1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
use std::{
    ffi::{OsStr, OsString},
    fs::File,
    io,
    path::{Path, PathBuf},
    process::Command,
};

use globset::{Glob, GlobSet, GlobSetBuilder};

use crate::process::{CommandError, CommandReader, CommandReaderBuilder};

/// A builder for a matcher that determines which files get decompressed.
#[derive(Clone, Debug)]
pub struct DecompressionMatcherBuilder {
    /// The commands for each matching glob.
    commands: Vec<DecompressionCommand>,
    /// Whether to include the default matching rules.
    defaults: bool,
}

/// A representation of a single command for decompressing data
/// out-of-process.
#[derive(Clone, Debug)]
struct DecompressionCommand {
    /// The glob that matches this command.
    glob: String,
    /// The command or binary name.
    bin: PathBuf,
    /// The arguments to invoke with the command.
    args: Vec<OsString>,
}

impl Default for DecompressionMatcherBuilder {
    fn default() -> DecompressionMatcherBuilder {
        DecompressionMatcherBuilder::new()
    }
}

impl DecompressionMatcherBuilder {
    /// Create a new builder for configuring a decompression matcher.
    pub fn new() -> DecompressionMatcherBuilder {
        DecompressionMatcherBuilder { commands: vec![], defaults: true }
    }

    /// Build a matcher for determining how to decompress files.
    ///
    /// If there was a problem compiling the matcher, then an error is
    /// returned.
    pub fn build(&self) -> Result<DecompressionMatcher, CommandError> {
        let defaults = if !self.defaults {
            vec![]
        } else {
            default_decompression_commands()
        };
        let mut glob_builder = GlobSetBuilder::new();
        let mut commands = vec![];
        for decomp_cmd in defaults.iter().chain(&self.commands) {
            let glob = Glob::new(&decomp_cmd.glob).map_err(|err| {
                CommandError::io(io::Error::new(io::ErrorKind::Other, err))
            })?;
            glob_builder.add(glob);
            commands.push(decomp_cmd.clone());
        }
        let globs = glob_builder.build().map_err(|err| {
            CommandError::io(io::Error::new(io::ErrorKind::Other, err))
        })?;
        Ok(DecompressionMatcher { globs, commands })
    }

    /// When enabled, the default matching rules will be compiled into this
    /// matcher before any other associations. When disabled, only the
    /// rules explicitly given to this builder will be used.
    ///
    /// This is enabled by default.
    pub fn defaults(&mut self, yes: bool) -> &mut DecompressionMatcherBuilder {
        self.defaults = yes;
        self
    }

    /// Associates a glob with a command to decompress files matching the glob.
    ///
    /// If multiple globs match the same file, then the most recently added
    /// glob takes precedence.
    ///
    /// The syntax for the glob is documented in the
    /// [`globset` crate](https://docs.rs/globset/#syntax).
    ///
    /// The `program` given is resolved with respect to `PATH` and turned
    /// into an absolute path internally before being executed by the current
    /// platform. Notably, on Windows, this avoids a security problem where
    /// passing a relative path to `CreateProcess` will automatically search
    /// the current directory for a matching program. If the program could
    /// not be resolved, then it is silently ignored and the association is
    /// dropped. For this reason, callers should prefer `try_associate`.
    pub fn associate<P, I, A>(
        &mut self,
        glob: &str,
        program: P,
        args: I,
    ) -> &mut DecompressionMatcherBuilder
    where
        P: AsRef<OsStr>,
        I: IntoIterator<Item = A>,
        A: AsRef<OsStr>,
    {
        let _ = self.try_associate(glob, program, args);
        self
    }

    /// Associates a glob with a command to decompress files matching the glob.
    ///
    /// If multiple globs match the same file, then the most recently added
    /// glob takes precedence.
    ///
    /// The syntax for the glob is documented in the
    /// [`globset` crate](https://docs.rs/globset/#syntax).
    ///
    /// The `program` given is resolved with respect to `PATH` and turned
    /// into an absolute path internally before being executed by the current
    /// platform. Notably, on Windows, this avoids a security problem where
    /// passing a relative path to `CreateProcess` will automatically search
    /// the current directory for a matching program. If the program could not
    /// be resolved, then an error is returned.
    pub fn try_associate<P, I, A>(
        &mut self,
        glob: &str,
        program: P,
        args: I,
    ) -> Result<&mut DecompressionMatcherBuilder, CommandError>
    where
        P: AsRef<OsStr>,
        I: IntoIterator<Item = A>,
        A: AsRef<OsStr>,
    {
        let glob = glob.to_string();
        let bin = try_resolve_binary(Path::new(program.as_ref()))?;
        let args =
            args.into_iter().map(|a| a.as_ref().to_os_string()).collect();
        self.commands.push(DecompressionCommand { glob, bin, args });
        Ok(self)
    }
}

/// A matcher for determining how to decompress files.
#[derive(Clone, Debug)]
pub struct DecompressionMatcher {
    /// The set of globs to match. Each glob has a corresponding entry in
    /// `commands`. When a glob matches, the corresponding command should be
    /// used to perform out-of-process decompression.
    globs: GlobSet,
    /// The commands for each matching glob.
    commands: Vec<DecompressionCommand>,
}

impl Default for DecompressionMatcher {
    fn default() -> DecompressionMatcher {
        DecompressionMatcher::new()
    }
}

impl DecompressionMatcher {
    /// Create a new matcher with default rules.
    ///
    /// To add more matching rules, build a matcher with
    /// [`DecompressionMatcherBuilder`].
    pub fn new() -> DecompressionMatcher {
        DecompressionMatcherBuilder::new()
            .build()
            .expect("built-in matching rules should always compile")
    }

    /// Return a pre-built command based on the given file path that can
    /// decompress its contents. If no such decompressor is known, then this
    /// returns `None`.
    ///
    /// If there are multiple possible commands matching the given path, then
    /// the command added last takes precedence.
    pub fn command<P: AsRef<Path>>(&self, path: P) -> Option<Command> {
        for i in self.globs.matches(path).into_iter().rev() {
            let decomp_cmd = &self.commands[i];
            let mut cmd = Command::new(&decomp_cmd.bin);
            cmd.args(&decomp_cmd.args);
            return Some(cmd);
        }
        None
    }

    /// Returns true if and only if the given file path has at least one
    /// matching command to perform decompression on.
    pub fn has_command<P: AsRef<Path>>(&self, path: P) -> bool {
        self.globs.is_match(path)
    }
}

/// Configures and builds a streaming reader for decompressing data.
#[derive(Clone, Debug, Default)]
pub struct DecompressionReaderBuilder {
    matcher: DecompressionMatcher,
    command_builder: CommandReaderBuilder,
}

impl DecompressionReaderBuilder {
    /// Create a new builder with the default configuration.
    pub fn new() -> DecompressionReaderBuilder {
        DecompressionReaderBuilder::default()
    }

    /// Build a new streaming reader for decompressing data.
    ///
    /// If decompression is done out-of-process and if there was a problem
    /// spawning the process, then its error is logged at the debug level and a
    /// passthru reader is returned that does no decompression. This behavior
    /// typically occurs when the given file path matches a decompression
    /// command, but is executing in an environment where the decompression
    /// command is not available.
    ///
    /// If the given file path could not be matched with a decompression
    /// strategy, then a passthru reader is returned that does no
    /// decompression.
    pub fn build<P: AsRef<Path>>(
        &self,
        path: P,
    ) -> Result<DecompressionReader, CommandError> {
        let path = path.as_ref();
        let Some(mut cmd) = self.matcher.command(path) else {
            return DecompressionReader::new_passthru(path);
        };
        cmd.arg(path);

        match self.command_builder.build(&mut cmd) {
            Ok(cmd_reader) => Ok(DecompressionReader { rdr: Ok(cmd_reader) }),
            Err(err) => {
                log::debug!(
                    "{}: error spawning command '{:?}': {} \
                     (falling back to uncompressed reader)",
                    path.display(),
                    cmd,
                    err,
                );
                DecompressionReader::new_passthru(path)
            }
        }
    }

    /// Set the matcher to use to look up the decompression command for each
    /// file path.
    ///
    /// A set of sensible rules is enabled by default. Setting this will
    /// completely replace the current rules.
    pub fn matcher(
        &mut self,
        matcher: DecompressionMatcher,
    ) -> &mut DecompressionReaderBuilder {
        self.matcher = matcher;
        self
    }

    /// Get the underlying matcher currently used by this builder.
    pub fn get_matcher(&self) -> &DecompressionMatcher {
        &self.matcher
    }

    /// When enabled, the reader will asynchronously read the contents of the
    /// command's stderr output. When disabled, stderr is only read after the
    /// stdout stream has been exhausted (or if the process quits with an error
    /// code).
    ///
    /// Note that when enabled, this may require launching an additional
    /// thread in order to read stderr. This is done so that the process being
    /// executed is never blocked from writing to stdout or stderr. If this is
    /// disabled, then it is possible for the process to fill up the stderr
    /// buffer and deadlock.
    ///
    /// This is enabled by default.
    pub fn async_stderr(
        &mut self,
        yes: bool,
    ) -> &mut DecompressionReaderBuilder {
        self.command_builder.async_stderr(yes);
        self
    }
}

/// A streaming reader for decompressing the contents of a file.
///
/// The purpose of this reader is to provide a seamless way to decompress the
/// contents of file using existing tools in the current environment. This is
/// meant to be an alternative to using decompression libraries in favor of the
/// simplicity and portability of using external commands such as `gzip` and
/// `xz`. This does impose the overhead of spawning a process, so other means
/// for performing decompression should be sought if this overhead isn't
/// acceptable.
///
/// A decompression reader comes with a default set of matching rules that are
/// meant to associate file paths with the corresponding command to use to
/// decompress them. For example, a glob like `*.gz` matches gzip compressed
/// files with the command `gzip -d -c`. If a file path does not match any
/// existing rules, or if it matches a rule whose command does not exist in the
/// current environment, then the decompression reader passes through the
/// contents of the underlying file without doing any decompression.
///
/// The default matching rules are probably good enough for most cases, and if
/// they require revision, pull requests are welcome. In cases where they must
/// be changed or extended, they can be customized through the use of
/// [`DecompressionMatcherBuilder`] and [`DecompressionReaderBuilder`].
///
/// By default, this reader will asynchronously read the processes' stderr.
/// This prevents subtle deadlocking bugs for noisy processes that write a lot
/// to stderr. Currently, the entire contents of stderr is read on to the heap.
///
/// # Example
///
/// This example shows how to read the decompressed contents of a file without
/// needing to explicitly choose the decompression command to run.
///
/// Note that if you need to decompress multiple files, it is better to use
/// `DecompressionReaderBuilder`, which will amortize the cost of compiling the
/// matcher.
///
/// ```no_run
/// use std::{io::Read, process::Command};
///
/// use grep_cli::DecompressionReader;
///
/// let mut rdr = DecompressionReader::new("/usr/share/man/man1/ls.1.gz")?;
/// let mut contents = vec![];
/// rdr.read_to_end(&mut contents)?;
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Debug)]
pub struct DecompressionReader {
    rdr: Result<CommandReader, File>,
}

impl DecompressionReader {
    /// Build a new streaming reader for decompressing data.
    ///
    /// If decompression is done out-of-process and if there was a problem
    /// spawning the process, then its error is returned.
    ///
    /// If the given file path could not be matched with a decompression
    /// strategy, then a passthru reader is returned that does no
    /// decompression.
    ///
    /// This uses the default matching rules for determining how to decompress
    /// the given file. To change those matching rules, use
    /// [`DecompressionReaderBuilder`] and [`DecompressionMatcherBuilder`].
    ///
    /// When creating readers for many paths. it is better to use the builder
    /// since it will amortize the cost of constructing the matcher.
    pub fn new<P: AsRef<Path>>(
        path: P,
    ) -> Result<DecompressionReader, CommandError> {
        DecompressionReaderBuilder::new().build(path)
    }

    /// Creates a new "passthru" decompression reader that reads from the file
    /// corresponding to the given path without doing decompression and without
    /// executing another process.
    fn new_passthru(path: &Path) -> Result<DecompressionReader, CommandError> {
        let file = File::open(path)?;
        Ok(DecompressionReader { rdr: Err(file) })
    }

    /// Closes this reader, freeing any resources used by its underlying child
    /// process, if one was used. If the child process exits with a nonzero
    /// exit code, the returned Err value will include its stderr.
    ///
    /// `close` is idempotent, meaning it can be safely called multiple times.
    /// The first call closes the CommandReader and any subsequent calls do
    /// nothing.
    ///
    /// This method should be called after partially reading a file to prevent
    /// resource leakage. However there is no need to call `close` explicitly
    /// if your code always calls `read` to EOF, as `read` takes care of
    /// calling `close` in this case.
    ///
    /// `close` is also called in `drop` as a last line of defense against
    /// resource leakage. Any error from the child process is then printed as a
    /// warning to stderr. This can be avoided by explicitly calling `close`
    /// before the CommandReader is dropped.
    pub fn close(&mut self) -> io::Result<()> {
        match self.rdr {
            Ok(ref mut rdr) => rdr.close(),
            Err(_) => Ok(()),
        }
    }
}

impl io::Read for DecompressionReader {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        match self.rdr {
            Ok(ref mut rdr) => rdr.read(buf),
            Err(ref mut rdr) => rdr.read(buf),
        }
    }
}

/// Resolves a path to a program to a path by searching for the program in
/// `PATH`.
///
/// If the program could not be resolved, then an error is returned.
///
/// The purpose of doing this instead of passing the path to the program
/// directly to Command::new is that Command::new will hand relative paths
/// to CreateProcess on Windows, which will implicitly search the current
/// working directory for the executable. This could be undesirable for
/// security reasons. e.g., running ripgrep with the -z/--search-zip flag on an
/// untrusted directory tree could result in arbitrary programs executing on
/// Windows.
///
/// Note that this could still return a relative path if PATH contains a
/// relative path. We permit this since it is assumed that the user has set
/// this explicitly, and thus, desires this behavior.
///
/// On non-Windows, this is a no-op.
pub fn resolve_binary<P: AsRef<Path>>(
    prog: P,
) -> Result<PathBuf, CommandError> {
    if !cfg!(windows) {
        return Ok(prog.as_ref().to_path_buf());
    }
    try_resolve_binary(prog)
}

/// Resolves a path to a program to a path by searching for the program in
/// `PATH`.
///
/// If the program could not be resolved, then an error is returned.
///
/// The purpose of doing this instead of passing the path to the program
/// directly to Command::new is that Command::new will hand relative paths
/// to CreateProcess on Windows, which will implicitly search the current
/// working directory for the executable. This could be undesirable for
/// security reasons. e.g., running ripgrep with the -z/--search-zip flag on an
/// untrusted directory tree could result in arbitrary programs executing on
/// Windows.
///
/// Note that this could still return a relative path if PATH contains a
/// relative path. We permit this since it is assumed that the user has set
/// this explicitly, and thus, desires this behavior.
///
/// If `check_exists` is false or the path is already an absolute path this
/// will return immediately.
fn try_resolve_binary<P: AsRef<Path>>(
    prog: P,
) -> Result<PathBuf, CommandError> {
    use std::env;

    fn is_exe(path: &Path) -> bool {
        let Ok(md) = path.metadata() else { return false };
        !md.is_dir()
    }

    let prog = prog.as_ref();
    if prog.is_absolute() {
        return Ok(prog.to_path_buf());
    }
    let Some(syspaths) = env::var_os("PATH") else {
        let msg = "system PATH environment variable not found";
        return Err(CommandError::io(io::Error::new(
            io::ErrorKind::Other,
            msg,
        )));
    };
    for syspath in env::split_paths(&syspaths) {
        if syspath.as_os_str().is_empty() {
            continue;
        }
        let abs_prog = syspath.join(prog);
        if is_exe(&abs_prog) {
            return Ok(abs_prog.to_path_buf());
        }
        if abs_prog.extension().is_none() {
            for extension in ["com", "exe"] {
                let abs_prog = abs_prog.with_extension(extension);
                if is_exe(&abs_prog) {
                    return Ok(abs_prog.to_path_buf());
                }
            }
        }
    }
    let msg = format!("{}: could not find executable in PATH", prog.display());
    return Err(CommandError::io(io::Error::new(io::ErrorKind::Other, msg)));
}

fn default_decompression_commands() -> Vec<DecompressionCommand> {
    const ARGS_GZIP: &[&str] = &["gzip", "-d", "-c"];
    const ARGS_BZIP: &[&str] = &["bzip2", "-d", "-c"];
    const ARGS_XZ: &[&str] = &["xz", "-d", "-c"];
    const ARGS_LZ4: &[&str] = &["lz4", "-d", "-c"];
    const ARGS_LZMA: &[&str] = &["xz", "--format=lzma", "-d", "-c"];
    const ARGS_BROTLI: &[&str] = &["brotli", "-d", "-c"];
    const ARGS_ZSTD: &[&str] = &["zstd", "-q", "-d", "-c"];
    const ARGS_UNCOMPRESS: &[&str] = &["uncompress", "-c"];

    fn add(glob: &str, args: &[&str], cmds: &mut Vec<DecompressionCommand>) {
        let bin = match resolve_binary(Path::new(args[0])) {
            Ok(bin) => bin,
            Err(err) => {
                log::debug!("{}", err);
                return;
            }
        };
        cmds.push(DecompressionCommand {
            glob: glob.to_string(),
            bin,
            args: args
                .iter()
                .skip(1)
                .map(|s| OsStr::new(s).to_os_string())
                .collect(),
        });
    }
    let mut cmds = vec![];
    add("*.gz", ARGS_GZIP, &mut cmds);
    add("*.tgz", ARGS_GZIP, &mut cmds);
    add("*.bz2", ARGS_BZIP, &mut cmds);
    add("*.tbz2", ARGS_BZIP, &mut cmds);
    add("*.xz", ARGS_XZ, &mut cmds);
    add("*.txz", ARGS_XZ, &mut cmds);
    add("*.lz4", ARGS_LZ4, &mut cmds);
    add("*.lzma", ARGS_LZMA, &mut cmds);
    add("*.br", ARGS_BROTLI, &mut cmds);
    add("*.zst", ARGS_ZSTD, &mut cmds);
    add("*.zstd", ARGS_ZSTD, &mut cmds);
    add("*.Z", ARGS_UNCOMPRESS, &mut cmds);
    cmds
}