1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
use {
grep_matcher::{ByteSet, LineTerminator},
regex_automata::meta::Regex,
regex_syntax::{
ast,
hir::{self, Hir},
},
};
use crate::{
ast::AstAnalysis, error::Error, non_matching::non_matching_bytes,
strip::strip_from_match,
};
/// Config represents the configuration of a regex matcher in this crate.
/// The configuration is itself a rough combination of the knobs found in
/// the `regex` crate itself, along with additional `grep-matcher` specific
/// options.
///
/// The configuration can be used to build a "configured" HIR expression. A
/// configured HIR expression is an HIR expression that is aware of the
/// configuration which generated it, and provides transformation on that HIR
/// such that the configuration is preserved.
#[derive(Clone, Debug)]
pub(crate) struct Config {
pub(crate) case_insensitive: bool,
pub(crate) case_smart: bool,
pub(crate) multi_line: bool,
pub(crate) dot_matches_new_line: bool,
pub(crate) swap_greed: bool,
pub(crate) ignore_whitespace: bool,
pub(crate) unicode: bool,
pub(crate) octal: bool,
pub(crate) size_limit: usize,
pub(crate) dfa_size_limit: usize,
pub(crate) nest_limit: u32,
pub(crate) line_terminator: Option<LineTerminator>,
pub(crate) crlf: bool,
pub(crate) word: bool,
pub(crate) fixed_strings: bool,
pub(crate) whole_line: bool,
}
impl Default for Config {
fn default() -> Config {
Config {
case_insensitive: false,
case_smart: false,
multi_line: false,
dot_matches_new_line: false,
swap_greed: false,
ignore_whitespace: false,
unicode: true,
octal: false,
// These size limits are much bigger than what's in the regex
// crate by default.
size_limit: 100 * (1 << 20),
dfa_size_limit: 1000 * (1 << 20),
nest_limit: 250,
line_terminator: None,
crlf: false,
word: false,
fixed_strings: false,
whole_line: false,
}
}
}
impl Config {
/// Use this configuration to build an HIR from the given patterns. The HIR
/// returned corresponds to a single regex that is an alternation of the
/// patterns given.
pub(crate) fn build_many<P: AsRef<str>>(
&self,
patterns: &[P],
) -> Result<ConfiguredHIR, Error> {
ConfiguredHIR::new(self.clone(), patterns)
}
/// Accounting for the `smart_case` config knob, return true if and only if
/// this pattern should be matched case insensitively.
fn is_case_insensitive(&self, analysis: &AstAnalysis) -> bool {
if self.case_insensitive {
return true;
}
if !self.case_smart {
return false;
}
analysis.any_literal() && !analysis.any_uppercase()
}
/// Returns whether the given patterns should be treated as "fixed strings"
/// literals. This is different from just querying the `fixed_strings` knob
/// in that if the knob is false, this will still return true in some cases
/// if the patterns are themselves indistinguishable from literals.
///
/// The main idea here is that if this returns true, then it is safe
/// to build an `regex_syntax::hir::Hir` value directly from the given
/// patterns as an alternation of `hir::Literal` values.
fn is_fixed_strings<P: AsRef<str>>(&self, patterns: &[P]) -> bool {
// When these are enabled, we really need to parse the patterns and
// let them go through the standard HIR translation process in order
// for case folding transforms to be applied.
if self.case_insensitive || self.case_smart {
return false;
}
// Even if whole_line or word is enabled, both of those things can
// be implemented by wrapping the Hir generated by an alternation of
// fixed string literals. So for here at least, we don't care about the
// word or whole_line settings.
if self.fixed_strings {
// ... but if any literal contains a line terminator, then we've
// got to bail out because this will ultimately result in an error.
if let Some(lineterm) = self.line_terminator {
for p in patterns.iter() {
if has_line_terminator(lineterm, p.as_ref()) {
return false;
}
}
}
return true;
}
// In this case, the only way we can hand construct the Hir is if none
// of the patterns contain meta characters. If they do, then we need to
// send them through the standard parsing/translation process.
for p in patterns.iter() {
let p = p.as_ref();
if p.chars().any(regex_syntax::is_meta_character) {
return false;
}
// Same deal as when fixed_strings is set above. If the pattern has
// a line terminator anywhere, then we need to bail out and let
// an error occur.
if let Some(lineterm) = self.line_terminator {
if has_line_terminator(lineterm, p) {
return false;
}
}
}
true
}
}
/// A "configured" HIR expression, which is aware of the configuration which
/// produced this HIR.
///
/// Since the configuration is tracked, values with this type can be
/// transformed into other HIR expressions (or regular expressions) in a way
/// that preserves the configuration. For example, the `fast_line_regex`
/// method will apply literal extraction to the inner HIR and use that to build
/// a new regex that matches the extracted literals in a way that is
/// consistent with the configuration that produced this HIR. For example, the
/// size limits set on the configured HIR will be propagated out to any
/// subsequently constructed HIR or regular expression.
#[derive(Clone, Debug)]
pub(crate) struct ConfiguredHIR {
config: Config,
hir: Hir,
}
impl ConfiguredHIR {
/// Parse the given patterns into a single HIR expression that represents
/// an alternation of the patterns given.
fn new<P: AsRef<str>>(
config: Config,
patterns: &[P],
) -> Result<ConfiguredHIR, Error> {
let hir = if config.is_fixed_strings(patterns) {
let mut alts = vec![];
for p in patterns.iter() {
alts.push(Hir::literal(p.as_ref().as_bytes()));
}
log::debug!(
"assembling HIR from {} fixed string literals",
alts.len()
);
let hir = Hir::alternation(alts);
hir
} else {
let mut alts = vec![];
for p in patterns.iter() {
alts.push(if config.fixed_strings {
format!("(?:{})", regex_syntax::escape(p.as_ref()))
} else {
format!("(?:{})", p.as_ref())
});
}
let pattern = alts.join("|");
let ast = ast::parse::ParserBuilder::new()
.nest_limit(config.nest_limit)
.octal(config.octal)
.ignore_whitespace(config.ignore_whitespace)
.build()
.parse(&pattern)
.map_err(Error::generic)?;
let analysis = AstAnalysis::from_ast(&ast);
let mut hir = hir::translate::TranslatorBuilder::new()
.utf8(false)
.case_insensitive(config.is_case_insensitive(&analysis))
.multi_line(config.multi_line)
.dot_matches_new_line(config.dot_matches_new_line)
.crlf(config.crlf)
.swap_greed(config.swap_greed)
.unicode(config.unicode)
.build()
.translate(&pattern, &ast)
.map_err(Error::generic)?;
// We don't need to do this for the fixed-strings case above
// because is_fixed_strings will return false if any pattern
// contains a line terminator. Therefore, we don't need to strip
// it.
//
// We go to some pains to avoid doing this in the fixed-strings
// case because this can result in building a new HIR when ripgrep
// is given a huge set of literals to search for. And this can
// actually take a little time. It's not huge, but it's noticeable.
hir = match config.line_terminator {
None => hir,
Some(line_term) => strip_from_match(hir, line_term)?,
};
hir
};
Ok(ConfiguredHIR { config, hir })
}
/// Return a reference to the underlying configuration.
pub(crate) fn config(&self) -> &Config {
&self.config
}
/// Return a reference to the underyling HIR.
pub(crate) fn hir(&self) -> &Hir {
&self.hir
}
/// Convert this HIR to a regex that can be used for matching.
pub(crate) fn to_regex(&self) -> Result<Regex, Error> {
let meta = Regex::config()
.utf8_empty(false)
.nfa_size_limit(Some(self.config.size_limit))
// We don't expose a knob for this because the one-pass DFA is
// usually not a perf bottleneck for ripgrep. But we give it some
// extra room than the default.
.onepass_size_limit(Some(10 * (1 << 20)))
// Same deal here. The default limit for full DFAs is VERY small,
// but with ripgrep we can afford to spend a bit more time on
// building them I think.
.dfa_size_limit(Some(1 * (1 << 20)))
.dfa_state_limit(Some(1_000))
.hybrid_cache_capacity(self.config.dfa_size_limit);
Regex::builder()
.configure(meta)
.build_from_hir(&self.hir)
.map_err(Error::regex)
}
/// Compute the set of non-matching bytes for this HIR expression.
pub(crate) fn non_matching_bytes(&self) -> ByteSet {
non_matching_bytes(&self.hir)
}
/// Returns the line terminator configured on this expression.
///
/// When we have beginning/end anchors (NOT line anchors), the fast line
/// searching path isn't quite correct. Or at least, doesn't match the slow
/// path. Namely, the slow path strips line terminators while the fast path
/// does not. Since '$' (when multi-line mode is disabled) doesn't match at
/// line boundaries, the existence of a line terminator might cause it to
/// not match when it otherwise would with the line terminator stripped.
///
/// Since searching with text anchors is exceptionally rare in the context
/// of line oriented searching (multi-line mode is basically always
/// enabled), we just disable this optimization when there are text
/// anchors. We disable it by not returning a line terminator, since
/// without a line terminator, the fast search path can't be executed.
///
/// Actually, the above is no longer quite correct. Later on, another
/// optimization was added where if the line terminator was in the set of
/// bytes that was guaranteed to never be part of a match, then the higher
/// level search infrastructure assumes that the fast line-by-line search
/// path can still be taken. This optimization applies when multi-line
/// search (not multi-line mode) is enabled. In that case, there is no
/// configured line terminator since the regex is permitted to match a
/// line terminator. But if the regex is guaranteed to never match across
/// multiple lines despite multi-line search being requested, we can still
/// do the faster and more flexible line-by-line search. This is why the
/// non-matching extraction routine removes `\n` when `\A` and `\z` are
/// present even though that's not quite correct...
///
/// See: <https://github.com/BurntSushi/ripgrep/issues/2260>
pub(crate) fn line_terminator(&self) -> Option<LineTerminator> {
if self.hir.properties().look_set().contains_anchor_haystack() {
None
} else {
self.config.line_terminator
}
}
/// Turns this configured HIR into an equivalent one, but where it must
/// match at the start and end of a line.
pub(crate) fn into_whole_line(self) -> ConfiguredHIR {
let line_anchor_start = Hir::look(self.line_anchor_start());
let line_anchor_end = Hir::look(self.line_anchor_end());
let hir =
Hir::concat(vec![line_anchor_start, self.hir, line_anchor_end]);
ConfiguredHIR { config: self.config, hir }
}
/// Turns this configured HIR into an equivalent one, but where it must
/// match at word boundaries.
pub(crate) fn into_word(self) -> ConfiguredHIR {
let hir = Hir::concat(vec![
Hir::look(if self.config.unicode {
hir::Look::WordStartHalfUnicode
} else {
hir::Look::WordStartHalfAscii
}),
self.hir,
Hir::look(if self.config.unicode {
hir::Look::WordEndHalfUnicode
} else {
hir::Look::WordEndHalfAscii
}),
]);
ConfiguredHIR { config: self.config, hir }
}
/// Returns the "start line" anchor for this configuration.
fn line_anchor_start(&self) -> hir::Look {
if self.config.crlf {
hir::Look::StartCRLF
} else {
hir::Look::StartLF
}
}
/// Returns the "end line" anchor for this configuration.
fn line_anchor_end(&self) -> hir::Look {
if self.config.crlf {
hir::Look::EndCRLF
} else {
hir::Look::EndLF
}
}
}
/// Returns true if the given literal string contains any byte from the line
/// terminator given.
fn has_line_terminator(lineterm: LineTerminator, literal: &str) -> bool {
if lineterm.is_crlf() {
literal.as_bytes().iter().copied().any(|b| b == b'\r' || b == b'\n')
} else {
literal.as_bytes().iter().copied().any(|b| b == lineterm.as_byte())
}
}