1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
use crate::{convert, ops};

/// Used to tell an operation whether it should exit early or go on as usual.
///
/// This is used when exposing things (like graph traversals or visitors) where
/// you want the user to be able to choose whether to exit early.
/// Having the enum makes it clearer -- no more wondering "wait, what did `false`
/// mean again?" -- and allows including a value.
///
/// Similar to [`Option`] and [`Result`], this enum can be used with the `?` operator
/// to return immediately if the [`Break`] variant is present or otherwise continue normally
/// with the value inside the [`Continue`] variant.
///
/// # Examples
///
/// Early-exiting from [`Iterator::try_for_each`]:
/// ```
/// use std::ops::ControlFlow;
///
/// let r = (2..100).try_for_each(|x| {
///     if 403 % x == 0 {
///         return ControlFlow::Break(x)
///     }
///
///     ControlFlow::Continue(())
/// });
/// assert_eq!(r, ControlFlow::Break(13));
/// ```
///
/// A basic tree traversal:
/// ```
/// use std::ops::ControlFlow;
///
/// pub struct TreeNode<T> {
///     value: T,
///     left: Option<Box<TreeNode<T>>>,
///     right: Option<Box<TreeNode<T>>>,
/// }
///
/// impl<T> TreeNode<T> {
///     pub fn traverse_inorder<B>(&self, f: &mut impl FnMut(&T) -> ControlFlow<B>) -> ControlFlow<B> {
///         if let Some(left) = &self.left {
///             left.traverse_inorder(f)?;
///         }
///         f(&self.value)?;
///         if let Some(right) = &self.right {
///             right.traverse_inorder(f)?;
///         }
///         ControlFlow::Continue(())
///     }
///     fn leaf(value: T) -> Option<Box<TreeNode<T>>> {
///         Some(Box::new(Self { value, left: None, right: None }))
///     }
/// }
///
/// let node = TreeNode {
///     value: 0,
///     left: TreeNode::leaf(1),
///     right: Some(Box::new(TreeNode {
///         value: -1,
///         left: TreeNode::leaf(5),
///         right: TreeNode::leaf(2),
///     }))
/// };
/// let mut sum = 0;
///
/// let res = node.traverse_inorder(&mut |val| {
///     if *val < 0 {
///         ControlFlow::Break(*val)
///     } else {
///         sum += *val;
///         ControlFlow::Continue(())
///     }
/// });
/// assert_eq!(res, ControlFlow::Break(-1));
/// assert_eq!(sum, 6);
/// ```
///
/// [`Break`]: ControlFlow::Break
/// [`Continue`]: ControlFlow::Continue
#[stable(feature = "control_flow_enum_type", since = "1.55.0")]
// ControlFlow should not implement PartialOrd or Ord, per RFC 3058:
// https://rust-lang.github.io/rfcs/3058-try-trait-v2.html#traits-for-controlflow
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum ControlFlow<B, C = ()> {
    /// Move on to the next phase of the operation as normal.
    #[stable(feature = "control_flow_enum_type", since = "1.55.0")]
    #[lang = "Continue"]
    Continue(C),
    /// Exit the operation without running subsequent phases.
    #[stable(feature = "control_flow_enum_type", since = "1.55.0")]
    #[lang = "Break"]
    Break(B),
    // Yes, the order of the variants doesn't match the type parameters.
    // They're in this order so that `ControlFlow<A, B>` <-> `Result<B, A>`
    // is a no-op conversion in the `Try` implementation.
}

#[unstable(feature = "try_trait_v2", issue = "84277")]
#[rustc_const_unstable(feature = "const_convert", issue = "88674")]
impl<B, C> const ops::Try for ControlFlow<B, C> {
    type Output = C;
    type Residual = ControlFlow<B, convert::Infallible>;

    #[inline]
    fn from_output(output: Self::Output) -> Self {
        ControlFlow::Continue(output)
    }

    #[inline]
    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
        match self {
            ControlFlow::Continue(c) => ControlFlow::Continue(c),
            ControlFlow::Break(b) => ControlFlow::Break(ControlFlow::Break(b)),
        }
    }
}

#[unstable(feature = "try_trait_v2", issue = "84277")]
#[rustc_const_unstable(feature = "const_convert", issue = "88674")]
impl<B, C> const ops::FromResidual for ControlFlow<B, C> {
    #[inline]
    fn from_residual(residual: ControlFlow<B, convert::Infallible>) -> Self {
        match residual {
            ControlFlow::Break(b) => ControlFlow::Break(b),
        }
    }
}

#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
#[rustc_const_unstable(feature = "const_try", issue = "74935")]
impl<B, C> const ops::Residual<C> for ControlFlow<B, convert::Infallible> {
    type TryType = ControlFlow<B, C>;
}

impl<B, C> ControlFlow<B, C> {
    /// Returns `true` if this is a `Break` variant.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::ops::ControlFlow;
    ///
    /// assert!(ControlFlow::<i32, String>::Break(3).is_break());
    /// assert!(!ControlFlow::<String, i32>::Continue(3).is_break());
    /// ```
    #[inline]
    #[stable(feature = "control_flow_enum_is", since = "1.59.0")]
    pub fn is_break(&self) -> bool {
        matches!(*self, ControlFlow::Break(_))
    }

    /// Returns `true` if this is a `Continue` variant.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::ops::ControlFlow;
    ///
    /// assert!(!ControlFlow::<i32, String>::Break(3).is_continue());
    /// assert!(ControlFlow::<String, i32>::Continue(3).is_continue());
    /// ```
    #[inline]
    #[stable(feature = "control_flow_enum_is", since = "1.59.0")]
    pub fn is_continue(&self) -> bool {
        matches!(*self, ControlFlow::Continue(_))
    }

    /// Converts the `ControlFlow` into an `Option` which is `Some` if the
    /// `ControlFlow` was `Break` and `None` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(control_flow_enum)]
    /// use std::ops::ControlFlow;
    ///
    /// assert_eq!(ControlFlow::<i32, String>::Break(3).break_value(), Some(3));
    /// assert_eq!(ControlFlow::<String, i32>::Continue(3).break_value(), None);
    /// ```
    #[inline]
    #[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
    pub fn break_value(self) -> Option<B> {
        match self {
            ControlFlow::Continue(..) => None,
            ControlFlow::Break(x) => Some(x),
        }
    }

    /// Maps `ControlFlow<B, C>` to `ControlFlow<T, C>` by applying a function
    /// to the break value in case it exists.
    #[inline]
    #[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
    pub fn map_break<T, F>(self, f: F) -> ControlFlow<T, C>
    where
        F: FnOnce(B) -> T,
    {
        match self {
            ControlFlow::Continue(x) => ControlFlow::Continue(x),
            ControlFlow::Break(x) => ControlFlow::Break(f(x)),
        }
    }

    /// Converts the `ControlFlow` into an `Option` which is `Some` if the
    /// `ControlFlow` was `Continue` and `None` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(control_flow_enum)]
    /// use std::ops::ControlFlow;
    ///
    /// assert_eq!(ControlFlow::<i32, String>::Break(3).continue_value(), None);
    /// assert_eq!(ControlFlow::<String, i32>::Continue(3).continue_value(), Some(3));
    /// ```
    #[inline]
    #[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
    pub fn continue_value(self) -> Option<C> {
        match self {
            ControlFlow::Continue(x) => Some(x),
            ControlFlow::Break(..) => None,
        }
    }

    /// Maps `ControlFlow<B, C>` to `ControlFlow<B, T>` by applying a function
    /// to the continue value in case it exists.
    #[inline]
    #[unstable(feature = "control_flow_enum", reason = "new API", issue = "75744")]
    pub fn map_continue<T, F>(self, f: F) -> ControlFlow<B, T>
    where
        F: FnOnce(C) -> T,
    {
        match self {
            ControlFlow::Continue(x) => ControlFlow::Continue(f(x)),
            ControlFlow::Break(x) => ControlFlow::Break(x),
        }
    }
}

/// These are used only as part of implementing the iterator adapters.
/// They have mediocre names and non-obvious semantics, so aren't
/// currently on a path to potential stabilization.
impl<R: ops::Try> ControlFlow<R, R::Output> {
    /// Create a `ControlFlow` from any type implementing `Try`.
    #[inline]
    pub(crate) fn from_try(r: R) -> Self {
        match R::branch(r) {
            ControlFlow::Continue(v) => ControlFlow::Continue(v),
            ControlFlow::Break(v) => ControlFlow::Break(R::from_residual(v)),
        }
    }

    /// Convert a `ControlFlow` into any type implementing `Try`;
    #[inline]
    pub(crate) fn into_try(self) -> R {
        match self {
            ControlFlow::Continue(v) => R::from_output(v),
            ControlFlow::Break(v) => v,
        }
    }
}