pub struct Scope {
    pub id: ItemLocalId,
    pub data: ScopeData,
}
Expand description

Represents a statically-describable scope that can be used to bound the lifetime/region for values.

Node(node_id): Any AST node that has any scope at all has the Node(node_id) scope. Other variants represent special cases not immediately derivable from the abstract syntax tree structure.

DestructionScope(node_id) represents the scope of destructors implicitly-attached to node_id that run immediately after the expression for node_id itself. Not every AST node carries a DestructionScope, but those that are terminating_scopes do; see discussion with ScopeTree.

Remainder { block, statement_index } represents the scope of user code running immediately after the initializer expression for the indexed statement, until the end of the block.

So: the following code can be broken down into the scopes beneath:

let a = f().g( 'b: { let x = d(); let y = d(); x.h(y)  }   ) ;

                                                             +-+ (D12.)
                                                       +-+       (D11.)
                                             +---------+         (R10.)
                                             +-+                  (D9.)
                                  +----------+                    (M8.)
                                +----------------------+          (R7.)
                                +-+                               (D6.)
                     +----------+                                 (M5.)
                   +-----------------------------------+          (M4.)
        +--------------------------------------------------+      (M3.)
        +--+                                                      (M2.)
+-----------------------------------------------------------+     (M1.)

 (M1.): Node scope of the whole `let a = ...;` statement.
 (M2.): Node scope of the `f()` expression.
 (M3.): Node scope of the `f().g(..)` expression.
 (M4.): Node scope of the block labeled `'b:`.
 (M5.): Node scope of the `let x = d();` statement
 (D6.): DestructionScope for temporaries created during M5.
 (R7.): Remainder scope for block `'b:`, stmt 0 (let x = ...).
 (M8.): Node scope of the `let y = d();` statement.
 (D9.): DestructionScope for temporaries created during M8.
(R10.): Remainder scope for block `'b:`, stmt 1 (let y = ...).
(D11.): DestructionScope for temporaries and bindings from block `'b:`.
(D12.): DestructionScope for temporaries created during M1 (e.g., f()).

Note that while the above picture shows the destruction scopes as following their corresponding node scopes, in the internal data structures of the compiler the destruction scopes are represented as enclosing parents. This is sound because we use the enclosing parent relationship just to ensure that referenced values live long enough; phrased another way, the starting point of each range is not really the important thing in the above picture, but rather the ending point.

Fields§

§id: ItemLocalId§data: ScopeData

Implementations§

source§

impl Scope

source

pub fn item_local_id(&self) -> ItemLocalId

Returns an item-local ID associated with this scope.

N.B., likely to be replaced as API is refined; e.g., pnkfelix anticipates fn entry_node_id and fn each_exit_node_id.

source

pub fn hir_id(&self, scope_tree: &ScopeTree) -> Option<HirId>

source

pub fn span(&self, tcx: TyCtxt<'_>, scope_tree: &ScopeTree) -> Span

Returns the span of this Scope. Note that in general the returned span may not correspond to the span of any NodeId in the AST.

Trait Implementations§

source§

impl Clone for Scope

source§

fn clone(&self) -> Scope

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for Scope

source§

fn fmt(&self, fmt: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<'tcx, __D: TyDecoder<I = TyCtxt<'tcx>>> Decodable<__D> for Scope

source§

fn decode(__decoder: &mut __D) -> Self

source§

impl<'tcx, __E: TyEncoder<I = TyCtxt<'tcx>>> Encodable<__E> for Scope

source§

fn encode(&self, __encoder: &mut __E)

source§

impl Hash for Scope

source§

fn hash<__H: Hasher>(&self, state: &mut __H)

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl<'__ctx> HashStable<StableHashingContext<'__ctx>> for Scope

source§

fn hash_stable( &self, __hcx: &mut StableHashingContext<'__ctx>, __hasher: &mut StableHasher )

source§

impl Ord for Scope

source§

fn cmp(&self, other: &Scope) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · source§

fn max(self, other: Self) -> Selfwhere Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · source§

fn min(self, other: Self) -> Selfwhere Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · source§

fn clamp(self, min: Self, max: Self) -> Selfwhere Self: Sized + PartialOrd<Self>,

Restrict a value to a certain interval. Read more
source§

impl PartialEq<Scope> for Scope

source§

fn eq(&self, other: &Scope) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl PartialOrd<Scope> for Scope

source§

fn partial_cmp(&self, other: &Scope) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · source§

fn lt(&self, other: &Rhs) -> bool

This method tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · source§

fn le(&self, other: &Rhs) -> bool

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · source§

fn gt(&self, other: &Rhs) -> bool

This method tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · source§

fn ge(&self, other: &Rhs) -> bool

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
source§

impl<'a> ToStableHashKey<StableHashingContext<'a>> for Scope

source§

impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for Scope

source§

fn try_fold_with<F: FallibleTypeFolder<TyCtxt<'tcx>>>( self, _: &mut F ) -> Result<Self, F::Error>

The entry point for folding. To fold a value t with a folder f call: t.try_fold_with(f). Read more
source§

fn fold_with<F: TypeFolder<TyCtxt<'tcx>>>(self, _: &mut F) -> Self

A convenient alternative to try_fold_with for use with infallible folders. Do not override this method, to ensure coherence with try_fold_with.
source§

impl<'tcx> TypeVisitable<TyCtxt<'tcx>> for Scope

source§

fn visit_with<F: TypeVisitor<TyCtxt<'tcx>>>( &self, _: &mut F ) -> ControlFlow<F::BreakTy>

The entry point for visiting. To visit a value t with a visitor v call: t.visit_with(v). Read more
source§

impl Copy for Scope

source§

impl Eq for Scope

source§

impl StructuralEq for Scope

source§

impl StructuralPartialEq for Scope

Auto Trait Implementations§

§

impl RefUnwindSafe for Scope

§

impl Send for Scope

§

impl Sync for Scope

§

impl Unpin for Scope

§

impl UnwindSafe for Scope

Blanket Implementations§

source§

impl<T> Aligned for T

source§

const ALIGN: Alignment = _

Alignment of Self.
source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<'tcx, T> ArenaAllocatable<'tcx, IsCopy> for Twhere T: Copy,

source§

fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut T

source§

fn allocate_from_iter<'a>( arena: &'a Arena<'tcx>, iter: impl IntoIterator<Item = T> ) -> &'a mut [T]

source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T, R> CollectAndApply<T, R> for T

source§

fn collect_and_apply<I, F>(iter: I, f: F) -> Rwhere I: Iterator<Item = T>, F: FnOnce(&[T]) -> R,

Equivalent to f(&iter.collect::<Vec<_>>()).

§

type Output = R

source§

impl<Tcx, T> DepNodeParams<Tcx> for Twhere Tcx: DepContext, T: for<'a> HashStable<StableHashingContext<'a>> + Debug,

source§

default fn fingerprint_style() -> FingerprintStyle

source§

default fn to_fingerprint(&self, tcx: Tcx) -> Fingerprint

This method turns the parameters of a DepNodeConstructor into an opaque Fingerprint to be used in DepNode. Not all DepNodeParams support being turned into a Fingerprint (they don’t need to if the corresponding DepNode is anonymous).
source§

default fn to_debug_str(&self, _: Tcx) -> String

source§

default fn recover(_: Tcx, _: &DepNode) -> Option<T>

This method tries to recover the query key from the given DepNode, something which is needed when forcing DepNodes during red-green evaluation. The query system will only call this method if fingerprint_style() is not FingerprintStyle::Opaque. It is always valid to return None here, in which case incremental compilation will treat the query as having changed instead of forcing it.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<P> IntoQueryParam<P> for P

source§

impl<'tcx, T> IsSuggestable<'tcx> for Twhere T: TypeVisitable<TyCtxt<'tcx>> + TypeFoldable<TyCtxt<'tcx>>,

source§

fn is_suggestable(self, tcx: TyCtxt<'tcx>, infer_suggestable: bool) -> bool

Whether this makes sense to suggest in a diagnostic. Read more
source§

fn make_suggestable( self, tcx: TyCtxt<'tcx>, infer_suggestable: bool ) -> Option<T>

source§

impl<T> MaybeResult<T> for T

§

type Error = !

source§

fn from(_: Result<T, <T as MaybeResult<T>>::Error>) -> T

source§

fn to_result(self) -> Result<T, <T as MaybeResult<T>>::Error>

source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<'tcx, T> ToPredicate<'tcx, T> for T

source§

fn to_predicate(self, _tcx: TyCtxt<'tcx>) -> T

source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<'tcx, T> TypeVisitableExt<'tcx> for Twhere T: TypeVisitable<TyCtxt<'tcx>>,

source§

fn has_vars_bound_at_or_above(&self, binder: DebruijnIndex) -> bool

Returns true if self has any late-bound regions that are either bound by binder or bound by some binder outside of binder. If binder is ty::INNERMOST, this indicates whether there are any late-bound regions that appear free.
source§

fn has_vars_bound_above(&self, binder: DebruijnIndex) -> bool

Returns true if this type has any regions that escape binder (and hence are not bound by it).
source§

fn has_escaping_bound_vars(&self) -> bool

Return true if this type has regions that are not a part of the type. For example, for<'a> fn(&'a i32) return false, while fn(&'a i32) would return true. The latter can occur when traversing through the former. Read more
source§

fn has_type_flags(&self, flags: TypeFlags) -> bool

source§

fn has_projections(&self) -> bool

source§

fn has_inherent_projections(&self) -> bool

source§

fn has_opaque_types(&self) -> bool

source§

fn has_generators(&self) -> bool

source§

fn references_error(&self) -> bool

source§

fn error_reported(&self) -> Result<(), ErrorGuaranteed>

source§

fn has_non_region_param(&self) -> bool

source§

fn has_infer_regions(&self) -> bool

source§

fn has_infer_types(&self) -> bool

source§

fn has_non_region_infer(&self) -> bool

source§

fn has_infer(&self) -> bool

source§

fn has_placeholders(&self) -> bool

source§

fn has_non_region_placeholders(&self) -> bool

source§

fn has_param(&self) -> bool

source§

fn has_free_regions(&self) -> bool

“Free” regions in this context means that it has any region that is not (a) erased or (b) late-bound.
source§

fn has_erased_regions(&self) -> bool

source§

fn has_erasable_regions(&self) -> bool

True if there are any un-erased free regions.
source§

fn is_global(&self) -> bool

Indicates whether this value references only ‘global’ generic parameters that are the same regardless of what fn we are in. This is used for caching.
source§

fn has_late_bound_regions(&self) -> bool

True if there are any late-bound regions
source§

fn has_non_region_late_bound(&self) -> bool

True if there are any late-bound non-region variables
source§

fn has_late_bound_vars(&self) -> bool

True if there are any late-bound variables
source§

fn still_further_specializable(&self) -> bool

Indicates whether this value still has parameters/placeholders/inference variables which could be replaced later, in a way that would change the results of impl specialization.
source§

impl<Tcx, T> Value<Tcx> for Twhere Tcx: DepContext,

source§

default fn from_cycle_error( tcx: Tcx, cycle: &[QueryInfo], _guar: ErrorGuaranteed ) -> T

Layout§

Note: Most layout information is completely unstable and may even differ between compilations. The only exception is types with certain repr(...) attributes. Please see the Rust Reference's “Type Layout” chapter for details on type layout guarantees.

Size: 8 bytes