pub enum ProjectionElem<V, T> {
    Deref,
    Field(Field, T),
    Index(V),
    ConstantIndex {
        offset: u64,
        min_length: u64,
        from_end: bool,
    },
    Subslice {
        from: u64,
        to: u64,
        from_end: bool,
    },
    Downcast(Option<Symbol>, VariantIdx),
}

Variants

Deref

Field(Field, T)

Index(V)

Index into a slice/array.

Note that this does not also dereference, and so it does not exactly correspond to slice indexing in Rust. In other words, in the below Rust code:

let x = &[1, 2, 3, 4];
let i = 2;
x[i];

The x[i] is turned into a Deref followed by an Index, not just an Index. The same thing is true of the ConstantIndex and Subslice projections below.

ConstantIndex

Fields

offset: u64

index or -index (in Python terms), depending on from_end

min_length: u64

The thing being indexed must be at least this long. For arrays this is always the exact length.

from_end: bool

Counting backwards from end? This is always false when indexing an array.

These indices are generated by slice patterns. Easiest to explain by example:

[X, _, .._, _, _] => { offset: 0, min_length: 4, from_end: false },
[_, X, .._, _, _] => { offset: 1, min_length: 4, from_end: false },
[_, _, .._, X, _] => { offset: 2, min_length: 4, from_end: true },
[_, _, .._, _, X] => { offset: 1, min_length: 4, from_end: true },

Subslice

Fields

from: u64
to: u64
from_end: bool

Whether to counts from the start or end of the array/slice. For PlaceElems this is true if and only if the base is a slice. For ProjectionKind, this can also be true for arrays.

These indices are generated by slice patterns.

If from_end is true slice[from..slice.len() - to]. Otherwise array[from..to].

Downcast(Option<Symbol>, VariantIdx)

“Downcast” to a variant of an enum or a generator.

The included Symbol is the name of the variant, used for printing MIR.

Implementations

Returns true if the target of this projection may refer to a different region of memory than the base.

Returns true if this is a Downcast projection with the given VariantIdx.

Returns true if this is a Field projection with the given index.

Trait Implementations

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Feeds this value into the given Hasher. Read more
Feeds a slice of this type into the given Hasher. Read more
This method returns an Ordering between self and other. Read more
Compares and returns the maximum of two values. Read more
Compares and returns the minimum of two values. Read more
Restrict a value to a certain interval. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
The entry point for folding. To fold a value t with a folder f call: t.try_fold_with(f). Read more
A convenient alternative to try_fold_with for use with infallible folders. Do not override this method, to ensure coherence with try_fold_with. Read more
The entry point for visiting. To visit a value t with a visitor v call: t.visit_with(v). Read more
Returns true if self has any late-bound regions that are either bound by binder or bound by some binder outside of binder. If binder is ty::INNERMOST, this indicates whether there are any late-bound regions that appear free. Read more
Returns true if this self has any regions that escape binder (and hence are not bound by it). Read more
“Free” regions in this context means that it has any region that is not (a) erased or (b) late-bound. Read more
True if there are any un-erased free regions.
Indicates whether this value references only ‘global’ generic parameters that are the same regardless of what fn we are in. This is used for caching. Read more
True if there are any late-bound regions
Indicates whether this value still has parameters/placeholders/inference variables which could be replaced later, in a way that would change the results of impl specialization. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
This method turns the parameters of a DepNodeConstructor into an opaque Fingerprint to be used in DepNode. Not all DepNodeParams support being turned into a Fingerprint (they don’t need to if the corresponding DepNode is anonymous). Read more
This method tries to recover the query key from the given DepNode, something which is needed when forcing DepNodes during red-green evaluation. The query system will only call this method if fingerprint_style() is not FingerprintStyle::Opaque. It is always valid to return None here, in which case incremental compilation will treat the query as having changed instead of forcing it. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.

Layout

Note: Unable to compute type layout, possibly due to this type having generic parameters. Layout can only be computed for concrete, fully-instantiated types.