> {
self.seq.len()
}
fn is_exact(&self) -> bool {
self.seq.is_exact()
}
fn is_inexact(&self) -> bool {
self.seq.is_inexact()
}
fn max_union_len(&self, other: &TSeq) -> Option<usize> {
self.seq.max_union_len(&other.seq)
}
fn max_cross_len(&self, other: &TSeq) -> Option<usize> {
assert!(other.prefix);
self.seq.max_cross_len(&other.seq)
}
fn min_literal_len(&self) -> Option<usize> {
self.seq.min_literal_len()
}
fn max_literal_len(&self) -> Option<usize> {
self.seq.max_literal_len()
}
// Below are methods specific to a TSeq that aren't just forwarding calls
// to a Seq method.
/// Tags this sequence as "not a prefix." When this happens, this sequence
/// can't be crossed as a suffix of another sequence.
fn make_not_prefix(&mut self) {
self.prefix = false;
}
/// Returns true if it's believed that the sequence given is "good" for
/// acceleration. This is useful for determining whether a sequence of
/// literals has any shot of being fast.
fn is_good(&self) -> bool {
if self.has_poisonous_literal() {
return false;
}
let Some(min) = self.min_literal_len() else { return false };
let Some(len) = self.len() else { return false };
// If we have some very short literals, then let's require that our
// sequence is itself very small.
if min <= 1 {
return len <= 3;
}
min >= 2 && len <= 64
}
/// Returns true if it's believed that the sequence given is "really
/// good" for acceleration. This is useful for short circuiting literal
/// extraction.
fn is_really_good(&self) -> bool {
if self.has_poisonous_literal() {
return false;
}
let Some(min) = self.min_literal_len() else { return false };
let Some(len) = self.len() else { return false };
min >= 3 && len <= 8
}
/// Returns true if the given sequence contains a poisonous literal.
fn has_poisonous_literal(&self) -> bool {
let Some(lits) = self.literals() else { return false };
lits.iter().any(is_poisonous)
}
/// Compare the two sequences and return the one that is believed to be best
/// according to a hodge podge of heuristics.
fn choose(self, other: TSeq) -> TSeq {
let (seq1, seq2) = (self, other);
if !seq1.is_finite() {
return seq2;
} else if !seq2.is_finite() {
return seq1;
}
if seq1.has_poisonous_literal() {
return seq2;
} else if seq2.has_poisonous_literal() {
return seq1;
}
let Some(min1) = seq1.min_literal_len() else { return seq2 };
let Some(min2) = seq2.min_literal_len() else { return seq1 };
if min1 < min2 {
return seq2;
} else if min2 < min1 {
return seq1;
}
// OK because we know both sequences are finite, otherwise they wouldn't
// have a minimum literal length.
let len1 = seq1.len().unwrap();
let len2 = seq2.len().unwrap();
if len1 < len2 {
return seq2;
} else if len2 < len1 {
return seq1;
}
// We could do extra stuff like looking at a background frequency
// distribution of bytes and picking the one that looks more rare, but for
// now we just pick one.
seq1
}
}
impl FromIterator<Literal> for TSeq {
fn from_iter<T: IntoIterator<Item = Literal>>(it: T) -> TSeq {
TSeq { seq: Seq::from_iter(it), prefix: true }
}
}
/// Returns true if it is believe that this literal is likely to match very
/// frequently, and is thus not a good candidate for a prefilter.
fn is_poisonous(lit: &Literal) -> bool {
use regex_syntax::hir::literal::rank;
lit.is_empty() || (lit.len() == 1 && rank(lit.as_bytes()[0]) >= 250)
}
#[cfg(test)]
mod tests {
use super::*;
fn e(pattern: impl AsRef<str>) -> Seq {
let pattern = pattern.as_ref();
let hir = regex_syntax::ParserBuilder::new()
.utf8(false)
.build()
.parse(pattern)
.unwrap();
Extractor::new().extract_untagged(&hir)
}
#[allow(non_snake_case)]
fn E(x: &str) -> Literal {
Literal::exact(x.as_bytes())
}
#[allow(non_snake_case)]
fn I(x: &str) -> Literal {
Literal::inexact(x.as_bytes())
}
fn seq<I: IntoIterator<Item = Literal>>(it: I) -> Seq {
Seq::from_iter(it)
}
fn inexact<I>(it: I) -> Seq
where
I: IntoIterator<Item = Literal>,
{
Seq::from_iter(it)
}
fn exact<B: AsRef<[u8]>, I: IntoIterator<Item = B>>(it: I) -> Seq {
Seq::new(it)
}
#[test]
fn various() {
assert_eq!(e(r"foo"), seq([E("foo")]));
assert_eq!(e(r"[a-z]foo[a-z]"), seq([I("foo")]));
assert_eq!(e(r"[a-z](foo)(bar)[a-z]"), seq([I("foobar")]));
assert_eq!(e(r"[a-z]([a-z]foo)(bar[a-z])[a-z]"), seq([I("foobar")]));
assert_eq!(e(r"[a-z]([a-z]foo)([a-z]foo)[a-z]"), seq([I("foo")]));
assert_eq!(e(r"(\d{1,3}\.){3}\d{1,3}"), seq([I(".")]));
assert_eq!(e(r"[a-z]([a-z]foo){3}[a-z]"), seq([I("foo")]));
assert_eq!(e(r"[a-z](foo[a-z]){3}[a-z]"), seq([I("foo")]));
assert_eq!(e(r"[a-z]([a-z]foo[a-z]){3}[a-z]"), seq([I("foo")]));
assert_eq!(
e(r"[a-z]([a-z]foo){3}(bar[a-z]){3}[a-z]"),
seq([I("foobar")])
);
}
// These test that some of our suspicious heuristics try to "pick better
// literals."
#[test]
fn heuristics() {
// Here, the first literals we stumble across are {ab, cd, ef}. But we
// keep going and our heuristics decide that {hiya} is better. (And it
// should be, since it's just one literal and it's longer.)
assert_eq!(e(r"[a-z]+(ab|cd|ef)[a-z]+hiya[a-z]+"), seq([I("hiya")]));
// But here, the first alternation becomes "good enough" that literal
// extraction short circuits early. {hiya} is probably still a better
// choice here, but {abc, def, ghi} is not bad.
assert_eq!(
e(r"[a-z]+(abc|def|ghi)[a-z]+hiya[a-z]+"),
seq([I("abc"), I("def"), I("ghi")])
);
}
#[test]
fn literal() {
assert_eq!(exact(["a"]), e("a"));
assert_eq!(exact(["aaaaa"]), e("aaaaa"));
assert_eq!(exact(["A", "a"]), e("(?i-u)a"));
assert_eq!(exact(["AB", "Ab", "aB", "ab"]), e("(?i-u)ab"));
assert_eq!(exact(["abC", "abc"]), e("ab(?i-u)c"));
assert_eq!(Seq::infinite(), e(r"(?-u:\xFF)"));
assert_eq!(exact([b"Z"]), e(r"Z"));
assert_eq!(exact(["☃"]), e("☃"));
assert_eq!(exact(["☃"]), e("(?i)☃"));
assert_eq!(exact(["☃☃☃☃☃"]), e("☃☃☃☃☃"));
assert_eq!(exact(["Δ"]), e("Δ"));
assert_eq!(exact(["δ"]), e("δ"));
assert_eq!(exact(["Δ", "δ"]), e("(?i)Δ"));
assert_eq!(exact(["Δ", "δ"]), e("(?i)δ"));
assert_eq!(exact(["S", "s", "ſ"]), e("(?i)S"));
assert_eq!(exact(["S", "s", "ſ"]), e("(?i)s"));
assert_eq!(exact(["S", "s", "ſ"]), e("(?i)ſ"));
let letters = "ͱͳͷΐάέήίΰαβγδεζηθικλμνξοπρςστυφχψωϊϋ";
assert_eq!(exact([letters]), e(letters));
}
#[test]
fn class() {
assert_eq!(exact(["a", "b", "c"]), e("[abc]"));
assert_eq!(exact(["a1b", "a2b", "a3b"]), e("a[123]b"));
assert_eq!(exact(["δ", "ε"]), e("[εδ]"));
assert_eq!(exact(["Δ", "Ε", "δ", "ε", "ϵ"]), e(r"(?i)[εδ]"));
}
#[test]
fn look() {
assert_eq!(exact(["ab"]), e(r"a\Ab"));
assert_eq!(exact(["ab"]), e(r"a\zb"));
assert_eq!(exact(["ab"]), e(r"a(?m:^)b"));
assert_eq!(exact(["ab"]), e(r"a(?m:$)b"));
assert_eq!(exact(["ab"]), e(r"a\bb"));
assert_eq!(exact(["ab"]), e(r"a\Bb"));
assert_eq!(exact(["ab"]), e(r"a(?-u:\b)b"));
assert_eq!(exact(["ab"]), e(r"a(?-u:\B)b"));
assert_eq!(exact(["ab"]), e(r"^ab"));
assert_eq!(exact(["ab"]), e(r"$ab"));
assert_eq!(exact(["ab"]), e(r"(?m:^)ab"));
assert_eq!(exact(["ab"]), e(r"(?m:$)ab"));
assert_eq!(exact(["ab"]), e(r"\bab"));
assert_eq!(exact(["ab"]), e(r"\Bab"));
assert_eq!(exact(["ab"]), e(r"(?-u:\b)ab"));
assert_eq!(exact(["ab"]), e(r"(?-u:\B)ab"));
assert_eq!(exact(["ab"]), e(r"ab^"));
assert_eq!(exact(["ab"]), e(r"ab$"));
assert_eq!(exact(["ab"]), e(r"ab(?m:^)"));
assert_eq!(exact(["ab"]), e(r"ab(?m:$)"));
assert_eq!(exact(["ab"]), e(r"ab\b"));
assert_eq!(exact(["ab"]), e(r"ab\B"));
assert_eq!(exact(["ab"]), e(r"ab(?-u:\b)"));
assert_eq!(exact(["ab"]), e(r"ab(?-u:\B)"));
assert_eq!(seq([I("aZ"), E("ab")]), e(r"^aZ*b"));
}
#[test]
fn repetition() {
assert_eq!(Seq::infinite(), e(r"a?"));
assert_eq!(Seq::infinite(), e(r"a??"));
assert_eq!(Seq::infinite(), e(r"a*"));
assert_eq!(Seq::infinite(), e(r"a*?"));
assert_eq!(inexact([I("a")]), e(r"a+"));
assert_eq!(inexact([I("a")]), e(r"(a+)+"));
assert_eq!(exact(["ab"]), e(r"aZ{0}b"));
assert_eq!(exact(["aZb", "ab"]), e(r"aZ?b"));
assert_eq!(exact(["ab", "aZb"]), e(r"aZ??b"));
assert_eq!(inexact([I("aZ"), E("ab")]), e(r"aZ*b"));
assert_eq!(inexact([E("ab"), I("aZ")]), e(r"aZ*?b"));
assert_eq!(inexact([I("aZ")]), e(r"aZ+b"));
assert_eq!(inexact([I("aZ")]), e(r"aZ+?b"));
assert_eq!(exact(["aZZb"]), e(r"aZ{2}b"));
assert_eq!(inexact([I("aZZ")]), e(r"aZ{2,3}b"));
assert_eq!(Seq::infinite(), e(r"(abc)?"));
assert_eq!(Seq::infinite(), e(r"(abc)??"));
assert_eq!(inexact([I("a"), E("b")]), e(r"a*b"));
assert_eq!(inexact([E("b"), I("a")]), e(r"a*?b"));
assert_eq!(inexact([I("ab")]), e(r"ab+"));
assert_eq!(inexact([I("a"), I("b")]), e(r"a*b+"));
assert_eq!(inexact([I("a"), I("b"), E("c")]), e(r"a*b*c"));
assert_eq!(inexact([I("a"), I("b"), E("c")]), e(r"(a+)?(b+)?c"));
assert_eq!(inexact([I("a"), I("b"), E("c")]), e(r"(a+|)(b+|)c"));
// A few more similarish but not identical regexes. These may have a
// similar problem as above.
assert_eq!(Seq::infinite(), e(r"a*b*c*"));
assert_eq!(inexact([I("a"), I("b"), I("c")]), e(r"a*b*c+"));
assert_eq!(inexact([I("a"), I("b")]), e(r"a*b+c"));
assert_eq!(inexact([I("a"), I("b")]), e(r"a*b+c*"));
assert_eq!(inexact([I("ab"), E("a")]), e(r"ab*"));
assert_eq!(inexact([I("ab"), E("ac")]), e(r"ab*c"));
assert_eq!(inexact([I("ab")]), e(r"ab+"));
assert_eq!(inexact([I("ab")]), e(r"ab+c"));
assert_eq!(inexact([I("z"), E("azb")]), e(r"z*azb"));
let expected =
exact(["aaa", "aab", "aba", "abb", "baa", "bab", "bba", "bbb"]);
assert_eq!(expected, e(r"[ab]{3}"));
let expected = inexact([
I("aaa"),
I("aab"),
I("aba"),
I("abb"),
I("baa"),
I("bab"),
I("bba"),
I("bbb"),
]);
assert_eq!(expected, e(r"[ab]{3,4}"));
}
#[test]
fn concat() {
assert_eq!(exact(["abcxyz"]), e(r"abc()xyz"));
assert_eq!(exact(["abcxyz"]), e(r"(abc)(xyz)"));
assert_eq!(exact(["abcmnoxyz"]), e(r"abc()mno()xyz"));
assert_eq!(Seq::infinite(), e(r"abc[a&&b]xyz"));
assert_eq!(exact(["abcxyz"]), e(r"abc[a&&b]*xyz"));
}
#[test]
fn alternation() {
assert_eq!(exact(["abc", "mno", "xyz"]), e(r"abc|mno|xyz"));
assert_eq!(
inexact([E("abc"), I("mZ"), E("mo"), E("xyz")]),
e(r"abc|mZ*o|xyz")
);
assert_eq!(exact(["abc", "xyz"]), e(r"abc|M[a&&b]N|xyz"));
assert_eq!(exact(["abc", "MN", "xyz"]), e(r"abc|M[a&&b]*N|xyz"));
assert_eq!(exact(["aaa"]), e(r"(?:|aa)aaa"));
assert_eq!(Seq::infinite(), e(r"(?:|aa)(?:aaa)*"));
assert_eq!(Seq::infinite(), e(r"(?:|aa)(?:aaa)*?"));
assert_eq!(Seq::infinite(), e(r"a|b*"));
assert_eq!(inexact([E("a"), I("b")]), e(r"a|b+"));
assert_eq!(inexact([I("a"), E("b"), E("c")]), e(r"a*b|c"));
assert_eq!(Seq::infinite(), e(r"a|(?:b|c*)"));
assert_eq!(inexact([I("a"), I("b"), E("c")]), e(r"(a|b)*c|(a|ab)*c"));
assert_eq!(
exact(["abef", "abgh", "cdef", "cdgh"]),
e(r"(ab|cd)(ef|gh)")
);
assert_eq!(
exact([
"abefij", "abefkl", "abghij", "abghkl", "cdefij", "cdefkl",
"cdghij", "cdghkl",
]),
e(r"(ab|cd)(ef|gh)(ij|kl)")
);
}
#[test]
fn impossible() {
// N.B. The extractor in this module "optimizes" the sequence and makes
// it infinite if it isn't "good." An empty sequence (generated by a
// concatenantion containing an expression that can never match) is
// considered "not good." Since infinite sequences are not actionably
// and disable optimizations, this winds up being okay.
//
// The literal extractor in regex-syntax doesn't combine these two
// steps and makes the caller choose to optimize. That is, it returns
// the sequences as they are. Which in this case, for some of the tests
// below, would be an empty Seq and not an infinite Seq.
assert_eq!(Seq::infinite(), e(r"[a&&b]"));
assert_eq!(Seq::infinite(), e(r"a[a&&b]"));
assert_eq!(Seq::infinite(), e(r"[a&&b]b"));
assert_eq!(Seq::infinite(), e(r"a[a&&b]b"));
assert_eq!(exact(["a", "b"]), e(r"a|[a&&b]|b"));
assert_eq!(exact(["a", "b"]), e(r"a|c[a&&b]|b"));
assert_eq!(exact(["a", "b"]), e(r"a|[a&&b]d|b"));
assert_eq!(exact(["a", "b"]), e(r"a|c[a&&b]d|b"));
assert_eq!(Seq::infinite(), e(r"[a&&b]*"));
assert_eq!(exact(["MN"]), e(r"M[a&&b]*N"));
}
// This tests patterns that contain something that defeats literal
// detection, usually because it would blow some limit on the total number
// of literals that can be returned.
//
// The main idea is that when literal extraction sees something that
// it knows will blow a limit, it replaces it with a marker that says
// "any literal will match here." While not necessarily true, the
// over-estimation is just fine for the purposes of literal extraction,
// because the imprecision doesn't matter: too big is too big.
//
// This is one of the trickier parts of literal extraction, since we need
// to make sure all of our literal extraction operations correctly compose
// with the markers.
//
// Note that unlike in regex-syntax, some of these have "inner" literals
// extracted where a prefix or suffix would otherwise not be found.
#[test]
fn anything() {
assert_eq!(Seq::infinite(), e(r"."));
assert_eq!(Seq::infinite(), e(r"(?s)."));
assert_eq!(Seq::infinite(), e(r"[A-Za-z]"));
assert_eq!(Seq::infinite(), e(r"[A-Z]"));
assert_eq!(Seq::infinite(), e(r"[A-Z]{0}"));
assert_eq!(Seq::infinite(), e(r"[A-Z]?"));
assert_eq!(Seq::infinite(), e(r"[A-Z]*"));
assert_eq!(Seq::infinite(), e(r"[A-Z]+"));
assert_eq!(seq([I("1")]), e(r"1[A-Z]"));
assert_eq!(seq([I("1")]), e(r"1[A-Z]2"));
assert_eq!(seq([E("123")]), e(r"[A-Z]+123"));
assert_eq!(seq([I("123")]), e(r"[A-Z]+123[A-Z]+"));
assert_eq!(Seq::infinite(), e(r"1|[A-Z]|3"));
assert_eq!(seq([E("1"), I("2"), E("3")]), e(r"1|2[A-Z]|3"),);
assert_eq!(seq([E("1"), I("2"), E("3")]), e(r"1|[A-Z]2[A-Z]|3"),);
assert_eq!(seq([E("1"), E("2"), E("3")]), e(r"1|[A-Z]2|3"),);
assert_eq!(seq([E("1"), I("2"), E("4")]), e(r"1|2[A-Z]3|4"),);
assert_eq!(seq([E("2")]), e(r"(?:|1)[A-Z]2"));
assert_eq!(inexact([I("a")]), e(r"a.z"));
}
#[test]
fn empty() {
assert_eq!(Seq::infinite(), e(r""));
assert_eq!(Seq::infinite(), e(r"^"));
assert_eq!(Seq::infinite(), e(r"$"));
assert_eq!(Seq::infinite(), e(r"(?m:^)"));
assert_eq!(Seq::infinite(), e(r"(?m:$)"));
assert_eq!(Seq::infinite(), e(r"\b"));
assert_eq!(Seq::infinite(), e(r"\B"));
assert_eq!(Seq::infinite(), e(r"(?-u:\b)"));
assert_eq!(Seq::infinite(), e(r"(?-u:\B)"));
}
#[test]
fn crazy_repeats() {
assert_eq!(Seq::infinite(), e(r"(?:){4294967295}"));
assert_eq!(Seq::infinite(), e(r"(?:){64}{64}{64}{64}{64}{64}"));
assert_eq!(Seq::infinite(), e(r"x{0}{4294967295}"));
assert_eq!(Seq::infinite(), e(r"(?:|){4294967295}"));
assert_eq!(
Seq::infinite(),
e(r"(?:){8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}")
);
let repa = "a".repeat(100);
assert_eq!(
inexact([I(&repa)]),
e(r"a{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}{8}")
);
}
#[test]
fn optimize() {
// This gets a common prefix that isn't too short.
let s = e(r"foobarfoobar|foobar|foobarzfoobar|foobarfoobar");
assert_eq!(seq([I("foobar")]), s);
// This also finds a common prefix, but since it's only one byte, it
// prefers the multiple literals.
let s = e(r"abba|akka|abccba");
assert_eq!(exact(["abba", "akka", "abccba"]), s);
let s = e(r"sam|samwise");
assert_eq!(seq([E("sam")]), s);
// The empty string is poisonous, so our seq becomes infinite, even
// though all literals are exact.
let s = e(r"foobarfoo|foo||foozfoo|foofoo");
assert_eq!(Seq::infinite(), s);
// A space is also poisonous, so our seq becomes infinite. But this
// only gets triggered when we don't have a completely exact sequence.
// When the sequence is exact, spaces are okay, since we presume that
// any prefilter will match a space more quickly than the regex engine.
// (When the sequence is exact, there's a chance of the prefilter being
// used without needing the regex engine at all.)
let s = e(r"foobarfoo|foo| |foofoo");
assert_eq!(Seq::infinite(), s);
}
}