pub struct TyCtxtEnsureWithValue<'tcx> {
    pub tcx: TyCtxt<'tcx>,
}

Fields§

§tcx: TyCtxt<'tcx>

Implementations§

source§

impl<'tcx> TyCtxtEnsureWithValue<'tcx>

source

pub fn trigger_delay_span_bug(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] triggering a delay span bug

source

pub fn registered_tools(self, key: ())

[query description - consider adding a doc-comment!] compute registered tools for crate

source

pub fn early_lint_checks(self, key: ())

[query description - consider adding a doc-comment!] perform lints prior to macro expansion

source

pub fn resolutions(self, key: ())

[query description - consider adding a doc-comment!] getting the resolver outputs

source

pub fn resolver_for_lowering(self, key: ())

[query description - consider adding a doc-comment!] getting the resolver for lowering

source

pub fn source_span(self, key: impl IntoQueryParam<LocalDefId>)

Return the span for a definition. Contrary to def_span below, this query returns the full absolute span of the definition. This span is meant for dep-tracking rather than diagnostics. It should not be used outside of rustc_middle::hir::source_map.

source

pub fn hir_crate(self, key: ())

Represents crate as a whole (as distinct from the top-level crate module). If you call hir_crate (e.g., indirectly by calling tcx.hir().krate()), we will have to assume that any change means that you need to be recompiled. This is because the hir_crate query gives you access to all other items. To avoid this fate, do not call tcx.hir().krate(); instead, prefer wrappers like tcx.visit_all_items_in_krate().

source

pub fn hir_crate_items(self, key: ())

All items in the crate.

source

pub fn hir_module_items(self, key: LocalModDefId)

The items in a module.

This can be conveniently accessed by tcx.hir().visit_item_likes_in_module. Avoid calling this query directly.

source

pub fn hir_owner(self, key: OwnerId)

Gives access to the HIR node for the HIR owner key.

This can be conveniently accessed by methods on tcx.hir(). Avoid calling this query directly.

source

pub fn opt_local_def_id_to_hir_id(self, key: impl IntoQueryParam<LocalDefId>)

Gives access to the HIR ID for the given LocalDefId owner key if any.

Definitions that were generated with no HIR, would be fed to return None.

source

pub fn hir_owner_parent(self, key: OwnerId)

Gives access to the HIR node’s parent for the HIR owner key.

This can be conveniently accessed by methods on tcx.hir(). Avoid calling this query directly.

source

pub fn hir_owner_nodes(self, key: OwnerId)

Gives access to the HIR nodes and bodies inside the HIR owner key.

This can be conveniently accessed by methods on tcx.hir(). Avoid calling this query directly.

source

pub fn hir_attrs(self, key: OwnerId)

Gives access to the HIR attributes inside the HIR owner key.

This can be conveniently accessed by methods on tcx.hir(). Avoid calling this query directly.

source

pub fn const_param_default(self, key: impl IntoQueryParam<DefId>)

Given the def_id of a const-generic parameter, computes the associated default const parameter. e.g. fn example<const N: usize=3> called on N would return 3.

source

pub fn type_of(self, key: impl IntoQueryParam<DefId>)

Returns the Ty of the given DefId. If the DefId points to an alias, it will “skip” this alias to return the aliased type.

source

pub fn type_of_opaque(self, key: impl IntoQueryParam<DefId>)

Specialized instance of type_of that detects cycles that are due to revealing opaque because of an auto trait bound. Unless CyclePlaceholder needs to be handled separately, call type_of instead.

source

pub fn type_alias_is_lazy(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] computing whether {path} is a lazy type alias

source

pub fn collect_return_position_impl_trait_in_trait_tys( self, key: impl IntoQueryParam<DefId> )

[query description - consider adding a doc-comment!] comparing an impl and trait method signature, inferring any hidden impl Trait types in the process

source

pub fn is_type_alias_impl_trait(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] determine whether the opaque is a type-alias impl trait

source

pub fn unsizing_params_for_adt(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] determining what parameters of tcx.def_path_str(key) can participate in unsizing

source

pub fn analysis(self, key: ())

[query description - consider adding a doc-comment!] running analysis passes on this crate

source

pub fn check_expectations(self, key: Option<Symbol>)

This query checks the fulfillment of collected lint expectations. All lint emitting queries have to be done before this is executed to ensure that all expectations can be fulfilled.

This is an extra query to enable other drivers (like rustdoc) to only execute a small subset of the analysis query, while allowing lints to be expected. In rustc, this query will be executed as part of the analysis query and doesn’t have to be called a second time.

Tools can additionally pass in a tool filter. That will restrict the expectations to only trigger for lints starting with the listed tool name. This is useful for cases were not all linting code from rustc was called. With the default None all registered lints will also be checked for expectation fulfillment.

source

pub fn generics_of(self, key: impl IntoQueryParam<DefId>)

Maps from the DefId of an item (trait/struct/enum/fn) to its associated generics.

source

pub fn predicates_of(self, key: impl IntoQueryParam<DefId>)

Maps from the DefId of an item (trait/struct/enum/fn) to the predicates (where-clauses) that must be proven true in order to reference it. This is almost always the “predicates query” that you want.

predicates_of builds on predicates_defined_on – in fact, it is almost always the same as that query, except for the case of traits. For traits, predicates_of contains an additional Self: Trait<...> predicate that users don’t actually write. This reflects the fact that to invoke the trait (e.g., via Default::default) you must supply types that actually implement the trait. (However, this extra predicate gets in the way of some checks, which are intended to operate over only the actual where-clauses written by the user.)

source

pub fn opaque_types_defined_by(self, key: impl IntoQueryParam<LocalDefId>)

[query description - consider adding a doc-comment!] computing the opaque types defined by tcx.def_path_str(key.to_def_id())

source

pub fn explicit_item_bounds(self, key: impl IntoQueryParam<DefId>)

Returns the list of bounds that can be used for SelectionCandidate::ProjectionCandidate(_) and ProjectionTyCandidate::TraitDef. Specifically this is the bounds written on the trait’s type definition, or those after the impl keyword

type X: Bound + 'lt
//      ^^^^^^^^^^^
impl Debug + Display
//   ^^^^^^^^^^^^^^^

key is the DefId of the associated type or opaque type.

Bounds from the parent (e.g. with nested impl trait) are not included.

source

pub fn item_bounds(self, key: impl IntoQueryParam<DefId>)

Elaborated version of the predicates from explicit_item_bounds.

For example:

trait MyTrait {
    type MyAType: Eq + ?Sized;
}

explicit_item_bounds returns [<Self as MyTrait>::MyAType: Eq], and item_bounds returns

[
    <Self as Trait>::MyAType: Eq,
    <Self as Trait>::MyAType: PartialEq<<Self as Trait>::MyAType>
]

Bounds from the parent (e.g. with nested impl trait) are not included.

source

pub fn native_libraries(self, key: CrateNum)

Look up all native libraries this crate depends on. These are assembled from the following places:

  • extern blocks (depending on their link attributes)
  • the libs (-l) option
source

pub fn shallow_lint_levels_on(self, key: OwnerId)

[query description - consider adding a doc-comment!] looking up lint levels for tcx.def_path_str(key)

source

pub fn lint_expectations(self, key: ())

[query description - consider adding a doc-comment!] computing #[expect]ed lints in this crate

source

pub fn expn_that_defined(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] getting the expansion that defined tcx.def_path_str(key)

source

pub fn is_panic_runtime(self, key: CrateNum)

[query description - consider adding a doc-comment!] checking if the crate is_panic_runtime

source

pub fn representability(self, key: impl IntoQueryParam<LocalDefId>)

Checks whether a type is representable or infinitely sized

source

pub fn representability_adt_ty(self, key: Ty<'tcx>)

An implementation detail for the representability query

source

pub fn params_in_repr(self, key: impl IntoQueryParam<DefId>)

Set of param indexes for type params that are in the type’s representation

source

pub fn thir_body(self, key: impl IntoQueryParam<LocalDefId>)

Fetch the THIR for a given body. If typeck for that body failed, returns an empty Thir.

source

pub fn thir_tree(self, key: impl IntoQueryParam<LocalDefId>)

Create a THIR tree for debugging.

source

pub fn thir_flat(self, key: impl IntoQueryParam<LocalDefId>)

Create a list-like THIR representation for debugging.

source

pub fn mir_keys(self, key: ())

Set of all the DefIds in this crate that have MIR associated with them. This includes all the body owners, but also things like struct constructors.

source

pub fn mir_const_qualif(self, key: impl IntoQueryParam<DefId>)

Maps DefId’s that have an associated mir::Body to the result of the MIR const-checking pass. This is the set of qualifs in the final value of a const.

source

pub fn mir_built(self, key: impl IntoQueryParam<LocalDefId>)

Fetch the MIR for a given DefId right after it’s built - this includes unreachable code.

source

pub fn mir_const(self, key: impl IntoQueryParam<LocalDefId>)

Fetch the MIR for a given DefId up till the point where it is ready for const qualification.

See the README for the mir module for details.

source

pub fn thir_abstract_const(self, key: impl IntoQueryParam<DefId>)

Try to build an abstract representation of the given constant.

source

pub fn mir_drops_elaborated_and_const_checked( self, key: impl IntoQueryParam<LocalDefId> )

[query description - consider adding a doc-comment!] elaborating drops for tcx.def_path_str(key)

source

pub fn mir_for_ctfe(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] caching mir of tcx.def_path_str(key) for CTFE

source

pub fn mir_promoted(self, key: impl IntoQueryParam<LocalDefId>)

[query description - consider adding a doc-comment!] promoting constants in MIR for tcx.def_path_str(key)

source

pub fn closure_typeinfo(self, key: impl IntoQueryParam<LocalDefId>)

[query description - consider adding a doc-comment!] finding symbols for captures of closure tcx.def_path_str(key)

source

pub fn closure_saved_names_of_captured_variables( self, key: impl IntoQueryParam<DefId> )

Returns names of captured upvars for closures and generators.

Here are some examples:

  • name__field1__field2 when the upvar is captured by value.
  • _ref__name__field when the upvar is captured by reference.

For generators this only contains upvars that are shared by all states.

source

pub fn mir_generator_witnesses(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] generator witness types for tcx.def_path_str(key)

source

pub fn check_generator_obligations(self, key: impl IntoQueryParam<LocalDefId>)

[query description - consider adding a doc-comment!] verify auto trait bounds for generator interior type tcx.def_path_str(key)

source

pub fn optimized_mir(self, key: impl IntoQueryParam<DefId>)

MIR after our optimization passes have run. This is MIR that is ready for codegen. This is also the only query that can fetch non-local MIR, at present.

source

pub fn coverageinfo(self, key: InstanceDef<'tcx>)

Returns coverage summary info for a function, after executing the InstrumentCoverage MIR pass (assuming the -Cinstrument-coverage option is enabled).

source

pub fn covered_code_regions(self, key: impl IntoQueryParam<DefId>)

Returns the CodeRegions for a function that has instrumented coverage, in case the function was optimized out before codegen, and before being added to the Coverage Map.

source

pub fn promoted_mir(self, key: impl IntoQueryParam<DefId>)

The DefId is the DefId of the containing MIR body. Promoteds do not have their own DefId. This function returns all promoteds in the specified body. The body references promoteds by the DefId and the mir::Promoted index. This is necessary, because after inlining a body may refer to promoteds from other bodies. In that case you still need to use the DefId of the original body.

source

pub fn erase_regions_ty(self, key: Ty<'tcx>)

Erases regions from ty to yield a new type. Normally you would just use tcx.erase_regions(value), however, which uses this query as a kind of cache.

source

pub fn wasm_import_module_map(self, key: CrateNum)

[query description - consider adding a doc-comment!] getting wasm import module map

source

pub fn predicates_defined_on(self, key: impl IntoQueryParam<DefId>)

Maps from the DefId of an item (trait/struct/enum/fn) to the predicates (where-clauses) directly defined on it. This is equal to the explicit_predicates_of predicates plus the inferred_outlives_of predicates.

source

pub fn trait_explicit_predicates_and_bounds( self, key: impl IntoQueryParam<LocalDefId> )

Returns everything that looks like a predicate written explicitly by the user on a trait item.

Traits are unusual, because predicates on associated types are converted into bounds on that type for backwards compatibility:

trait X where Self::U: Copy { type U; }

becomes

trait X { type U: Copy; }

explicit_predicates_of and explicit_item_bounds will then take the appropriate subsets of the predicates here.

source

pub fn explicit_predicates_of(self, key: impl IntoQueryParam<DefId>)

Returns the predicates written explicitly by the user.

source

pub fn inferred_outlives_of(self, key: impl IntoQueryParam<DefId>)

Returns the inferred outlives predicates (e.g., for struct Foo<'a, T> { x: &'a T }, this would return T: 'a).

source

pub fn super_predicates_of(self, key: impl IntoQueryParam<DefId>)

Maps from the DefId of a trait to the list of super-predicates. This is a subset of the full list of predicates. We store these in a separate map because we must evaluate them even during type conversion, often before the full predicates are available (note that supertraits have additional acyclicity requirements).

source

pub fn implied_predicates_of(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] computing the implied predicates of tcx.def_path_str(key)

source

pub fn super_predicates_that_define_assoc_item(self, key: (DefId, Ident))

The Option<Ident> is the name of an associated type. If it is None, then this query returns the full set of predicates. If Some<Ident>, then the query returns only the subset of super-predicates that reference traits that define the given associated type. This is used to avoid cycles in resolving types like T::Item.

source

pub fn type_param_predicates(self, key: (LocalDefId, LocalDefId, Ident))

To avoid cycles within the predicates of a single item we compute per-type-parameter predicates for resolving T::AssocTy.

source

pub fn trait_def(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] computing trait definition for tcx.def_path_str(key)

source

pub fn adt_def(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] computing ADT definition for tcx.def_path_str(key)

source

pub fn adt_destructor(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] computing Drop impl for tcx.def_path_str(key)

source

pub fn adt_sized_constraint(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] computing Sized constraints for tcx.def_path_str(key)

source

pub fn adt_dtorck_constraint(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] computing drop-check constraints for tcx.def_path_str(key)

source

pub fn constness(self, key: impl IntoQueryParam<DefId>)

Returns true if this is a const fn, use the is_const_fn to know whether your crate actually sees it as const fn (e.g., the const-fn-ness might be unstable and you might not have the feature gate active).

Do not call this function manually. It is only meant to cache the base data for the is_const_fn function. Consider using is_const_fn or is_const_fn_raw instead.

source

pub fn asyncness(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] checking if the function is async: tcx.def_path_str(key)

source

pub fn is_promotable_const_fn(self, key: impl IntoQueryParam<DefId>)

Returns true if calls to the function may be promoted.

This is either because the function is e.g., a tuple-struct or tuple-variant constructor, or because it has the #[rustc_promotable] attribute. The attribute should be removed in the future in favour of some form of check which figures out whether the function does not inspect the bits of any of its arguments (so is essentially just a constructor function).

source

pub fn generator_kind(self, key: impl IntoQueryParam<DefId>)

Returns Some(generator_kind) if the node pointed to by def_id is a generator.

source

pub fn crate_variances(self, key: ())

Gets a map with the variance of every item; use variances_of instead.

source

pub fn variances_of(self, key: impl IntoQueryParam<DefId>)

Maps from the DefId of a type or region parameter to its (inferred) variance.

source

pub fn inferred_outlives_crate(self, key: ())

Maps from thee DefId of a type to its (inferred) outlives.

source

pub fn associated_item_def_ids(self, key: impl IntoQueryParam<DefId>)

Maps from an impl/trait or struct/variant DefId to a list of the DefIds of its associated items or fields.

source

pub fn associated_item(self, key: impl IntoQueryParam<DefId>)

Maps from a trait item to the trait item “descriptor”.

source

pub fn associated_items(self, key: impl IntoQueryParam<DefId>)

Collects the associated items defined on a trait or impl.

source

pub fn impl_item_implementor_ids(self, key: impl IntoQueryParam<DefId>)

Maps from associated items on a trait to the corresponding associated item on the impl specified by impl_id.

For example, with the following code

struct Type {}
                        // DefId
trait Trait {           // trait_id
    fn f();             // trait_f
    fn g() {}           // trait_g
}

impl Trait for Type {   // impl_id
    fn f() {}           // impl_f
    fn g() {}           // impl_g
}

The map returned for tcx.impl_item_implementor_ids(impl_id) would be { trait_f: impl_f, trait_g: impl_g }

source

pub fn associated_types_for_impl_traits_in_associated_fn( self, key: impl IntoQueryParam<DefId> )

Given fn_def_id of a trait or of an impl that implements a given trait: if fn_def_id is the def id of a function defined inside a trait, then it creates and returns the associated items that correspond to each impl trait in return position for that trait. if fn_def_id is the def id of a function defined inside an impl that implements a trait, then it creates and returns the associated items that correspond to each impl trait in return position of the implemented trait.

source

pub fn associated_type_for_impl_trait_in_trait( self, key: impl IntoQueryParam<LocalDefId> )

Given an impl trait in trait opaque_ty_def_id, create and return the corresponding associated item.

source

pub fn impl_trait_ref(self, key: impl IntoQueryParam<DefId>)

Given an impl_id, return the trait it implements. Return None if this is an inherent impl.

source

pub fn impl_polarity(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] computing implementation polarity of tcx.def_path_str(impl_id)

source

pub fn issue33140_self_ty(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] computing Self type wrt issue #33140 tcx.def_path_str(key)

source

pub fn inherent_impls(self, key: impl IntoQueryParam<DefId>)

Maps a DefId of a type to a list of its inherent impls. Contains implementations of methods that are inherent to a type. Methods in these implementations don’t need to be exported.

source

pub fn incoherent_impls(self, key: SimplifiedType)

[query description - consider adding a doc-comment!] collecting all inherent impls for {:?}

source

pub fn unsafety_check_result(self, key: impl IntoQueryParam<LocalDefId>)

The result of unsafety-checking this LocalDefId.

source

pub fn thir_check_unsafety(self, key: impl IntoQueryParam<LocalDefId>)

Unsafety-check this LocalDefId with THIR unsafeck. This should be used with -Zthir-unsafeck.

source

pub fn assumed_wf_types(self, key: impl IntoQueryParam<LocalDefId>)

Returns the types assumed to be well formed while “inside” of the given item.

Note that we’ve liberated the late bound regions of function signatures, so this can not be used to check whether these types are well formed.

source

pub fn assumed_wf_types_for_rpitit(self, key: impl IntoQueryParam<DefId>)

We need to store the assumed_wf_types for an RPITIT so that impls of foreign traits with return-position impl trait in traits can inherit the right wf types.

source

pub fn fn_sig(self, key: impl IntoQueryParam<DefId>)

Computes the signature of the function.

source

pub fn lint_mod(self, key: LocalModDefId)

Performs lint checking for the module.

source

pub fn check_unused_traits(self, key: ())

[query description - consider adding a doc-comment!] checking unused trait imports in crate

source

pub fn check_mod_attrs(self, key: LocalModDefId)

Checks the attributes in the module.

source

pub fn check_mod_unstable_api_usage(self, key: LocalModDefId)

Checks for uses of unstable APIs in the module.

source

pub fn check_mod_const_bodies(self, key: LocalModDefId)

Checks the const bodies in the module for illegal operations (e.g. if or loop).

source

pub fn check_mod_loops(self, key: LocalModDefId)

Checks the loops in the module.

source

pub fn check_mod_naked_functions(self, key: LocalModDefId)

[query description - consider adding a doc-comment!] checking naked functions in describe_as_module(key, tcx)

source

pub fn check_mod_item_types(self, key: LocalModDefId)

[query description - consider adding a doc-comment!] checking item types in describe_as_module(key, tcx)

source

pub fn check_mod_privacy(self, key: LocalModDefId)

[query description - consider adding a doc-comment!] checking privacy in describe_as_module(key.to_local_def_id(), tcx)

source

pub fn check_liveness(self, key: impl IntoQueryParam<LocalDefId>)

[query description - consider adding a doc-comment!] checking liveness of variables in tcx.def_path_str(key)

source

pub fn live_symbols_and_ignored_derived_traits(self, key: ())

Return the live symbols in the crate for dead code check.

The second return value maps from ADTs to ignored derived traits (e.g. Debug and Clone) and their respective impl (i.e., part of the derive macro)

source

pub fn check_mod_deathness(self, key: LocalModDefId)

[query description - consider adding a doc-comment!] checking deathness of variables in describe_as_module(key, tcx)

source

pub fn check_mod_impl_wf(self, key: LocalModDefId)

[query description - consider adding a doc-comment!] checking that impls are well-formed in describe_as_module(key, tcx)

source

pub fn check_mod_type_wf(self, key: LocalModDefId)

[query description - consider adding a doc-comment!] checking that types are well-formed in describe_as_module(key, tcx)

source

pub fn collect_mod_item_types(self, key: LocalModDefId)

[query description - consider adding a doc-comment!] collecting item types in describe_as_module(key, tcx)

source

pub fn coerce_unsized_info(self, key: impl IntoQueryParam<DefId>)

Caches CoerceUnsized kinds for impls on custom types.

source

pub fn typeck(self, key: impl IntoQueryParam<LocalDefId>)

[query description - consider adding a doc-comment!] type-checking tcx.def_path_str(key)

source

pub fn diagnostic_only_typeck(self, key: impl IntoQueryParam<LocalDefId>)

[query description - consider adding a doc-comment!] type-checking tcx.def_path_str(key)

source

pub fn used_trait_imports(self, key: impl IntoQueryParam<LocalDefId>)

[query description - consider adding a doc-comment!] finding used_trait_imports tcx.def_path_str(key)

source

pub fn has_typeck_results(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] checking whether tcx.def_path_str(def_id) has a body

source

pub fn coherent_trait(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] coherence checking all impls of trait tcx.def_path_str(def_id)

source

pub fn mir_borrowck(self, key: impl IntoQueryParam<LocalDefId>)

Borrow-checks the function body. If this is a closure, returns additional requirements that the closure’s creator must verify.

source

pub fn crate_inherent_impls(self, key: ())

Gets a complete map from all types to their inherent impls. Not meant to be used directly outside of coherence.

source

pub fn crate_inherent_impls_overlap_check(self, key: ())

Checks all types in the crate for overlap in their inherent impls. Reports errors. Not meant to be used directly outside of coherence.

source

pub fn orphan_check_impl(self, key: impl IntoQueryParam<LocalDefId>)

Checks whether all impls in the crate pass the overlap check, returning which impls fail it. If all impls are correct, the returned slice is empty.

source

pub fn mir_callgraph_reachable(self, key: (Instance<'tcx>, LocalDefId))

Check whether the function has any recursion that could cause the inliner to trigger a cycle. Returns the call stack causing the cycle. The call stack does not contain the current function, just all intermediate functions.

source

pub fn mir_inliner_callees(self, key: InstanceDef<'tcx>)

Obtain all the calls into other local functions

source

pub fn eval_to_allocation_raw(self, key: ParamEnvAnd<'tcx, GlobalId<'tcx>>)

Evaluates a constant and returns the computed allocation.

Do not use this directly, use the tcx.eval_static_initializer wrapper.

source

pub fn eval_to_const_value_raw(self, key: ParamEnvAnd<'tcx, GlobalId<'tcx>>)

Evaluates const items or anonymous constants (such as enum variant explicit discriminants or array lengths) into a representation suitable for the type system and const generics.

Do not use this directly, use one of the following wrappers: tcx.const_eval_poly, tcx.const_eval_resolve, tcx.const_eval_instance, or tcx.const_eval_global_id.

source

pub fn eval_to_valtree(self, key: ParamEnvAnd<'tcx, GlobalId<'tcx>>)

Evaluate a constant and convert it to a type level constant or return None if that is not possible.

source

pub fn valtree_to_const_val(self, key: (Ty<'tcx>, ValTree<'tcx>))

Converts a type level constant value into ConstValue

source

pub fn destructure_const(self, key: Const<'tcx>)

Destructures array, ADT or tuple constants into the constants of their fields.

source

pub fn const_caller_location(self, key: (Symbol, u32, u32))

[query description - consider adding a doc-comment!] getting a &core::panic::Location referring to a span

source

pub fn lit_to_const(self, key: LitToConstInput<'tcx>)

[query description - consider adding a doc-comment!] converting literal to const

source

pub fn check_match(self, key: impl IntoQueryParam<LocalDefId>)

[query description - consider adding a doc-comment!] match-checking tcx.def_path_str(key)

source

pub fn effective_visibilities(self, key: ())

Performs part of the privacy check and computes effective visibilities.

source

pub fn check_private_in_public(self, key: ())

[query description - consider adding a doc-comment!] checking for private elements in public interfaces

source

pub fn reachable_set(self, key: ())

[query description - consider adding a doc-comment!] reachability

source

pub fn region_scope_tree(self, key: impl IntoQueryParam<DefId>)

Per-body region::ScopeTree. The DefId should be the owner DefId for the body; in the case of closures, this will be redirected to the enclosing function.

source

pub fn mir_shims(self, key: InstanceDef<'tcx>)

Generates a MIR body for the shim.

source

pub fn symbol_name(self, key: Instance<'tcx>)

The symbol_name query provides the symbol name for calling a given instance from the local crate. In particular, it will also look up the correct symbol name of instances from upstream crates.

source

pub fn opt_def_kind(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] looking up definition kind of tcx.def_path_str(def_id)

source

pub fn def_span(self, key: impl IntoQueryParam<DefId>)

Gets the span for the definition.

source

pub fn def_ident_span(self, key: impl IntoQueryParam<DefId>)

Gets the span for the identifier of the definition.

source

pub fn lookup_stability(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] looking up stability of tcx.def_path_str(def_id)

source

pub fn lookup_const_stability(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] looking up const stability of tcx.def_path_str(def_id)

source

pub fn lookup_default_body_stability(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] looking up default body stability of tcx.def_path_str(def_id)

source

pub fn should_inherit_track_caller(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] computing should_inherit_track_caller of tcx.def_path_str(def_id)

source

pub fn lookup_deprecation_entry(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] checking whether tcx.def_path_str(def_id) is deprecated

source

pub fn is_doc_hidden(self, key: impl IntoQueryParam<DefId>)

Determines whether an item is annotated with doc(hidden).

source

pub fn is_doc_notable_trait(self, key: impl IntoQueryParam<DefId>)

Determines whether an item is annotated with doc(notable_trait).

source

pub fn item_attrs(self, key: impl IntoQueryParam<DefId>)

Returns the attributes on the item at def_id.

Do not use this directly, use tcx.get_attrs instead.

source

pub fn codegen_fn_attrs(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] computing codegen attributes of tcx.def_path_str(def_id)

source

pub fn asm_target_features(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] computing target features for inline asm of tcx.def_path_str(def_id)

source

pub fn fn_arg_names(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] looking up function parameter names for tcx.def_path_str(def_id)

source

pub fn rendered_const(self, key: impl IntoQueryParam<DefId>)

Gets the rendered value of the specified constant or associated constant. Used by rustdoc.

source

pub fn impl_parent(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] computing specialization parent impl of tcx.def_path_str(def_id)

source

pub fn is_ctfe_mir_available(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] checking if item has CTFE MIR available: tcx.def_path_str(key)

source

pub fn is_mir_available(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] checking if item has MIR available: tcx.def_path_str(key)

source

pub fn own_existential_vtable_entries(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] finding all existential vtable entries for trait tcx.def_path_str(key)

source

pub fn vtable_entries(self, key: PolyTraitRef<'tcx>)

[query description - consider adding a doc-comment!] finding all vtable entries for trait tcx.def_path_str(key.def_id())

source

pub fn vtable_trait_upcasting_coercion_new_vptr_slot( self, key: (Ty<'tcx>, Ty<'tcx>) )

[query description - consider adding a doc-comment!] finding the slot within vtable for trait object key.1 vtable ptr during trait upcasting coercion from key.0 vtable

source

pub fn vtable_allocation( self, key: (Ty<'tcx>, Option<PolyExistentialTraitRef<'tcx>>) )

[query description - consider adding a doc-comment!] vtable const allocation for < key.0 as key.1.map(| trait_ref | format! ("{trait_ref}")).unwrap_or("_".to_owned()) >

source

pub fn codegen_select_candidate(self, key: (ParamEnv<'tcx>, TraitRef<'tcx>))

[query description - consider adding a doc-comment!] computing candidate for key.1

source

pub fn all_local_trait_impls(self, key: ())

Return all impl blocks in the current crate.

source

pub fn trait_impls_of(self, key: impl IntoQueryParam<DefId>)

Given a trait trait_id, return all known impl blocks.

source

pub fn specialization_graph_of(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] building specialization graph of trait tcx.def_path_str(trait_id)

source

pub fn object_safety_violations(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] determining object safety of trait tcx.def_path_str(trait_id)

source

pub fn check_is_object_safe(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] checking if trait tcx.def_path_str(trait_id) is object safe

source

pub fn param_env(self, key: impl IntoQueryParam<DefId>)

Gets the ParameterEnvironment for a given item; this environment will be in “user-facing” mode, meaning that it is suitable for type-checking etc, and it does not normalize specializable associated types. This is almost always what you want, unless you are doing MIR optimizations, in which case you might want to use reveal_all() method to change modes.

source

pub fn param_env_reveal_all_normalized(self, key: impl IntoQueryParam<DefId>)

Like param_env, but returns the ParamEnv in Reveal::All mode. Prefer this over tcx.param_env(def_id).with_reveal_all_normalized(tcx), as this method is more efficient.

source

pub fn is_copy_raw(self, key: ParamEnvAnd<'tcx, Ty<'tcx>>)

Trait selection queries. These are best used by invoking ty.is_copy_modulo_regions(), ty.is_copy(), etc, since that will prune the environment where possible.

source

pub fn is_sized_raw(self, key: ParamEnvAnd<'tcx, Ty<'tcx>>)

Query backing Ty::is_sized.

source

pub fn is_freeze_raw(self, key: ParamEnvAnd<'tcx, Ty<'tcx>>)

Query backing Ty::is_freeze.

source

pub fn is_unpin_raw(self, key: ParamEnvAnd<'tcx, Ty<'tcx>>)

Query backing Ty::is_unpin.

source

pub fn needs_drop_raw(self, key: ParamEnvAnd<'tcx, Ty<'tcx>>)

Query backing Ty::needs_drop.

source

pub fn has_significant_drop_raw(self, key: ParamEnvAnd<'tcx, Ty<'tcx>>)

Query backing Ty::has_significant_drop_raw.

source

pub fn has_structural_eq_impls(self, key: Ty<'tcx>)

Query backing Ty::is_structural_eq_shallow.

This is only correct for ADTs. Call is_structural_eq_shallow to handle all types correctly.

source

pub fn adt_drop_tys(self, key: impl IntoQueryParam<DefId>)

A list of types where the ADT requires drop if and only if any of those types require drop. If the ADT is known to always need drop then Err(AlwaysRequiresDrop) is returned.

source

pub fn adt_significant_drop_tys(self, key: impl IntoQueryParam<DefId>)

A list of types where the ADT requires drop if and only if any of those types has significant drop. A type marked with the attribute rustc_insignificant_dtor is considered to not be significant. A drop is significant if it is implemented by the user or does anything that will have any observable behavior (other than freeing up memory). If the ADT is known to have a significant destructor then Err(AlwaysRequiresDrop) is returned.

source

pub fn layout_of(self, key: ParamEnvAnd<'tcx, Ty<'tcx>>)

Computes the layout of a type. Note that this implicitly executes in “reveal all” mode, and will normalize the input type.

source

pub fn fn_abi_of_fn_ptr( self, key: ParamEnvAnd<'tcx, (PolyFnSig<'tcx>, &'tcx List<Ty<'tcx>>)> )

Compute a FnAbi suitable for indirect calls, i.e. to fn pointers.

NB: this doesn’t handle virtual calls - those should use fn_abi_of_instance instead, where the instance is an InstanceDef::Virtual.

source

pub fn fn_abi_of_instance( self, key: ParamEnvAnd<'tcx, (Instance<'tcx>, &'tcx List<Ty<'tcx>>)> )

Compute a FnAbi suitable for declaring/defining an fn instance, and for direct calls to an fn.

NB: that includes virtual calls, which are represented by “direct calls” to an InstanceDef::Virtual instance (of <dyn Trait as Trait>::fn).

source

pub fn dylib_dependency_formats(self, key: CrateNum)

[query description - consider adding a doc-comment!] getting dylib dependency formats of crate

source

pub fn dependency_formats(self, key: ())

[query description - consider adding a doc-comment!] getting the linkage format of all dependencies

source

pub fn is_compiler_builtins(self, key: CrateNum)

[query description - consider adding a doc-comment!] checking if the crate is_compiler_builtins

source

pub fn has_global_allocator(self, key: CrateNum)

[query description - consider adding a doc-comment!] checking if the crate has_global_allocator

source

pub fn has_alloc_error_handler(self, key: CrateNum)

[query description - consider adding a doc-comment!] checking if the crate has_alloc_error_handler

source

pub fn has_panic_handler(self, key: CrateNum)

[query description - consider adding a doc-comment!] checking if the crate has_panic_handler

source

pub fn is_profiler_runtime(self, key: CrateNum)

[query description - consider adding a doc-comment!] checking if a crate is #![profiler_runtime]

source

pub fn has_ffi_unwind_calls(self, key: impl IntoQueryParam<LocalDefId>)

[query description - consider adding a doc-comment!] checking if tcx.def_path_str(key) contains FFI-unwind calls

source

pub fn required_panic_strategy(self, key: CrateNum)

[query description - consider adding a doc-comment!] getting a crate’s required panic strategy

source

pub fn panic_in_drop_strategy(self, key: CrateNum)

[query description - consider adding a doc-comment!] getting a crate’s configured panic-in-drop strategy

source

pub fn is_no_builtins(self, key: CrateNum)

[query description - consider adding a doc-comment!] getting whether a crate has #![no_builtins]

source

pub fn symbol_mangling_version(self, key: CrateNum)

[query description - consider adding a doc-comment!] getting a crate’s symbol mangling version

source

pub fn extern_crate(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] getting crate’s ExternCrateData

source

pub fn specializes(self, key: (DefId, DefId))

[query description - consider adding a doc-comment!] computing whether impls specialize one another

source

pub fn in_scope_traits_map(self, key: OwnerId)

[query description - consider adding a doc-comment!] getting traits in scope at a block

source

pub fn defaultness(self, key: impl IntoQueryParam<DefId>)

Returns whether the impl or associated function has the default keyword.

source

pub fn check_well_formed(self, key: OwnerId)

[query description - consider adding a doc-comment!] checking that tcx.def_path_str(key) is well-formed

source

pub fn reachable_non_generics(self, key: CrateNum)

[query description - consider adding a doc-comment!] looking up the exported symbols of a crate

source

pub fn is_reachable_non_generic(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] checking whether tcx.def_path_str(def_id) is an exported symbol

source

pub fn is_unreachable_local_definition( self, key: impl IntoQueryParam<LocalDefId> )

[query description - consider adding a doc-comment!] checking whether tcx.def_path_str(def_id) is reachable from outside the crate

source

pub fn upstream_monomorphizations(self, key: ())

The entire set of monomorphizations the local crate can safely link to because they are exported from upstream crates. Do not depend on this directly, as its value changes anytime a monomorphization gets added or removed in any upstream crate. Instead use the narrower upstream_monomorphizations_for, upstream_drop_glue_for, or, even better, Instance::upstream_monomorphization().

source

pub fn upstream_monomorphizations_for(self, key: impl IntoQueryParam<DefId>)

Returns the set of upstream monomorphizations available for the generic function identified by the given def_id. The query makes sure to make a stable selection if the same monomorphization is available in multiple upstream crates.

You likely want to call Instance::upstream_monomorphization() instead of invoking this query directly.

source

pub fn upstream_drop_glue_for(self, key: GenericArgsRef<'tcx>)

Returns the upstream crate that exports drop-glue for the given type (args is expected to be a single-item list containing the type one wants drop-glue for).

This is a subset of upstream_monomorphizations_for in order to increase dep-tracking granularity. Otherwise adding or removing any type with drop-glue in any upstream crate would invalidate all functions calling drop-glue of an upstream type.

You likely want to call Instance::upstream_monomorphization() instead of invoking this query directly.

NOTE: This query could easily be extended to also support other common functions that have are large set of monomorphizations (like Clone::clone for example).

source

pub fn foreign_modules(self, key: CrateNum)

Returns a list of all extern blocks of a crate.

source

pub fn clashing_extern_declarations(self, key: ())

Lint against extern fn declarations having incompatible types.

source

pub fn entry_fn(self, key: ())

Identifies the entry-point (e.g., the main function) for a given crate, returning None if there is no entry point (such as for library crates).

source

pub fn proc_macro_decls_static(self, key: ())

Finds the rustc_proc_macro_decls item of a crate.

source

pub fn crate_hash(self, key: CrateNum)

[query description - consider adding a doc-comment!] looking up the hash a crate

source

pub fn crate_host_hash(self, key: CrateNum)

Gets the hash for the host proc macro. Used to support -Z dual-proc-macro.

source

pub fn extra_filename(self, key: CrateNum)

Gets the extra data to put in each output filename for a crate. For example, compiling the foo crate with extra-filename=-a creates a libfoo-b.rlib file.

source

pub fn crate_extern_paths(self, key: CrateNum)

Gets the paths where the crate came from in the file system.

source

pub fn implementations_of_trait(self, key: (CrateNum, DefId))

Given a crate and a trait, look up all impls of that trait in the crate. Return (impl_id, self_ty).

source

pub fn crate_incoherent_impls(self, key: (CrateNum, SimplifiedType))

Collects all incoherent impls for the given crate and type.

Do not call this directly, but instead use the incoherent_impls query. This query is only used to get the data necessary for that query.

source

pub fn native_library(self, key: impl IntoQueryParam<DefId>)

Get the corresponding native library from the native_libraries query

source

pub fn resolve_bound_vars(self, key: OwnerId)

Does lifetime resolution on items. Importantly, we can’t resolve lifetimes directly on things like trait methods, because of trait params. See rustc_resolve::late::lifetimes for details.

source

pub fn named_variable_map(self, key: OwnerId)

[query description - consider adding a doc-comment!] looking up a named region

source

pub fn is_late_bound_map(self, key: OwnerId)

[query description - consider adding a doc-comment!] testing if a region is late bound

source

pub fn object_lifetime_default(self, key: impl IntoQueryParam<DefId>)

For a given item’s generic parameter, gets the default lifetimes to be used for each parameter if a trait object were to be passed for that parameter. For example, for T in struct Foo<'a, T>, this would be 'static. For T in struct Foo<'a, T: 'a>, this would instead be 'a. This query will panic if passed something that is not a type parameter.

source

pub fn late_bound_vars_map(self, key: OwnerId)

[query description - consider adding a doc-comment!] looking up late bound vars

source

pub fn visibility(self, key: impl IntoQueryParam<DefId>)

Computes the visibility of the provided def_id.

If the item from the def_id doesn’t have a visibility, it will panic. For example a generic type parameter will panic if you call this method on it:

use std::fmt::Debug;

pub trait Foo<T: Debug> {}

In here, if you call visibility on T, it’ll panic.

source

pub fn inhabited_predicate_adt(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] computing the uninhabited predicate of {:?}

source

pub fn inhabited_predicate_type(self, key: Ty<'tcx>)

Do not call this query directly: invoke Ty::inhabited_predicate instead.

source

pub fn dep_kind(self, key: CrateNum)

[query description - consider adding a doc-comment!] fetching what a dependency looks like

source

pub fn crate_name(self, key: CrateNum)

Gets the name of the crate.

source

pub fn module_children(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] collecting child items of module tcx.def_path_str(def_id)

source

pub fn extern_mod_stmt_cnum(self, key: impl IntoQueryParam<LocalDefId>)

[query description - consider adding a doc-comment!] computing crate imported by tcx.def_path_str(def_id)

source

pub fn lib_features(self, key: ())

[query description - consider adding a doc-comment!] calculating the lib features map

source

pub fn defined_lib_features(self, key: CrateNum)

[query description - consider adding a doc-comment!] calculating the lib features defined in a crate

source

pub fn stability_implications(self, key: CrateNum)

[query description - consider adding a doc-comment!] calculating the implications between #[unstable] features defined in a crate

source

pub fn is_intrinsic(self, key: impl IntoQueryParam<DefId>)

Whether the function is an intrinsic

source

pub fn get_lang_items(self, key: ())

Returns the lang items defined in another crate by loading it from metadata.

source

pub fn all_diagnostic_items(self, key: ())

Returns all diagnostic items defined in all crates.

source

pub fn defined_lang_items(self, key: CrateNum)

Returns the lang items defined in another crate by loading it from metadata.

source

pub fn diagnostic_items(self, key: CrateNum)

Returns the diagnostic items defined in a crate.

source

pub fn missing_lang_items(self, key: CrateNum)

[query description - consider adding a doc-comment!] calculating the missing lang items in a crate

source

pub fn visible_parent_map(self, key: ())

[query description - consider adding a doc-comment!] calculating the visible parent map

source

pub fn trimmed_def_paths(self, key: ())

[query description - consider adding a doc-comment!] calculating trimmed def paths

source

pub fn missing_extern_crate_item(self, key: CrateNum)

[query description - consider adding a doc-comment!] seeing if we’re missing an extern crate item for this crate

source

pub fn used_crate_source(self, key: CrateNum)

[query description - consider adding a doc-comment!] looking at the source for a crate

source

pub fn debugger_visualizers(self, key: CrateNum)

Returns the debugger visualizers defined for this crate. NOTE: This query has to be marked eval_always because it reads data directly from disk that is not tracked anywhere else. I.e. it represents a genuine input to the query system.

source

pub fn postorder_cnums(self, key: ())

[query description - consider adding a doc-comment!] generating a postorder list of CrateNums

source

pub fn is_private_dep(self, key: CrateNum)

Returns whether or not the crate with CrateNum ‘cnum’ is marked as a private dependency

source

pub fn allocator_kind(self, key: ())

[query description - consider adding a doc-comment!] getting the allocator kind for the current crate

source

pub fn alloc_error_handler_kind(self, key: ())

[query description - consider adding a doc-comment!] alloc error handler kind for the current crate

source

pub fn upvars_mentioned(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] collecting upvars mentioned in tcx.def_path_str(def_id)

source

pub fn maybe_unused_trait_imports(self, key: ())

[query description - consider adding a doc-comment!] fetching potentially unused trait imports

source

pub fn names_imported_by_glob_use(self, key: impl IntoQueryParam<LocalDefId>)

[query description - consider adding a doc-comment!] finding names imported by glob use for tcx.def_path_str(def_id)

source

pub fn stability_index(self, key: ())

[query description - consider adding a doc-comment!] calculating the stability index for the local crate

source

pub fn crates(self, key: ())

[query description - consider adding a doc-comment!] fetching all foreign CrateNum instances

source

pub fn traits(self, key: CrateNum)

A list of all traits in a crate, used by rustdoc and error reporting.

source

pub fn trait_impls_in_crate(self, key: CrateNum)

[query description - consider adding a doc-comment!] fetching all trait impls in a crate

source

pub fn exported_symbols(self, key: CrateNum)

The list of symbols exported from the given crate.

  • All names contained in exported_symbols(cnum) are guaranteed to correspond to a publicly visible symbol in cnum machine code.
  • The exported_symbols sets of different crates do not intersect.
source

pub fn collect_and_partition_mono_items(self, key: ())

[query description - consider adding a doc-comment!] collect_and_partition_mono_items

source

pub fn is_codegened_item(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] determining whether tcx.def_path_str(def_id) needs codegen

source

pub fn codegened_and_inlined_items(self, key: ())

All items participating in code generation together with items inlined into them.

source

pub fn codegen_unit(self, key: Symbol)

[query description - consider adding a doc-comment!] getting codegen unit {sym}

source

pub fn unused_generic_params(self, key: InstanceDef<'tcx>)

[query description - consider adding a doc-comment!] determining which generic parameters are unused by tcx.def_path_str(key.def_id())

source

pub fn backend_optimization_level(self, key: ())

[query description - consider adding a doc-comment!] optimization level used by backend

source

pub fn output_filenames(self, key: ())

Return the filenames where output artefacts shall be stored.

This query returns an &Arc because codegen backends need the value even after the TyCtxt has been destroyed.

source

pub fn normalize_projection_ty(self, key: CanonicalProjectionGoal<'tcx>)

Do not call this query directly: invoke normalize instead.

source

pub fn normalize_weak_ty(self, key: CanonicalProjectionGoal<'tcx>)

Do not call this query directly: invoke normalize instead.

source

pub fn normalize_inherent_projection_ty( self, key: CanonicalProjectionGoal<'tcx> )

Do not call this query directly: invoke normalize instead.

source

pub fn try_normalize_generic_arg_after_erasing_regions( self, key: ParamEnvAnd<'tcx, GenericArg<'tcx>> )

Do not call this query directly: invoke try_normalize_erasing_regions instead.

source

pub fn implied_outlives_bounds(self, key: CanonicalTyGoal<'tcx>)

[query description - consider adding a doc-comment!] computing implied outlives bounds for goal.value.value

source

pub fn dropck_outlives(self, key: CanonicalTyGoal<'tcx>)

Do not call this query directly: invoke DropckOutlives::new(dropped_ty)).fully_perform(typeck.infcx) instead.

source

pub fn evaluate_obligation(self, key: CanonicalPredicateGoal<'tcx>)

Do not call this query directly: invoke infcx.predicate_may_hold() or infcx.predicate_must_hold() instead.

source

pub fn type_op_ascribe_user_type( self, key: CanonicalTypeOpAscribeUserTypeGoal<'tcx> )

Do not call this query directly: part of the Eq type-op

source

pub fn type_op_eq(self, key: CanonicalTypeOpEqGoal<'tcx>)

Do not call this query directly: part of the Eq type-op

source

pub fn type_op_subtype(self, key: CanonicalTypeOpSubtypeGoal<'tcx>)

Do not call this query directly: part of the Subtype type-op

source

pub fn type_op_prove_predicate( self, key: CanonicalTypeOpProvePredicateGoal<'tcx> )

Do not call this query directly: part of the ProvePredicate type-op

source

pub fn type_op_normalize_ty( self, key: CanonicalTypeOpNormalizeGoal<'tcx, Ty<'tcx>> )

Do not call this query directly: part of the Normalize type-op

source

pub fn type_op_normalize_clause( self, key: CanonicalTypeOpNormalizeGoal<'tcx, Clause<'tcx>> )

Do not call this query directly: part of the Normalize type-op

source

pub fn type_op_normalize_poly_fn_sig( self, key: CanonicalTypeOpNormalizeGoal<'tcx, PolyFnSig<'tcx>> )

Do not call this query directly: part of the Normalize type-op

source

pub fn type_op_normalize_fn_sig( self, key: CanonicalTypeOpNormalizeGoal<'tcx, FnSig<'tcx>> )

Do not call this query directly: part of the Normalize type-op

source

pub fn subst_and_check_impossible_predicates( self, key: (DefId, GenericArgsRef<'tcx>) )

[query description - consider adding a doc-comment!] checking impossible substituted predicates: tcx.def_path_str(key.0)

source

pub fn is_impossible_associated_item(self, key: (DefId, DefId))

[query description - consider adding a doc-comment!] checking if tcx.def_path_str(key.1) is impossible to reference within tcx.def_path_str(key.0)

source

pub fn method_autoderef_steps(self, key: CanonicalTyGoal<'tcx>)

[query description - consider adding a doc-comment!] computing autoderef types for goal.value.value

source

pub fn supported_target_features(self, key: CrateNum)

[query description - consider adding a doc-comment!] looking up supported target features

source

pub fn features_query(self, key: ())

[query description - consider adding a doc-comment!] looking up enabled feature gates

source

pub fn crate_for_resolver(self, key: ())

[query description - consider adding a doc-comment!] the ast before macro expansion and name resolution

source

pub fn resolve_instance( self, key: ParamEnvAnd<'tcx, (DefId, GenericArgsRef<'tcx>)> )

Attempt to resolve the given DefId to an Instance, for the given generics args (GenericArgsRef), returning one of:

  • Ok(Some(instance)) on success
  • Ok(None) when the GenericArgsRef are still too generic, and therefore don’t allow finding the final Instance
  • Err(ErrorGuaranteed) when the Instance resolution process couldn’t complete due to errors elsewhere - this is distinct from Ok(None) to avoid misleading diagnostics when an error has already been/will be emitted, for the original cause
source

pub fn reveal_opaque_types_in_bounds(self, key: &'tcx List<Clause<'tcx>>)

[query description - consider adding a doc-comment!] revealing opaque types in {:?}

source

pub fn limits(self, key: ())

[query description - consider adding a doc-comment!] looking up limits

source

pub fn diagnostic_hir_wf_check(self, key: (Predicate<'tcx>, WellFormedLoc))

Performs an HIR-based well-formed check on the item with the given HirId. If we get an Unimplemented error that matches the provided Predicate, return the cause of the newly created obligation.

This is only used by error-reporting code to get a better cause (in particular, a better span) for an existing error. Therefore, it is best-effort, and may never handle all of the cases that the normal ty::Ty-based wfcheck does. This is fine, because the ty::Ty-based wfcheck is always run.

source

pub fn global_backend_features(self, key: ())

The list of backend features computed from CLI flags (-Ctarget-cpu, -Ctarget-feature, --target and similar).

source

pub fn check_validity_requirement( self, key: (ValidityRequirement, ParamEnvAnd<'tcx, Ty<'tcx>>) )

[query description - consider adding a doc-comment!] checking validity requirement for key.1.value : key.0

source

pub fn compare_impl_const(self, key: (LocalDefId, DefId))

[query description - consider adding a doc-comment!] checking assoc const tcx.def_path_str(key.0) has the same type as trait item

source

pub fn deduced_param_attrs(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] deducing parameter attributes for tcx.def_path_str(def_id)

[query description - consider adding a doc-comment!] resolutions for documentation links for a module

[query description - consider adding a doc-comment!] traits in scope for documentation links for a module

source

pub fn check_tys_might_be_eq( self, key: Canonical<'tcx, (ParamEnv<'tcx>, Ty<'tcx>, Ty<'tcx>)> )

Used in super_combine_consts to ICE if the type of the two consts are definitely not going to end up being equal to eachother. This might return Ok even if the types are not equal, but will never return Err if the types might be equal.

source

pub fn stripped_cfg_items(self, key: CrateNum)

Get all item paths that were stripped by a #[cfg] in a particular crate. Should not be called for the local crate before the resolver outputs are created, as it is only fed there.

source

pub fn generics_require_sized_self(self, key: impl IntoQueryParam<DefId>)

[query description - consider adding a doc-comment!] check whether the item has a where Self: Sized bound

Trait Implementations§

source§

impl<'tcx> Clone for TyCtxtEnsureWithValue<'tcx>

source§

fn clone(&self) -> TyCtxtEnsureWithValue<'tcx>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<'tcx> Copy for TyCtxtEnsureWithValue<'tcx>

Auto Trait Implementations§

§

impl<'tcx> !RefUnwindSafe for TyCtxtEnsureWithValue<'tcx>

§

impl<'tcx> !Send for TyCtxtEnsureWithValue<'tcx>

§

impl<'tcx> !Sync for TyCtxtEnsureWithValue<'tcx>

§

impl<'tcx> Unpin for TyCtxtEnsureWithValue<'tcx>

§

impl<'tcx> !UnwindSafe for TyCtxtEnsureWithValue<'tcx>

Blanket Implementations§

source§

impl<T> Aligned for T

source§

const ALIGN: Alignment = _

Alignment of Self.
source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<'tcx, T> ArenaAllocatable<'tcx, IsCopy> for Twhere T: Copy,

source§

fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut T

source§

fn allocate_from_iter<'a>( arena: &'a Arena<'tcx>, iter: impl IntoIterator<Item = T> ) -> &'a mut [T]

source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T, R> CollectAndApply<T, R> for T

source§

fn collect_and_apply<I, F>(iter: I, f: F) -> Rwhere I: Iterator<Item = T>, F: FnOnce(&[T]) -> R,

Equivalent to f(&iter.collect::<Vec<_>>()).

§

type Output = R

source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<P> IntoQueryParam<P> for P

source§

impl<T> MaybeResult<T> for T

§

type Error = !

source§

fn from(_: Result<T, <T as MaybeResult<T>>::Error>) -> T

source§

fn to_result(self) -> Result<T, <T as MaybeResult<T>>::Error>

source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<'tcx, T> ToPredicate<'tcx, T> for T

source§

fn to_predicate(self, _tcx: TyCtxt<'tcx>) -> T

source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<Tcx, T> Value<Tcx> for Twhere Tcx: DepContext,

source§

default fn from_cycle_error( tcx: Tcx, cycle: &[QueryInfo], _guar: ErrorGuaranteed ) -> T

Layout§

Note: Most layout information is completely unstable and may even differ between compilations. The only exception is types with certain repr(...) attributes. Please see the Rust Reference's “Type Layout” chapter for details on type layout guarantees.

Size: 8 bytes