1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
#![stable(feature = "wake_trait", since = "1.51.0")]
//! Types and Traits for working with asynchronous tasks.
//!
//! **Note**: This module is only available on platforms that support atomic
//! loads and stores of pointers. This may be detected at compile time using
//! `#[cfg(target_has_atomic = "ptr")]`.
use core::mem::ManuallyDrop;
use core::task::{RawWaker, RawWakerVTable, Waker};
use crate::sync::Arc;
/// The implementation of waking a task on an executor.
///
/// This trait can be used to create a [`Waker`]. An executor can define an
/// implementation of this trait, and use that to construct a Waker to pass
/// to the tasks that are executed on that executor.
///
/// This trait is a memory-safe and ergonomic alternative to constructing a
/// [`RawWaker`]. It supports the common executor design in which the data used
/// to wake up a task is stored in an [`Arc`]. Some executors (especially
/// those for embedded systems) cannot use this API, which is why [`RawWaker`]
/// exists as an alternative for those systems.
///
/// [arc]: ../../std/sync/struct.Arc.html
///
/// # Examples
///
/// A basic `block_on` function that takes a future and runs it to completion on
/// the current thread.
///
/// **Note:** This example trades correctness for simplicity. In order to prevent
/// deadlocks, production-grade implementations will also need to handle
/// intermediate calls to `thread::unpark` as well as nested invocations.
///
/// ```rust
/// use std::future::Future;
/// use std::sync::Arc;
/// use std::task::{Context, Poll, Wake};
/// use std::thread::{self, Thread};
///
/// /// A waker that wakes up the current thread when called.
/// struct ThreadWaker(Thread);
///
/// impl Wake for ThreadWaker {
/// fn wake(self: Arc<Self>) {
/// self.0.unpark();
/// }
/// }
///
/// /// Run a future to completion on the current thread.
/// fn block_on<T>(fut: impl Future<Output = T>) -> T {
/// // Pin the future so it can be polled.
/// let mut fut = Box::pin(fut);
///
/// // Create a new context to be passed to the future.
/// let t = thread::current();
/// let waker = Arc::new(ThreadWaker(t)).into();
/// let mut cx = Context::from_waker(&waker);
///
/// // Run the future to completion.
/// loop {
/// match fut.as_mut().poll(&mut cx) {
/// Poll::Ready(res) => return res,
/// Poll::Pending => thread::park(),
/// }
/// }
/// }
///
/// block_on(async {
/// println!("Hi from inside a future!");
/// });
/// ```
#[stable(feature = "wake_trait", since = "1.51.0")]
pub trait Wake {
/// Wake this task.
#[stable(feature = "wake_trait", since = "1.51.0")]
fn wake(self: Arc<Self>);
/// Wake this task without consuming the waker.
///
/// If an executor supports a cheaper way to wake without consuming the
/// waker, it should override this method. By default, it clones the
/// [`Arc`] and calls [`wake`] on the clone.
///
/// [`wake`]: Wake::wake
#[stable(feature = "wake_trait", since = "1.51.0")]
fn wake_by_ref(self: &Arc<Self>) {
self.clone().wake();
}
}
#[stable(feature = "wake_trait", since = "1.51.0")]
impl<W: Wake + Send + Sync + 'static> From<Arc<W>> for Waker {
/// Use a `Wake`-able type as a `Waker`.
///
/// No heap allocations or atomic operations are used for this conversion.
fn from(waker: Arc<W>) -> Waker {
// SAFETY: This is safe because raw_waker safely constructs
// a RawWaker from Arc<W>.
unsafe { Waker::from_raw(raw_waker(waker)) }
}
}
#[stable(feature = "wake_trait", since = "1.51.0")]
impl<W: Wake + Send + Sync + 'static> From<Arc<W>> for RawWaker {
/// Use a `Wake`-able type as a `RawWaker`.
///
/// No heap allocations or atomic operations are used for this conversion.
fn from(waker: Arc<W>) -> RawWaker {
raw_waker(waker)
}
}
// NB: This private function for constructing a RawWaker is used, rather than
// inlining this into the `From<Arc<W>> for RawWaker` impl, to ensure that
// the safety of `From<Arc<W>> for Waker` does not depend on the correct
// trait dispatch - instead both impls call this function directly and
// explicitly.
#[inline(always)]
fn raw_waker<W: Wake + Send + Sync + 'static>(waker: Arc<W>) -> RawWaker {
// Increment the reference count of the arc to clone it.
unsafe fn clone_waker<W: Wake + Send + Sync + 'static>(waker: *const ()) -> RawWaker {
unsafe { Arc::increment_strong_count(waker as *const W) };
RawWaker::new(
waker as *const (),
&RawWakerVTable::new(clone_waker::<W>, wake::<W>, wake_by_ref::<W>, drop_waker::<W>),
)
}
// Wake by value, moving the Arc into the Wake::wake function
unsafe fn wake<W: Wake + Send + Sync + 'static>(waker: *const ()) {
let waker = unsafe { Arc::from_raw(waker as *const W) };
<W as Wake>::wake(waker);
}
// Wake by reference, wrap the waker in ManuallyDrop to avoid dropping it
unsafe fn wake_by_ref<W: Wake + Send + Sync + 'static>(waker: *const ()) {
let waker = unsafe { ManuallyDrop::new(Arc::from_raw(waker as *const W)) };
<W as Wake>::wake_by_ref(&waker);
}
// Decrement the reference count of the Arc on drop
unsafe fn drop_waker<W: Wake + Send + Sync + 'static>(waker: *const ()) {
unsafe { Arc::decrement_strong_count(waker as *const W) };
}
RawWaker::new(
Arc::into_raw(waker) as *const (),
&RawWakerVTable::new(clone_waker::<W>, wake::<W>, wake_by_ref::<W>, drop_waker::<W>),
)
}