1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
use crate::cell::UnsafeCell;
use crate::mem::forget;
use crate::sync::atomic::{AtomicUsize, Ordering};
use crate::sys_common::lazy_box::{LazyBox, LazyInit};
struct AllocatedRwLock {
inner: UnsafeCell<libc::pthread_rwlock_t>,
write_locked: UnsafeCell<bool>, // guarded by the `inner` RwLock
num_readers: AtomicUsize,
}
unsafe impl Send for AllocatedRwLock {}
unsafe impl Sync for AllocatedRwLock {}
pub struct RwLock {
inner: LazyBox<AllocatedRwLock>,
}
impl LazyInit for AllocatedRwLock {
fn init() -> Box<Self> {
Box::new(AllocatedRwLock {
inner: UnsafeCell::new(libc::PTHREAD_RWLOCK_INITIALIZER),
write_locked: UnsafeCell::new(false),
num_readers: AtomicUsize::new(0),
})
}
fn destroy(mut rwlock: Box<Self>) {
// We're not allowed to pthread_rwlock_destroy a locked rwlock,
// so check first if it's unlocked.
if *rwlock.write_locked.get_mut() || *rwlock.num_readers.get_mut() != 0 {
// The rwlock is locked. This happens if a RwLock{Read,Write}Guard is leaked.
// In this case, we just leak the RwLock too.
forget(rwlock);
}
}
fn cancel_init(_: Box<Self>) {
// In this case, we can just drop it without any checks,
// since it cannot have been locked yet.
}
}
impl AllocatedRwLock {
#[inline]
unsafe fn raw_unlock(&self) {
let r = libc::pthread_rwlock_unlock(self.inner.get());
debug_assert_eq!(r, 0);
}
}
impl Drop for AllocatedRwLock {
fn drop(&mut self) {
let r = unsafe { libc::pthread_rwlock_destroy(self.inner.get()) };
// On DragonFly pthread_rwlock_destroy() returns EINVAL if called on a
// rwlock that was just initialized with
// libc::PTHREAD_RWLOCK_INITIALIZER. Once it is used (locked/unlocked)
// or pthread_rwlock_init() is called, this behaviour no longer occurs.
if cfg!(target_os = "dragonfly") {
debug_assert!(r == 0 || r == libc::EINVAL);
} else {
debug_assert_eq!(r, 0);
}
}
}
impl RwLock {
#[inline]
pub const fn new() -> RwLock {
RwLock { inner: LazyBox::new() }
}
#[inline]
pub fn read(&self) {
let lock = &*self.inner;
let r = unsafe { libc::pthread_rwlock_rdlock(lock.inner.get()) };
// According to POSIX, when a thread tries to acquire this read lock
// while it already holds the write lock
// (or vice versa, or tries to acquire the write lock twice),
// "the call shall either deadlock or return [EDEADLK]"
// (https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_rwlock_wrlock.html,
// https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_rwlock_rdlock.html).
// So, in principle, all we have to do here is check `r == 0` to be sure we properly
// got the lock.
//
// However, (at least) glibc before version 2.25 does not conform to this spec,
// and can return `r == 0` even when this thread already holds the write lock.
// We thus check for this situation ourselves and panic when detecting that a thread
// got the write lock more than once, or got a read and a write lock.
if r == libc::EAGAIN {
panic!("rwlock maximum reader count exceeded");
} else if r == libc::EDEADLK || (r == 0 && unsafe { *lock.write_locked.get() }) {
// Above, we make sure to only access `write_locked` when `r == 0` to avoid
// data races.
if r == 0 {
// `pthread_rwlock_rdlock` succeeded when it should not have.
unsafe {
lock.raw_unlock();
}
}
panic!("rwlock read lock would result in deadlock");
} else {
// POSIX does not make guarantees about all the errors that may be returned.
// See issue #94705 for more details.
assert_eq!(r, 0, "unexpected error during rwlock read lock: {:?}", r);
lock.num_readers.fetch_add(1, Ordering::Relaxed);
}
}
#[inline]
pub fn try_read(&self) -> bool {
let lock = &*self.inner;
let r = unsafe { libc::pthread_rwlock_tryrdlock(lock.inner.get()) };
if r == 0 {
if unsafe { *lock.write_locked.get() } {
// `pthread_rwlock_tryrdlock` succeeded when it should not have.
unsafe {
lock.raw_unlock();
}
false
} else {
lock.num_readers.fetch_add(1, Ordering::Relaxed);
true
}
} else {
false
}
}
#[inline]
pub fn write(&self) {
let lock = &*self.inner;
let r = unsafe { libc::pthread_rwlock_wrlock(lock.inner.get()) };
// See comments above for why we check for EDEADLK and write_locked. For the same reason,
// we also need to check that there are no readers (tracked in `num_readers`).
if r == libc::EDEADLK
|| (r == 0 && unsafe { *lock.write_locked.get() })
|| lock.num_readers.load(Ordering::Relaxed) != 0
{
// Above, we make sure to only access `write_locked` when `r == 0` to avoid
// data races.
if r == 0 {
// `pthread_rwlock_wrlock` succeeded when it should not have.
unsafe {
lock.raw_unlock();
}
}
panic!("rwlock write lock would result in deadlock");
} else {
// According to POSIX, for a properly initialized rwlock this can only
// return EDEADLK or 0. We rely on that.
debug_assert_eq!(r, 0);
}
unsafe {
*lock.write_locked.get() = true;
}
}
#[inline]
pub unsafe fn try_write(&self) -> bool {
let lock = &*self.inner;
let r = libc::pthread_rwlock_trywrlock(lock.inner.get());
if r == 0 {
if *lock.write_locked.get() || lock.num_readers.load(Ordering::Relaxed) != 0 {
// `pthread_rwlock_trywrlock` succeeded when it should not have.
lock.raw_unlock();
false
} else {
*lock.write_locked.get() = true;
true
}
} else {
false
}
}
#[inline]
pub unsafe fn read_unlock(&self) {
let lock = &*self.inner;
debug_assert!(!*lock.write_locked.get());
lock.num_readers.fetch_sub(1, Ordering::Relaxed);
lock.raw_unlock();
}
#[inline]
pub unsafe fn write_unlock(&self) {
let lock = &*self.inner;
debug_assert_eq!(lock.num_readers.load(Ordering::Relaxed), 0);
debug_assert!(*lock.write_locked.get());
*lock.write_locked.get() = false;
lock.raw_unlock();
}
}