rustc_trait_selection::infer::canonical::ir

Struct UniverseIndex

pub struct UniverseIndex {
    pub(crate) private_use_as_methods_instead: u32,
}
Expand description

“Universes” are used during type- and trait-checking in the presence of for<..> binders to control what sets of names are visible. Universes are arranged into a tree: the root universe contains names that are always visible. Each child then adds a new set of names that are visible, in addition to those of its parent. We say that the child universe “extends” the parent universe with new names.

To make this more concrete, consider this program:

struct Foo { }
fn bar<T>(x: T) {
  let y: for<'a> fn(&'a u8, Foo) = ...;
}

The struct name Foo is in the root universe U0. But the type parameter T, introduced on bar, is in an extended universe U1 – i.e., within bar, we can name both T and Foo, but outside of bar, we cannot name T. Then, within the type of y, the region 'a is in a universe U2 that extends U1, because we can name it inside the fn type but not outside.

Universes are used to do type- and trait-checking around these “forall” binders (also called universal quantification). The idea is that when, in the body of bar, we refer to T as a type, we aren’t referring to any type in particular, but rather a kind of “fresh” type that is distinct from all other types we have actually declared. This is called a placeholder type, and we use universes to talk about this. In other words, a type name in universe 0 always corresponds to some “ground” type that the user declared, but a type name in a non-zero universe is a placeholder type – an idealized representative of “types in general” that we use for checking generic functions.

Fields§

§private_use_as_methods_instead: u32

Implementations§

§

impl UniverseIndex

pub const MAX_AS_U32: u32 = 4_294_967_040u32

Maximum value the index can take, as a u32.

pub const MAX: UniverseIndex = _

Maximum value the index can take.

pub const ZERO: UniverseIndex = _

Zero value of the index.

pub const fn from_usize(value: usize) -> UniverseIndex

Creates a new index from a given usize.

§Panics

Will panic if value exceeds MAX.

pub const fn from_u32(value: u32) -> UniverseIndex

Creates a new index from a given u32.

§Panics

Will panic if value exceeds MAX.

pub const fn from_u16(value: u16) -> UniverseIndex

Creates a new index from a given u16.

§Panics

Will panic if value exceeds MAX.

pub const unsafe fn from_u32_unchecked(value: u32) -> UniverseIndex

Creates a new index from a given u32.

§Safety

The provided value must be less than or equal to the maximum value for the newtype. Providing a value outside this range is undefined due to layout restrictions.

Prefer using from_u32.

pub const fn index(self) -> usize

Extracts the value of this index as a usize.

pub const fn as_u32(self) -> u32

Extracts the value of this index as a u32.

pub const fn as_usize(self) -> usize

Extracts the value of this index as a usize.

§

impl UniverseIndex

pub const ROOT: UniverseIndex = UniverseIndex::ZERO

pub fn next_universe(self) -> UniverseIndex

Returns the “next” universe index in order – this new index is considered to extend all previous universes. This corresponds to entering a forall quantifier. So, for example, suppose we have this type in universe U:

for<'a> fn(&'a u32)

Once we “enter” into this for<'a> quantifier, we are in a new universe that extends U – in this new universe, we can name the region 'a, but that region was not nameable from U because it was not in scope there.

pub fn can_name(self, other: UniverseIndex) -> bool

Returns true if self can name a name from other – in other words, if the set of names in self is a superset of those in other (self >= other).

pub fn cannot_name(self, other: UniverseIndex) -> bool

Returns true if self cannot name some names from other – in other words, if the set of names in self is a strict subset of those in other (self < other).

pub fn is_root(self) -> bool

Returns true if self is the root universe, otherwise false.

Trait Implementations§

§

impl Add<usize> for UniverseIndex

§

type Output = UniverseIndex

The resulting type after applying the + operator.
§

fn add(self, other: usize) -> UniverseIndex

Performs the + operation. Read more
§

impl Clone for UniverseIndex

§

fn clone(&self) -> UniverseIndex

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl Debug for UniverseIndex

§

fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl<D> Decodable<D> for UniverseIndex
where D: Decoder,

§

impl Default for UniverseIndex

§

fn default() -> UniverseIndex

Returns the “default value” for a type. Read more
§

impl<E> Encodable<E> for UniverseIndex
where E: Encoder,

§

fn encode(&self, e: &mut E)

§

impl From<u32> for UniverseIndex

§

fn from(value: u32) -> UniverseIndex

Converts to this type from the input type.
§

impl From<usize> for UniverseIndex

§

fn from(value: usize) -> UniverseIndex

Converts to this type from the input type.
§

impl Hash for UniverseIndex

§

fn hash<__H>(&self, state: &mut __H)
where __H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
§

impl<__CTX> HashStable<__CTX> for UniverseIndex

§

fn hash_stable( &self, __hcx: &mut __CTX, __hasher: &mut StableHasher<SipHasher128>, )

§

impl Idx for UniverseIndex

§

fn new(value: usize) -> UniverseIndex

§

fn index(self) -> usize

§

fn increment_by(&mut self, amount: usize)

§

fn plus(self, amount: usize) -> Self

§

impl Ord for UniverseIndex

§

fn cmp(&self, other: &UniverseIndex) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · Source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · Source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · Source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized,

Restrict a value to a certain interval. Read more
§

impl PartialEq for UniverseIndex

§

fn eq(&self, other: &UniverseIndex) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl PartialOrd for UniverseIndex

§

fn partial_cmp(&self, other: &UniverseIndex) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
§

impl Step for UniverseIndex

§

fn steps_between(start: &UniverseIndex, end: &UniverseIndex) -> Option<usize>

🔬This is a nightly-only experimental API. (step_trait)
Returns the number of successor steps required to get from start to end. Read more
§

fn forward_checked(start: UniverseIndex, u: usize) -> Option<UniverseIndex>

🔬This is a nightly-only experimental API. (step_trait)
Returns the value that would be obtained by taking the successor of self count times. Read more
§

fn backward_checked(start: UniverseIndex, u: usize) -> Option<UniverseIndex>

🔬This is a nightly-only experimental API. (step_trait)
Returns the value that would be obtained by taking the predecessor of self count times. Read more
Source§

fn forward(start: Self, count: usize) -> Self

🔬This is a nightly-only experimental API. (step_trait)
Returns the value that would be obtained by taking the successor of self count times. Read more
Source§

unsafe fn forward_unchecked(start: Self, count: usize) -> Self

🔬This is a nightly-only experimental API. (step_trait)
Returns the value that would be obtained by taking the successor of self count times. Read more
Source§

fn backward(start: Self, count: usize) -> Self

🔬This is a nightly-only experimental API. (step_trait)
Returns the value that would be obtained by taking the predecessor of self count times. Read more
Source§

unsafe fn backward_unchecked(start: Self, count: usize) -> Self

🔬This is a nightly-only experimental API. (step_trait)
Returns the value that would be obtained by taking the predecessor of self count times. Read more
§

impl<I> TypeFoldable<I> for UniverseIndex
where I: Interner,

§

fn try_fold_with<F>( self, _: &mut F, ) -> Result<UniverseIndex, <F as FallibleTypeFolder<I>>::Error>
where F: FallibleTypeFolder<I>,

The entry point for folding. To fold a value t with a folder f call: t.try_fold_with(f). Read more
§

fn fold_with<F>(self, _: &mut F) -> UniverseIndex
where F: TypeFolder<I>,

A convenient alternative to try_fold_with for use with infallible folders. Do not override this method, to ensure coherence with try_fold_with.
§

impl<I> TypeVisitable<I> for UniverseIndex
where I: Interner,

§

fn visit_with<F>(&self, _: &mut F) -> <F as TypeVisitor<I>>::Result
where F: TypeVisitor<I>,

The entry point for visiting. To visit a value t with a visitor v call: t.visit_with(v). Read more
§

impl Copy for UniverseIndex

§

impl Eq for UniverseIndex

§

impl StructuralPartialEq for UniverseIndex

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Aligned for T

Source§

const ALIGN: Alignment = _

Alignment of Self.
Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> AnyEq for T
where T: Any + PartialEq,

Source§

fn equals(&self, other: &(dyn Any + 'static)) -> bool

Source§

fn as_any(&self) -> &(dyn Any + 'static)

§

impl<'tcx, T> ArenaAllocatable<'tcx, IsCopy> for T
where T: Copy,

§

fn allocate_on(self, arena: &'tcx Arena<'tcx>) -> &'tcx mut T

§

fn allocate_from_iter( arena: &'tcx Arena<'tcx>, iter: impl IntoIterator<Item = T>, ) -> &'tcx mut [T]

Source§

impl<'tcx, T> ArenaAllocatable<'tcx, IsCopy> for T
where T: Copy,

Source§

fn allocate_on(self, arena: &'tcx Arena<'tcx>) -> &'tcx mut T

Source§

fn allocate_from_iter( arena: &'tcx Arena<'tcx>, iter: impl IntoIterator<Item = T>, ) -> &'tcx mut [T]

Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
§

impl<T, R> CollectAndApply<T, R> for T

§

fn collect_and_apply<I, F>(iter: I, f: F) -> R
where I: Iterator<Item = T>, F: FnOnce(&[T]) -> R,

Equivalent to f(&iter.collect::<Vec<_>>()).

§

type Output = R

Source§

impl<Q, K> Comparable<K> for Q
where Q: Ord + ?Sized, K: Borrow<Q> + ?Sized,

Source§

fn compare(&self, key: &K) -> Ordering

Compare self to key and return their ordering.
§

impl<Tcx, T> DepNodeParams<Tcx> for T
where Tcx: DepContext, T: for<'a> HashStable<StableHashingContext<'a>> + Debug,

§

default fn fingerprint_style() -> FingerprintStyle

§

default fn to_fingerprint(&self, tcx: Tcx) -> Fingerprint

This method turns the parameters of a DepNodeConstructor into an opaque Fingerprint to be used in DepNode. Not all DepNodeParams support being turned into a Fingerprint (they don’t need to if the corresponding DepNode is anonymous).
§

default fn to_debug_str(&self, _: Tcx) -> String

§

default fn recover(_: Tcx, _: &DepNode) -> Option<T>

This method tries to recover the query key from the given DepNode, something which is needed when forcing DepNodes during red-green evaluation. The query system will only call this method if fingerprint_style() is not FingerprintStyle::Opaque. It is always valid to return None here, in which case incremental compilation will treat the query as having changed instead of forcing it.
Source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

Source§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
Source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

Source§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
Source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

Source§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
Source§

impl<T> Filterable for T

Source§

fn filterable( self, filter_name: &'static str, ) -> RequestFilterDataProvider<T, fn(_: DataRequest<'_>) -> bool>

Creates a filterable data provider with the given name for debugging. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<P> IntoQueryParam<P> for P

Source§

impl<'tcx, T> IsSuggestable<'tcx> for T
where T: TypeVisitable<TyCtxt<'tcx>> + TypeFoldable<TyCtxt<'tcx>>,

Source§

fn is_suggestable(self, tcx: TyCtxt<'tcx>, infer_suggestable: bool) -> bool

Whether this makes sense to suggest in a diagnostic. Read more
Source§

fn make_suggestable( self, tcx: TyCtxt<'tcx>, infer_suggestable: bool, placeholder: Option<Ty<'tcx>>, ) -> Option<T>

Source§

impl<T> MaybeResult<T> for T

Source§

type Error = !

Source§

fn from(_: Result<T, <T as MaybeResult<T>>::Error>) -> T

Source§

fn to_result(self) -> Result<T, <T as MaybeResult<T>>::Error>

Source§

impl<T> Pointable for T

Source§

const ALIGN: usize = _

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<I, T> TypeVisitableExt<I> for T
where I: Interner, T: TypeVisitable<I>,

§

fn has_type_flags(&self, flags: TypeFlags) -> bool

§

fn has_vars_bound_at_or_above(&self, binder: DebruijnIndex) -> bool

Returns true if self has any late-bound regions that are either bound by binder or bound by some binder outside of binder. If binder is ty::INNERMOST, this indicates whether there are any late-bound regions that appear free.
§

fn error_reported(&self) -> Result<(), <I as Interner>::ErrorGuaranteed>

§

fn has_vars_bound_above(&self, binder: DebruijnIndex) -> bool

Returns true if this type has any regions that escape binder (and hence are not bound by it).
§

fn has_escaping_bound_vars(&self) -> bool

Return true if this type has regions that are not a part of the type. For example, for<'a> fn(&'a i32) return false, while fn(&'a i32) would return true. The latter can occur when traversing through the former. Read more
§

fn has_aliases(&self) -> bool

§

fn has_opaque_types(&self) -> bool

§

fn has_coroutines(&self) -> bool

§

fn references_error(&self) -> bool

§

fn has_non_region_param(&self) -> bool

§

fn has_infer_regions(&self) -> bool

§

fn has_infer_types(&self) -> bool

§

fn has_non_region_infer(&self) -> bool

§

fn has_infer(&self) -> bool

§

fn has_placeholders(&self) -> bool

§

fn has_non_region_placeholders(&self) -> bool

§

fn has_param(&self) -> bool

§

fn has_free_regions(&self) -> bool

“Free” regions in this context means that it has any region that is not (a) erased or (b) late-bound.
§

fn has_erased_regions(&self) -> bool

§

fn has_erasable_regions(&self) -> bool

True if there are any un-erased free regions.
§

fn is_global(&self) -> bool

Indicates whether this value references only ‘global’ generic parameters that are the same regardless of what fn we are in. This is used for caching.
§

fn has_bound_regions(&self) -> bool

True if there are any late-bound regions
§

fn has_non_region_bound_vars(&self) -> bool

True if there are any late-bound non-region variables
§

fn has_bound_vars(&self) -> bool

True if there are any bound variables
§

fn still_further_specializable(&self) -> bool

Indicates whether this value still has parameters/placeholders/inference variables which could be replaced later, in a way that would change the results of impl specialization.
§

impl<I, T, U> Upcast<I, U> for T
where U: UpcastFrom<I, T>,

§

fn upcast(self, interner: I) -> U

§

impl<I, T> UpcastFrom<I, T> for T

§

fn upcast_from(from: T, _tcx: I) -> T

Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

§

impl<Tcx, T> Value<Tcx> for T
where Tcx: DepContext,

§

default fn from_cycle_error( tcx: Tcx, cycle_error: &CycleError, _guar: ErrorGuaranteed, ) -> T

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<'a, T> Captures<'a> for T
where T: ?Sized,

Source§

impl<T> ErasedDestructor for T
where T: 'static,

Source§

impl<T> MaybeSendSync for T
where T: Send + Sync,

Layout§

Note: Most layout information is completely unstable and may even differ between compilations. The only exception is types with certain repr(...) attributes. Please see the Rust Reference's “Type Layout” chapter for details on type layout guarantees.

Size: 4 bytes