struct HasEscapingVarsVisitor {
    outer_index: DebruijnIndex,
}
Expand description

An “escaping var” is a bound var whose binder is not part of t. A bound var can be a bound region or a bound type.

So, for example, consider a type like the following, which has two binders:

for<’a> fn(x: for<’b> fn(&’a isize, &’b isize)) ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ outer scope ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ inner scope

This type has bound regions ('a, 'b), but it does not have escaping regions, because the binders of both 'a and 'b are part of the type itself. However, if we consider the inner fn type, that type has an escaping region: 'a.

Note that what I’m calling an “escaping var” is often just called a “free var”. However, we already use the term “free var”. It refers to the regions or types that we use to represent bound regions or type params on a fn definition while we are type checking its body.

To clarify, conceptually there is no particular difference between an “escaping” var and a “free” var. However, there is a big difference in practice. Basically, when “entering” a binding level, one is generally required to do some sort of processing to a bound var, such as replacing it with a fresh/placeholder var, or making an entry in the environment to represent the scope to which it is attached, etc. An escaping var represents a bound var for which this processing has not yet been done.

Fields§

§outer_index: DebruijnIndex

Anything bound by outer_index or “above” is escaping.

Trait Implementations§

source§

impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for HasEscapingVarsVisitor

§

type BreakTy = FoundEscapingVars

source§

fn visit_binder<T: TypeVisitable<TyCtxt<'tcx>>>( &mut self, t: &Binder<'tcx, T> ) -> ControlFlow<Self::BreakTy>

source§

fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy>

source§

fn visit_region(&mut self, r: Region<'tcx>) -> ControlFlow<Self::BreakTy>

source§

fn visit_const(&mut self, ct: Const<'tcx>) -> ControlFlow<Self::BreakTy>

source§

fn visit_predicate( &mut self, predicate: Predicate<'tcx> ) -> ControlFlow<Self::BreakTy>

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Aligned for T

source§

const ALIGN: Alignment = _

Alignment of Self.
source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T, R> CollectAndApply<T, R> for T

source§

fn collect_and_apply<I, F>(iter: I, f: F) -> Rwhere I: Iterator<Item = T>, F: FnOnce(&[T]) -> R,

Equivalent to f(&iter.collect::<Vec<_>>()).

§

type Output = R

source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<P> IntoQueryParam<P> for P

source§

impl<T> MaybeResult<T> for T

§

type Error = !

source§

fn from(_: Result<T, <T as MaybeResult<T>>::Error>) -> T

source§

fn to_result(self) -> Result<T, <T as MaybeResult<T>>::Error>

source§

impl<'tcx, T> ToPredicate<'tcx, T> for T

source§

fn to_predicate(self, _tcx: TyCtxt<'tcx>) -> T

source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<Tcx, T> Value<Tcx> for Twhere Tcx: DepContext,

source§

default fn from_cycle_error( tcx: Tcx, cycle: &[QueryInfo], _guar: ErrorGuaranteed ) -> T

Layout§

Note: Most layout information is completely unstable and may even differ between compilations. The only exception is types with certain repr(...) attributes. Please see the Rust Reference's “Type Layout” chapter for details on type layout guarantees.

Size: 4 bytes