rustc_monomorphize/
partitioning.rs

1//! Partitioning Codegen Units for Incremental Compilation
2//! ======================================================
3//!
4//! The task of this module is to take the complete set of monomorphizations of
5//! a crate and produce a set of codegen units from it, where a codegen unit
6//! is a named set of (mono-item, linkage) pairs. That is, this module
7//! decides which monomorphization appears in which codegen units with which
8//! linkage. The following paragraphs describe some of the background on the
9//! partitioning scheme.
10//!
11//! The most important opportunity for saving on compilation time with
12//! incremental compilation is to avoid re-codegenning and re-optimizing code.
13//! Since the unit of codegen and optimization for LLVM is "modules" or, how
14//! we call them "codegen units", the particulars of how much time can be saved
15//! by incremental compilation are tightly linked to how the output program is
16//! partitioned into these codegen units prior to passing it to LLVM --
17//! especially because we have to treat codegen units as opaque entities once
18//! they are created: There is no way for us to incrementally update an existing
19//! LLVM module and so we have to build any such module from scratch if it was
20//! affected by some change in the source code.
21//!
22//! From that point of view it would make sense to maximize the number of
23//! codegen units by, for example, putting each function into its own module.
24//! That way only those modules would have to be re-compiled that were actually
25//! affected by some change, minimizing the number of functions that could have
26//! been re-used but just happened to be located in a module that is
27//! re-compiled.
28//!
29//! However, since LLVM optimization does not work across module boundaries,
30//! using such a highly granular partitioning would lead to very slow runtime
31//! code since it would effectively prohibit inlining and other inter-procedure
32//! optimizations. We want to avoid that as much as possible.
33//!
34//! Thus we end up with a trade-off: The bigger the codegen units, the better
35//! LLVM's optimizer can do its work, but also the smaller the compilation time
36//! reduction we get from incremental compilation.
37//!
38//! Ideally, we would create a partitioning such that there are few big codegen
39//! units with few interdependencies between them. For now though, we use the
40//! following heuristic to determine the partitioning:
41//!
42//! - There are two codegen units for every source-level module:
43//! - One for "stable", that is non-generic, code
44//! - One for more "volatile" code, i.e., monomorphized instances of functions
45//!   defined in that module
46//!
47//! In order to see why this heuristic makes sense, let's take a look at when a
48//! codegen unit can get invalidated:
49//!
50//! 1. The most straightforward case is when the BODY of a function or global
51//! changes. Then any codegen unit containing the code for that item has to be
52//! re-compiled. Note that this includes all codegen units where the function
53//! has been inlined.
54//!
55//! 2. The next case is when the SIGNATURE of a function or global changes. In
56//! this case, all codegen units containing a REFERENCE to that item have to be
57//! re-compiled. This is a superset of case 1.
58//!
59//! 3. The final and most subtle case is when a REFERENCE to a generic function
60//! is added or removed somewhere. Even though the definition of the function
61//! might be unchanged, a new REFERENCE might introduce a new monomorphized
62//! instance of this function which has to be placed and compiled somewhere.
63//! Conversely, when removing a REFERENCE, it might have been the last one with
64//! that particular set of generic arguments and thus we have to remove it.
65//!
66//! From the above we see that just using one codegen unit per source-level
67//! module is not such a good idea, since just adding a REFERENCE to some
68//! generic item somewhere else would invalidate everything within the module
69//! containing the generic item. The heuristic above reduces this detrimental
70//! side-effect of references a little by at least not touching the non-generic
71//! code of the module.
72//!
73//! A Note on Inlining
74//! ------------------
75//! As briefly mentioned above, in order for LLVM to be able to inline a
76//! function call, the body of the function has to be available in the LLVM
77//! module where the call is made. This has a few consequences for partitioning:
78//!
79//! - The partitioning algorithm has to take care of placing functions into all
80//!   codegen units where they should be available for inlining. It also has to
81//!   decide on the correct linkage for these functions.
82//!
83//! - The partitioning algorithm has to know which functions are likely to get
84//!   inlined, so it can distribute function instantiations accordingly. Since
85//!   there is no way of knowing for sure which functions LLVM will decide to
86//!   inline in the end, we apply a heuristic here: Only functions marked with
87//!   `#[inline]` are considered for inlining by the partitioner. The current
88//!   implementation will not try to determine if a function is likely to be
89//!   inlined by looking at the functions definition.
90//!
91//! Note though that as a side-effect of creating a codegen units per
92//! source-level module, functions from the same module will be available for
93//! inlining, even when they are not marked `#[inline]`.
94
95mod autodiff;
96
97use std::cmp;
98use std::collections::hash_map::Entry;
99use std::fs::{self, File};
100use std::io::Write;
101use std::path::{Path, PathBuf};
102
103use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
104use rustc_data_structures::sync;
105use rustc_data_structures::unord::{UnordMap, UnordSet};
106use rustc_hir::LangItem;
107use rustc_hir::attrs::{InlineAttr, Linkage};
108use rustc_hir::def::DefKind;
109use rustc_hir::def_id::{DefId, DefIdSet, LOCAL_CRATE};
110use rustc_hir::definitions::DefPathDataName;
111use rustc_middle::bug;
112use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
113use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel};
114use rustc_middle::mir::mono::{
115    CodegenUnit, CodegenUnitNameBuilder, InstantiationMode, MonoItem, MonoItemData,
116    MonoItemPartitions, Visibility,
117};
118use rustc_middle::ty::print::{characteristic_def_id_of_type, with_no_trimmed_paths};
119use rustc_middle::ty::{self, InstanceKind, TyCtxt};
120use rustc_middle::util::Providers;
121use rustc_session::CodegenUnits;
122use rustc_session::config::{DumpMonoStatsFormat, SwitchWithOptPath};
123use rustc_span::Symbol;
124use rustc_target::spec::SymbolVisibility;
125use tracing::debug;
126
127use crate::collector::{self, MonoItemCollectionStrategy, UsageMap};
128use crate::errors::{CouldntDumpMonoStats, SymbolAlreadyDefined};
129
130struct PartitioningCx<'a, 'tcx> {
131    tcx: TyCtxt<'tcx>,
132    usage_map: &'a UsageMap<'tcx>,
133}
134
135struct PlacedMonoItems<'tcx> {
136    /// The codegen units, sorted by name to make things deterministic.
137    codegen_units: Vec<CodegenUnit<'tcx>>,
138
139    internalization_candidates: UnordSet<MonoItem<'tcx>>,
140}
141
142// The output CGUs are sorted by name.
143fn partition<'tcx, I>(
144    tcx: TyCtxt<'tcx>,
145    mono_items: I,
146    usage_map: &UsageMap<'tcx>,
147) -> Vec<CodegenUnit<'tcx>>
148where
149    I: Iterator<Item = MonoItem<'tcx>>,
150{
151    let _prof_timer = tcx.prof.generic_activity("cgu_partitioning");
152
153    let cx = &PartitioningCx { tcx, usage_map };
154
155    // Place all mono items into a codegen unit. `place_mono_items` is
156    // responsible for initializing the CGU size estimates.
157    let PlacedMonoItems { mut codegen_units, internalization_candidates } = {
158        let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_place_items");
159        let placed = place_mono_items(cx, mono_items);
160
161        debug_dump(tcx, "PLACE", &placed.codegen_units);
162
163        placed
164    };
165
166    // Merge until we don't exceed the max CGU count.
167    // `merge_codegen_units` is responsible for updating the CGU size
168    // estimates.
169    {
170        let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_merge_cgus");
171        merge_codegen_units(cx, &mut codegen_units);
172        debug_dump(tcx, "MERGE", &codegen_units);
173    }
174
175    // Make as many symbols "internal" as possible, so LLVM has more freedom to
176    // optimize.
177    if !tcx.sess.link_dead_code() {
178        let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_internalize_symbols");
179        internalize_symbols(cx, &mut codegen_units, internalization_candidates);
180
181        debug_dump(tcx, "INTERNALIZE", &codegen_units);
182    }
183
184    // Mark one CGU for dead code, if necessary.
185    if tcx.sess.instrument_coverage() {
186        mark_code_coverage_dead_code_cgu(&mut codegen_units);
187    }
188
189    // Ensure CGUs are sorted by name, so that we get deterministic results.
190    if !codegen_units.is_sorted_by(|a, b| a.name().as_str() <= b.name().as_str()) {
191        let mut names = String::new();
192        for cgu in codegen_units.iter() {
193            names += &format!("- {}\n", cgu.name());
194        }
195        bug!("unsorted CGUs:\n{names}");
196    }
197
198    codegen_units
199}
200
201fn place_mono_items<'tcx, I>(cx: &PartitioningCx<'_, 'tcx>, mono_items: I) -> PlacedMonoItems<'tcx>
202where
203    I: Iterator<Item = MonoItem<'tcx>>,
204{
205    let mut codegen_units = UnordMap::default();
206    let is_incremental_build = cx.tcx.sess.opts.incremental.is_some();
207    let mut internalization_candidates = UnordSet::default();
208
209    // Determine if monomorphizations instantiated in this crate will be made
210    // available to downstream crates. This depends on whether we are in
211    // share-generics mode and whether the current crate can even have
212    // downstream crates.
213    let can_export_generics = cx.tcx.local_crate_exports_generics();
214    let always_export_generics = can_export_generics && cx.tcx.sess.opts.share_generics();
215
216    let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
217    let cgu_name_cache = &mut UnordMap::default();
218
219    for mono_item in mono_items {
220        // Handle only root (GloballyShared) items directly here. Inlined (LocalCopy) items
221        // are handled at the bottom of the loop based on reachability, with one exception.
222        // The #[lang = "start"] item is the program entrypoint, so there are no calls to it in MIR.
223        // So even if its mode is LocalCopy, we need to treat it like a root.
224        match mono_item.instantiation_mode(cx.tcx) {
225            InstantiationMode::GloballyShared { .. } => {}
226            InstantiationMode::LocalCopy => continue,
227        }
228
229        let characteristic_def_id = characteristic_def_id_of_mono_item(cx.tcx, mono_item);
230        let is_volatile = is_incremental_build && mono_item.is_generic_fn();
231
232        let cgu_name = match characteristic_def_id {
233            Some(def_id) => compute_codegen_unit_name(
234                cx.tcx,
235                cgu_name_builder,
236                def_id,
237                is_volatile,
238                cgu_name_cache,
239            ),
240            None => fallback_cgu_name(cgu_name_builder),
241        };
242
243        let cgu = codegen_units.entry(cgu_name).or_insert_with(|| CodegenUnit::new(cgu_name));
244
245        let mut can_be_internalized = true;
246        let (linkage, visibility) = mono_item_linkage_and_visibility(
247            cx.tcx,
248            &mono_item,
249            &mut can_be_internalized,
250            can_export_generics,
251            always_export_generics,
252        );
253
254        // We can't differentiate a function that got inlined.
255        let autodiff_active = cfg!(llvm_enzyme)
256            && matches!(mono_item, MonoItem::Fn(_))
257            && cx
258                .tcx
259                .codegen_fn_attrs(mono_item.def_id())
260                .autodiff_item
261                .as_ref()
262                .is_some_and(|ad| ad.is_active());
263
264        if !autodiff_active && visibility == Visibility::Hidden && can_be_internalized {
265            internalization_candidates.insert(mono_item);
266        }
267        let size_estimate = mono_item.size_estimate(cx.tcx);
268
269        cgu.items_mut()
270            .insert(mono_item, MonoItemData { inlined: false, linkage, visibility, size_estimate });
271
272        // Get all inlined items that are reachable from `mono_item` without
273        // going via another root item. This includes drop-glue, functions from
274        // external crates, and local functions the definition of which is
275        // marked with `#[inline]`.
276        let mut reachable_inlined_items = FxIndexSet::default();
277        get_reachable_inlined_items(cx.tcx, mono_item, cx.usage_map, &mut reachable_inlined_items);
278
279        // Add those inlined items. It's possible an inlined item is reachable
280        // from multiple root items within a CGU, which is fine, it just means
281        // the `insert` will be a no-op.
282        for inlined_item in reachable_inlined_items {
283            // This is a CGU-private copy.
284            cgu.items_mut().entry(inlined_item).or_insert_with(|| MonoItemData {
285                inlined: true,
286                linkage: Linkage::Internal,
287                visibility: Visibility::Default,
288                size_estimate: inlined_item.size_estimate(cx.tcx),
289            });
290        }
291    }
292
293    // Always ensure we have at least one CGU; otherwise, if we have a
294    // crate with just types (for example), we could wind up with no CGU.
295    if codegen_units.is_empty() {
296        let cgu_name = fallback_cgu_name(cgu_name_builder);
297        codegen_units.insert(cgu_name, CodegenUnit::new(cgu_name));
298    }
299
300    let mut codegen_units: Vec<_> = cx.tcx.with_stable_hashing_context(|ref hcx| {
301        codegen_units.into_items().map(|(_, cgu)| cgu).collect_sorted(hcx, true)
302    });
303
304    for cgu in codegen_units.iter_mut() {
305        cgu.compute_size_estimate();
306    }
307
308    return PlacedMonoItems { codegen_units, internalization_candidates };
309
310    fn get_reachable_inlined_items<'tcx>(
311        tcx: TyCtxt<'tcx>,
312        item: MonoItem<'tcx>,
313        usage_map: &UsageMap<'tcx>,
314        visited: &mut FxIndexSet<MonoItem<'tcx>>,
315    ) {
316        usage_map.for_each_inlined_used_item(tcx, item, |inlined_item| {
317            let is_new = visited.insert(inlined_item);
318            if is_new {
319                get_reachable_inlined_items(tcx, inlined_item, usage_map, visited);
320            }
321        });
322    }
323}
324
325// This function requires the CGUs to be sorted by name on input, and ensures
326// they are sorted by name on return, for deterministic behaviour.
327fn merge_codegen_units<'tcx>(
328    cx: &PartitioningCx<'_, 'tcx>,
329    codegen_units: &mut Vec<CodegenUnit<'tcx>>,
330) {
331    assert!(cx.tcx.sess.codegen_units().as_usize() >= 1);
332
333    // A sorted order here ensures merging is deterministic.
334    assert!(codegen_units.is_sorted_by(|a, b| a.name().as_str() <= b.name().as_str()));
335
336    // This map keeps track of what got merged into what.
337    let mut cgu_contents: UnordMap<Symbol, Vec<Symbol>> =
338        codegen_units.iter().map(|cgu| (cgu.name(), vec![cgu.name()])).collect();
339
340    // If N is the maximum number of CGUs, and the CGUs are sorted from largest
341    // to smallest, we repeatedly find which CGU in codegen_units[N..] has the
342    // greatest overlap of inlined items with codegen_units[N-1], merge that
343    // CGU into codegen_units[N-1], then re-sort by size and repeat.
344    //
345    // We use inlined item overlap to guide this merging because it minimizes
346    // duplication of inlined items, which makes LLVM be faster and generate
347    // better and smaller machine code.
348    //
349    // Why merge into codegen_units[N-1]? We want CGUs to have similar sizes,
350    // which means we don't want codegen_units[0..N] (the already big ones)
351    // getting any bigger, if we can avoid it. When we have more than N CGUs
352    // then at least one of the biggest N will have to grow. codegen_units[N-1]
353    // is the smallest of those, and so has the most room to grow.
354    let max_codegen_units = cx.tcx.sess.codegen_units().as_usize();
355    while codegen_units.len() > max_codegen_units {
356        // Sort small CGUs to the back.
357        codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
358
359        let cgu_dst = &codegen_units[max_codegen_units - 1];
360
361        // Find the CGU that overlaps the most with `cgu_dst`. In the case of a
362        // tie, favour the earlier (bigger) CGU.
363        let mut max_overlap = 0;
364        let mut max_overlap_i = max_codegen_units;
365        for (i, cgu_src) in codegen_units.iter().enumerate().skip(max_codegen_units) {
366            if cgu_src.size_estimate() <= max_overlap {
367                // None of the remaining overlaps can exceed `max_overlap`, so
368                // stop looking.
369                break;
370            }
371
372            let overlap = compute_inlined_overlap(cgu_dst, cgu_src);
373            if overlap > max_overlap {
374                max_overlap = overlap;
375                max_overlap_i = i;
376            }
377        }
378
379        let mut cgu_src = codegen_units.swap_remove(max_overlap_i);
380        let cgu_dst = &mut codegen_units[max_codegen_units - 1];
381
382        // Move the items from `cgu_src` to `cgu_dst`. Some of them may be
383        // duplicate inlined items, in which case the destination CGU is
384        // unaffected. Recalculate size estimates afterwards.
385        cgu_dst.items_mut().append(cgu_src.items_mut());
386        cgu_dst.compute_size_estimate();
387
388        // Record that `cgu_dst` now contains all the stuff that was in
389        // `cgu_src` before.
390        let mut consumed_cgu_names = cgu_contents.remove(&cgu_src.name()).unwrap();
391        cgu_contents.get_mut(&cgu_dst.name()).unwrap().append(&mut consumed_cgu_names);
392    }
393
394    // Having multiple CGUs can drastically speed up compilation. But for
395    // non-incremental builds, tiny CGUs slow down compilation *and* result in
396    // worse generated code. So we don't allow CGUs smaller than this (unless
397    // there is just one CGU, of course). Note that CGU sizes of 100,000+ are
398    // common in larger programs, so this isn't all that large.
399    const NON_INCR_MIN_CGU_SIZE: usize = 1800;
400
401    // Repeatedly merge the two smallest codegen units as long as: it's a
402    // non-incremental build, and the user didn't specify a CGU count, and
403    // there are multiple CGUs, and some are below the minimum size.
404    //
405    // The "didn't specify a CGU count" condition is because when an explicit
406    // count is requested we observe it as closely as possible. For example,
407    // the `compiler_builtins` crate sets `codegen-units = 10000` and it's
408    // critical they aren't merged. Also, some tests use explicit small values
409    // and likewise won't work if small CGUs are merged.
410    while cx.tcx.sess.opts.incremental.is_none()
411        && matches!(cx.tcx.sess.codegen_units(), CodegenUnits::Default(_))
412        && codegen_units.len() > 1
413        && codegen_units.iter().any(|cgu| cgu.size_estimate() < NON_INCR_MIN_CGU_SIZE)
414    {
415        // Sort small cgus to the back.
416        codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
417
418        let mut smallest = codegen_units.pop().unwrap();
419        let second_smallest = codegen_units.last_mut().unwrap();
420
421        // Move the items from `smallest` to `second_smallest`. Some of them
422        // may be duplicate inlined items, in which case the destination CGU is
423        // unaffected. Recalculate size estimates afterwards.
424        second_smallest.items_mut().append(smallest.items_mut());
425        second_smallest.compute_size_estimate();
426
427        // Don't update `cgu_contents`, that's only for incremental builds.
428    }
429
430    let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx);
431
432    // Rename the newly merged CGUs.
433    if cx.tcx.sess.opts.incremental.is_some() {
434        // If we are doing incremental compilation, we want CGU names to
435        // reflect the path of the source level module they correspond to.
436        // For CGUs that contain the code of multiple modules because of the
437        // merging done above, we use a concatenation of the names of all
438        // contained CGUs.
439        let new_cgu_names = UnordMap::from(
440            cgu_contents
441                .items()
442                // This `filter` makes sure we only update the name of CGUs that
443                // were actually modified by merging.
444                .filter(|(_, cgu_contents)| cgu_contents.len() > 1)
445                .map(|(current_cgu_name, cgu_contents)| {
446                    let mut cgu_contents: Vec<&str> =
447                        cgu_contents.iter().map(|s| s.as_str()).collect();
448
449                    // Sort the names, so things are deterministic and easy to
450                    // predict. We are sorting primitive `&str`s here so we can
451                    // use unstable sort.
452                    cgu_contents.sort_unstable();
453
454                    (*current_cgu_name, cgu_contents.join("--"))
455                }),
456        );
457
458        for cgu in codegen_units.iter_mut() {
459            if let Some(new_cgu_name) = new_cgu_names.get(&cgu.name()) {
460                let new_cgu_name = if cx.tcx.sess.opts.unstable_opts.human_readable_cgu_names {
461                    Symbol::intern(&CodegenUnit::shorten_name(new_cgu_name))
462                } else {
463                    // If we don't require CGU names to be human-readable,
464                    // we use a fixed length hash of the composite CGU name
465                    // instead.
466                    Symbol::intern(&CodegenUnit::mangle_name(new_cgu_name))
467                };
468                cgu.set_name(new_cgu_name);
469            }
470        }
471
472        // A sorted order here ensures what follows can be deterministic.
473        codegen_units.sort_by(|a, b| a.name().as_str().cmp(b.name().as_str()));
474    } else {
475        // When compiling non-incrementally, we rename the CGUS so they have
476        // identical names except for the numeric suffix, something like
477        // `regex.f10ba03eb5ec7975-cgu.N`, where `N` varies.
478        //
479        // It is useful for debugging and profiling purposes if the resulting
480        // CGUs are sorted by name *and* reverse sorted by size. (CGU 0 is the
481        // biggest, CGU 1 is the second biggest, etc.)
482        //
483        // So first we reverse sort by size. Then we generate the names with
484        // zero-padded suffixes, which means they are automatically sorted by
485        // names. The numeric suffix width depends on the number of CGUs, which
486        // is always greater than zero:
487        // - [1,9]     CGUs: `0`, `1`, `2`, ...
488        // - [10,99]   CGUs: `00`, `01`, `02`, ...
489        // - [100,999] CGUs: `000`, `001`, `002`, ...
490        // - etc.
491        //
492        // If we didn't zero-pad the sorted-by-name order would be `XYZ-cgu.0`,
493        // `XYZ-cgu.1`, `XYZ-cgu.10`, `XYZ-cgu.11`, ..., `XYZ-cgu.2`, etc.
494        codegen_units.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
495        let num_digits = codegen_units.len().ilog10() as usize + 1;
496        for (index, cgu) in codegen_units.iter_mut().enumerate() {
497            // Note: `WorkItem::short_description` depends on this name ending
498            // with `-cgu.` followed by a numeric suffix. Please keep it in
499            // sync with this code.
500            let suffix = format!("{index:0num_digits$}");
501            let numbered_codegen_unit_name =
502                cgu_name_builder.build_cgu_name_no_mangle(LOCAL_CRATE, &["cgu"], Some(suffix));
503            cgu.set_name(numbered_codegen_unit_name);
504        }
505    }
506}
507
508/// Compute the combined size of all inlined items that appear in both `cgu1`
509/// and `cgu2`.
510fn compute_inlined_overlap<'tcx>(cgu1: &CodegenUnit<'tcx>, cgu2: &CodegenUnit<'tcx>) -> usize {
511    // Either order works. We pick the one that involves iterating over fewer
512    // items.
513    let (src_cgu, dst_cgu) =
514        if cgu1.items().len() <= cgu2.items().len() { (cgu1, cgu2) } else { (cgu2, cgu1) };
515
516    let mut overlap = 0;
517    for (item, data) in src_cgu.items().iter() {
518        if data.inlined && dst_cgu.items().contains_key(item) {
519            overlap += data.size_estimate;
520        }
521    }
522    overlap
523}
524
525fn internalize_symbols<'tcx>(
526    cx: &PartitioningCx<'_, 'tcx>,
527    codegen_units: &mut [CodegenUnit<'tcx>],
528    internalization_candidates: UnordSet<MonoItem<'tcx>>,
529) {
530    /// For symbol internalization, we need to know whether a symbol/mono-item
531    /// is used from outside the codegen unit it is defined in. This type is
532    /// used to keep track of that.
533    #[derive(Clone, PartialEq, Eq, Debug)]
534    enum MonoItemPlacement {
535        SingleCgu(Symbol),
536        MultipleCgus,
537    }
538
539    let mut mono_item_placements = UnordMap::default();
540    let single_codegen_unit = codegen_units.len() == 1;
541
542    if !single_codegen_unit {
543        for cgu in codegen_units.iter() {
544            for item in cgu.items().keys() {
545                // If there is more than one codegen unit, we need to keep track
546                // in which codegen units each monomorphization is placed.
547                match mono_item_placements.entry(*item) {
548                    Entry::Occupied(e) => {
549                        let placement = e.into_mut();
550                        debug_assert!(match *placement {
551                            MonoItemPlacement::SingleCgu(cgu_name) => cgu_name != cgu.name(),
552                            MonoItemPlacement::MultipleCgus => true,
553                        });
554                        *placement = MonoItemPlacement::MultipleCgus;
555                    }
556                    Entry::Vacant(e) => {
557                        e.insert(MonoItemPlacement::SingleCgu(cgu.name()));
558                    }
559                }
560            }
561        }
562    }
563
564    // For each internalization candidates in each codegen unit, check if it is
565    // used from outside its defining codegen unit.
566    for cgu in codegen_units {
567        let home_cgu = MonoItemPlacement::SingleCgu(cgu.name());
568
569        for (item, data) in cgu.items_mut() {
570            if !internalization_candidates.contains(item) {
571                // This item is no candidate for internalizing, so skip it.
572                continue;
573            }
574
575            if !single_codegen_unit {
576                debug_assert_eq!(mono_item_placements[item], home_cgu);
577
578                if cx
579                    .usage_map
580                    .get_user_items(*item)
581                    .iter()
582                    .filter_map(|user_item| {
583                        // Some user mono items might not have been
584                        // instantiated. We can safely ignore those.
585                        mono_item_placements.get(user_item)
586                    })
587                    .any(|placement| *placement != home_cgu)
588                {
589                    // Found a user from another CGU, so skip to the next item
590                    // without marking this one as internal.
591                    continue;
592                }
593            }
594
595            // If we got here, we did not find any uses from other CGUs, so
596            // it's fine to make this monomorphization internal.
597            data.linkage = Linkage::Internal;
598            data.visibility = Visibility::Default;
599        }
600    }
601}
602
603fn mark_code_coverage_dead_code_cgu<'tcx>(codegen_units: &mut [CodegenUnit<'tcx>]) {
604    assert!(!codegen_units.is_empty());
605
606    // Find the smallest CGU that has exported symbols and put the dead
607    // function stubs in that CGU. We look for exported symbols to increase
608    // the likelihood the linker won't throw away the dead functions.
609    // FIXME(#92165): In order to truly resolve this, we need to make sure
610    // the object file (CGU) containing the dead function stubs is included
611    // in the final binary. This will probably require forcing these
612    // function symbols to be included via `-u` or `/include` linker args.
613    let dead_code_cgu = codegen_units
614        .iter_mut()
615        .filter(|cgu| cgu.items().iter().any(|(_, data)| data.linkage == Linkage::External))
616        .min_by_key(|cgu| cgu.size_estimate());
617
618    // If there are no CGUs that have externally linked items, then we just
619    // pick the first CGU as a fallback.
620    let dead_code_cgu = if let Some(cgu) = dead_code_cgu { cgu } else { &mut codegen_units[0] };
621
622    dead_code_cgu.make_code_coverage_dead_code_cgu();
623}
624
625fn characteristic_def_id_of_mono_item<'tcx>(
626    tcx: TyCtxt<'tcx>,
627    mono_item: MonoItem<'tcx>,
628) -> Option<DefId> {
629    match mono_item {
630        MonoItem::Fn(instance) => {
631            let def_id = match instance.def {
632                ty::InstanceKind::Item(def) => def,
633                ty::InstanceKind::VTableShim(..)
634                | ty::InstanceKind::ReifyShim(..)
635                | ty::InstanceKind::FnPtrShim(..)
636                | ty::InstanceKind::ClosureOnceShim { .. }
637                | ty::InstanceKind::ConstructCoroutineInClosureShim { .. }
638                | ty::InstanceKind::Intrinsic(..)
639                | ty::InstanceKind::DropGlue(..)
640                | ty::InstanceKind::Virtual(..)
641                | ty::InstanceKind::CloneShim(..)
642                | ty::InstanceKind::ThreadLocalShim(..)
643                | ty::InstanceKind::FnPtrAddrShim(..)
644                | ty::InstanceKind::FutureDropPollShim(..)
645                | ty::InstanceKind::AsyncDropGlue(..)
646                | ty::InstanceKind::AsyncDropGlueCtorShim(..) => return None,
647            };
648
649            // If this is a method, we want to put it into the same module as
650            // its self-type. If the self-type does not provide a characteristic
651            // DefId, we use the location of the impl after all.
652
653            let assoc_parent = tcx.assoc_parent(def_id);
654
655            if let Some((_, DefKind::Trait)) = assoc_parent {
656                let self_ty = instance.args.type_at(0);
657                // This is a default implementation of a trait method.
658                return characteristic_def_id_of_type(self_ty).or(Some(def_id));
659            }
660
661            if let Some((impl_def_id, DefKind::Impl { of_trait })) = assoc_parent {
662                if of_trait
663                    && tcx.sess.opts.incremental.is_some()
664                    && tcx.is_lang_item(tcx.trait_id_of_impl(impl_def_id).unwrap(), LangItem::Drop)
665                {
666                    // Put `Drop::drop` into the same cgu as `drop_in_place`
667                    // since `drop_in_place` is the only thing that can
668                    // call it.
669                    return None;
670                }
671
672                // This is a method within an impl, find out what the self-type is:
673                let impl_self_ty = tcx.instantiate_and_normalize_erasing_regions(
674                    instance.args,
675                    ty::TypingEnv::fully_monomorphized(),
676                    tcx.type_of(impl_def_id),
677                );
678                if let Some(def_id) = characteristic_def_id_of_type(impl_self_ty) {
679                    return Some(def_id);
680                }
681            }
682
683            Some(def_id)
684        }
685        MonoItem::Static(def_id) => Some(def_id),
686        MonoItem::GlobalAsm(item_id) => Some(item_id.owner_id.to_def_id()),
687    }
688}
689
690fn compute_codegen_unit_name(
691    tcx: TyCtxt<'_>,
692    name_builder: &mut CodegenUnitNameBuilder<'_>,
693    def_id: DefId,
694    volatile: bool,
695    cache: &mut CguNameCache,
696) -> Symbol {
697    // Find the innermost module that is not nested within a function.
698    let mut current_def_id = def_id;
699    let mut cgu_def_id = None;
700    // Walk backwards from the item we want to find the module for.
701    loop {
702        if current_def_id.is_crate_root() {
703            if cgu_def_id.is_none() {
704                // If we have not found a module yet, take the crate root.
705                cgu_def_id = Some(def_id.krate.as_def_id());
706            }
707            break;
708        } else if tcx.def_kind(current_def_id) == DefKind::Mod {
709            if cgu_def_id.is_none() {
710                cgu_def_id = Some(current_def_id);
711            }
712        } else {
713            // If we encounter something that is not a module, throw away
714            // any module that we've found so far because we now know that
715            // it is nested within something else.
716            cgu_def_id = None;
717        }
718
719        current_def_id = tcx.parent(current_def_id);
720    }
721
722    let cgu_def_id = cgu_def_id.unwrap();
723
724    *cache.entry((cgu_def_id, volatile)).or_insert_with(|| {
725        let def_path = tcx.def_path(cgu_def_id);
726
727        let components = def_path.data.iter().map(|part| match part.data.name() {
728            DefPathDataName::Named(name) => name,
729            DefPathDataName::Anon { .. } => unreachable!(),
730        });
731
732        let volatile_suffix = volatile.then_some("volatile");
733
734        name_builder.build_cgu_name(def_path.krate, components, volatile_suffix)
735    })
736}
737
738// Anything we can't find a proper codegen unit for goes into this.
739fn fallback_cgu_name(name_builder: &mut CodegenUnitNameBuilder<'_>) -> Symbol {
740    name_builder.build_cgu_name(LOCAL_CRATE, &["fallback"], Some("cgu"))
741}
742
743fn mono_item_linkage_and_visibility<'tcx>(
744    tcx: TyCtxt<'tcx>,
745    mono_item: &MonoItem<'tcx>,
746    can_be_internalized: &mut bool,
747    can_export_generics: bool,
748    always_export_generics: bool,
749) -> (Linkage, Visibility) {
750    if let Some(explicit_linkage) = mono_item.explicit_linkage(tcx) {
751        return (explicit_linkage, Visibility::Default);
752    }
753    let vis = mono_item_visibility(
754        tcx,
755        mono_item,
756        can_be_internalized,
757        can_export_generics,
758        always_export_generics,
759    );
760    (Linkage::External, vis)
761}
762
763type CguNameCache = UnordMap<(DefId, bool), Symbol>;
764
765fn static_visibility<'tcx>(
766    tcx: TyCtxt<'tcx>,
767    can_be_internalized: &mut bool,
768    def_id: DefId,
769) -> Visibility {
770    if tcx.is_reachable_non_generic(def_id) {
771        *can_be_internalized = false;
772        default_visibility(tcx, def_id, false)
773    } else {
774        Visibility::Hidden
775    }
776}
777
778fn mono_item_visibility<'tcx>(
779    tcx: TyCtxt<'tcx>,
780    mono_item: &MonoItem<'tcx>,
781    can_be_internalized: &mut bool,
782    can_export_generics: bool,
783    always_export_generics: bool,
784) -> Visibility {
785    let instance = match mono_item {
786        // This is pretty complicated; see below.
787        MonoItem::Fn(instance) => instance,
788
789        // Misc handling for generics and such, but otherwise:
790        MonoItem::Static(def_id) => return static_visibility(tcx, can_be_internalized, *def_id),
791        MonoItem::GlobalAsm(item_id) => {
792            return static_visibility(tcx, can_be_internalized, item_id.owner_id.to_def_id());
793        }
794    };
795
796    let def_id = match instance.def {
797        InstanceKind::Item(def_id)
798        | InstanceKind::DropGlue(def_id, Some(_))
799        | InstanceKind::FutureDropPollShim(def_id, _, _)
800        | InstanceKind::AsyncDropGlue(def_id, _)
801        | InstanceKind::AsyncDropGlueCtorShim(def_id, _) => def_id,
802
803        // We match the visibility of statics here
804        InstanceKind::ThreadLocalShim(def_id) => {
805            return static_visibility(tcx, can_be_internalized, def_id);
806        }
807
808        // These are all compiler glue and such, never exported, always hidden.
809        InstanceKind::VTableShim(..)
810        | InstanceKind::ReifyShim(..)
811        | InstanceKind::FnPtrShim(..)
812        | InstanceKind::Virtual(..)
813        | InstanceKind::Intrinsic(..)
814        | InstanceKind::ClosureOnceShim { .. }
815        | InstanceKind::ConstructCoroutineInClosureShim { .. }
816        | InstanceKind::DropGlue(..)
817        | InstanceKind::CloneShim(..)
818        | InstanceKind::FnPtrAddrShim(..) => return Visibility::Hidden,
819    };
820
821    // Both the `start_fn` lang item and `main` itself should not be exported,
822    // so we give them with `Hidden` visibility but these symbols are
823    // only referenced from the actual `main` symbol which we unfortunately
824    // don't know anything about during partitioning/collection. As a result we
825    // forcibly keep this symbol out of the `internalization_candidates` set.
826    //
827    // FIXME: eventually we don't want to always force this symbol to have
828    //        hidden visibility, it should indeed be a candidate for
829    //        internalization, but we have to understand that it's referenced
830    //        from the `main` symbol we'll generate later.
831    //
832    //        This may be fixable with a new `InstanceKind` perhaps? Unsure!
833    if tcx.is_entrypoint(def_id) {
834        *can_be_internalized = false;
835        return Visibility::Hidden;
836    }
837
838    let is_generic = instance.args.non_erasable_generics().next().is_some();
839
840    // Upstream `DefId` instances get different handling than local ones.
841    let Some(def_id) = def_id.as_local() else {
842        return if is_generic
843            && (always_export_generics
844                || (can_export_generics
845                    && tcx.codegen_fn_attrs(def_id).inline == InlineAttr::Never))
846        {
847            // If it is an upstream monomorphization and we export generics, we must make
848            // it available to downstream crates.
849            *can_be_internalized = false;
850            default_visibility(tcx, def_id, true)
851        } else {
852            Visibility::Hidden
853        };
854    };
855
856    if is_generic {
857        if always_export_generics
858            || (can_export_generics && tcx.codegen_fn_attrs(def_id).inline == InlineAttr::Never)
859        {
860            if tcx.is_unreachable_local_definition(def_id) {
861                // This instance cannot be used from another crate.
862                Visibility::Hidden
863            } else {
864                // This instance might be useful in a downstream crate.
865                *can_be_internalized = false;
866                default_visibility(tcx, def_id.to_def_id(), true)
867            }
868        } else {
869            // We are not exporting generics or the definition is not reachable
870            // for downstream crates, we can internalize its instantiations.
871            Visibility::Hidden
872        }
873    } else {
874        // If this isn't a generic function then we mark this a `Default` if
875        // this is a reachable item, meaning that it's a symbol other crates may
876        // use when they link to us.
877        if tcx.is_reachable_non_generic(def_id.to_def_id()) {
878            *can_be_internalized = false;
879            debug_assert!(!is_generic);
880            return default_visibility(tcx, def_id.to_def_id(), false);
881        }
882
883        // If this isn't reachable then we're gonna tag this with `Hidden`
884        // visibility. In some situations though we'll want to prevent this
885        // symbol from being internalized.
886        //
887        // There's two categories of items here:
888        //
889        // * First is weak lang items. These are basically mechanisms for
890        //   libcore to forward-reference symbols defined later in crates like
891        //   the standard library or `#[panic_handler]` definitions. The
892        //   definition of these weak lang items needs to be referenceable by
893        //   libcore, so we're no longer a candidate for internalization.
894        //   Removal of these functions can't be done by LLVM but rather must be
895        //   done by the linker as it's a non-local decision.
896        //
897        // * Second is "std internal symbols". Currently this is primarily used
898        //   for allocator symbols. Allocators are a little weird in their
899        //   implementation, but the idea is that the compiler, at the last
900        //   minute, defines an allocator with an injected object file. The
901        //   `alloc` crate references these symbols (`__rust_alloc`) and the
902        //   definition doesn't get hooked up until a linked crate artifact is
903        //   generated.
904        //
905        //   The symbols synthesized by the compiler (`__rust_alloc`) are thin
906        //   veneers around the actual implementation, some other symbol which
907        //   implements the same ABI. These symbols (things like `__rg_alloc`,
908        //   `__rdl_alloc`, `__rde_alloc`, etc), are all tagged with "std
909        //   internal symbols".
910        //
911        //   The std-internal symbols here **should not show up in a dll as an
912        //   exported interface**, so they return `false` from
913        //   `is_reachable_non_generic` above and we'll give them `Hidden`
914        //   visibility below. Like the weak lang items, though, we can't let
915        //   LLVM internalize them as this decision is left up to the linker to
916        //   omit them, so prevent them from being internalized.
917        let attrs = tcx.codegen_fn_attrs(def_id);
918        if attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
919            *can_be_internalized = false;
920        }
921
922        Visibility::Hidden
923    }
924}
925
926fn default_visibility(tcx: TyCtxt<'_>, id: DefId, is_generic: bool) -> Visibility {
927    // Fast-path to avoid expensive query call below
928    if tcx.sess.default_visibility() == SymbolVisibility::Interposable {
929        return Visibility::Default;
930    }
931
932    let export_level = if is_generic {
933        // Generic functions never have export-level C.
934        SymbolExportLevel::Rust
935    } else {
936        match tcx.reachable_non_generics(id.krate).get(&id) {
937            Some(SymbolExportInfo { level: SymbolExportLevel::C, .. }) => SymbolExportLevel::C,
938            _ => SymbolExportLevel::Rust,
939        }
940    };
941
942    match export_level {
943        // C-export level items remain at `Default` to allow C code to
944        // access and interpose them.
945        SymbolExportLevel::C => Visibility::Default,
946
947        // For all other symbols, `default_visibility` determines which visibility to use.
948        SymbolExportLevel::Rust => tcx.sess.default_visibility().into(),
949    }
950}
951
952fn debug_dump<'a, 'tcx: 'a>(tcx: TyCtxt<'tcx>, label: &str, cgus: &[CodegenUnit<'tcx>]) {
953    let dump = move || {
954        use std::fmt::Write;
955
956        let mut num_cgus = 0;
957        let mut all_cgu_sizes = Vec::new();
958
959        // Note: every unique root item is placed exactly once, so the number
960        // of unique root items always equals the number of placed root items.
961        //
962        // Also, unreached inlined items won't be counted here. This is fine.
963
964        let mut inlined_items = UnordSet::default();
965
966        let mut root_items = 0;
967        let mut unique_inlined_items = 0;
968        let mut placed_inlined_items = 0;
969
970        let mut root_size = 0;
971        let mut unique_inlined_size = 0;
972        let mut placed_inlined_size = 0;
973
974        for cgu in cgus.iter() {
975            num_cgus += 1;
976            all_cgu_sizes.push(cgu.size_estimate());
977
978            for (item, data) in cgu.items() {
979                if !data.inlined {
980                    root_items += 1;
981                    root_size += data.size_estimate;
982                } else {
983                    if inlined_items.insert(item) {
984                        unique_inlined_items += 1;
985                        unique_inlined_size += data.size_estimate;
986                    }
987                    placed_inlined_items += 1;
988                    placed_inlined_size += data.size_estimate;
989                }
990            }
991        }
992
993        all_cgu_sizes.sort_unstable_by_key(|&n| cmp::Reverse(n));
994
995        let unique_items = root_items + unique_inlined_items;
996        let placed_items = root_items + placed_inlined_items;
997        let items_ratio = placed_items as f64 / unique_items as f64;
998
999        let unique_size = root_size + unique_inlined_size;
1000        let placed_size = root_size + placed_inlined_size;
1001        let size_ratio = placed_size as f64 / unique_size as f64;
1002
1003        let mean_cgu_size = placed_size as f64 / num_cgus as f64;
1004
1005        assert_eq!(placed_size, all_cgu_sizes.iter().sum::<usize>());
1006
1007        let s = &mut String::new();
1008        let _ = writeln!(s, "{label}");
1009        let _ = writeln!(
1010            s,
1011            "- unique items: {unique_items} ({root_items} root + {unique_inlined_items} inlined), \
1012               unique size: {unique_size} ({root_size} root + {unique_inlined_size} inlined)\n\
1013             - placed items: {placed_items} ({root_items} root + {placed_inlined_items} inlined), \
1014               placed size: {placed_size} ({root_size} root + {placed_inlined_size} inlined)\n\
1015             - placed/unique items ratio: {items_ratio:.2}, \
1016               placed/unique size ratio: {size_ratio:.2}\n\
1017             - CGUs: {num_cgus}, mean size: {mean_cgu_size:.1}, sizes: {}",
1018            list(&all_cgu_sizes),
1019        );
1020        let _ = writeln!(s);
1021
1022        for (i, cgu) in cgus.iter().enumerate() {
1023            let name = cgu.name();
1024            let size = cgu.size_estimate();
1025            let num_items = cgu.items().len();
1026            let mean_size = size as f64 / num_items as f64;
1027
1028            let mut placed_item_sizes: Vec<_> =
1029                cgu.items().values().map(|data| data.size_estimate).collect();
1030            placed_item_sizes.sort_unstable_by_key(|&n| cmp::Reverse(n));
1031            let sizes = list(&placed_item_sizes);
1032
1033            let _ = writeln!(s, "- CGU[{i}]");
1034            let _ = writeln!(s, "  - {name}, size: {size}");
1035            let _ =
1036                writeln!(s, "  - items: {num_items}, mean size: {mean_size:.1}, sizes: {sizes}",);
1037
1038            for (item, data) in cgu.items_in_deterministic_order(tcx) {
1039                let linkage = data.linkage;
1040                let symbol_name = item.symbol_name(tcx).name;
1041                let symbol_hash_start = symbol_name.rfind('h');
1042                let symbol_hash = symbol_hash_start.map_or("<no hash>", |i| &symbol_name[i..]);
1043                let kind = if !data.inlined { "root" } else { "inlined" };
1044                let size = data.size_estimate;
1045                let _ = with_no_trimmed_paths!(writeln!(
1046                    s,
1047                    "  - {item} [{linkage:?}] [{symbol_hash}] ({kind}, size: {size})"
1048                ));
1049            }
1050
1051            let _ = writeln!(s);
1052        }
1053
1054        return std::mem::take(s);
1055
1056        // Converts a slice to a string, capturing repetitions to save space.
1057        // E.g. `[4, 4, 4, 3, 2, 1, 1, 1, 1, 1]` -> "[4 (x3), 3, 2, 1 (x5)]".
1058        fn list(ns: &[usize]) -> String {
1059            let mut v = Vec::new();
1060            if ns.is_empty() {
1061                return "[]".to_string();
1062            }
1063
1064            let mut elem = |curr, curr_count| {
1065                if curr_count == 1 {
1066                    v.push(format!("{curr}"));
1067                } else {
1068                    v.push(format!("{curr} (x{curr_count})"));
1069                }
1070            };
1071
1072            let mut curr = ns[0];
1073            let mut curr_count = 1;
1074
1075            for &n in &ns[1..] {
1076                if n != curr {
1077                    elem(curr, curr_count);
1078                    curr = n;
1079                    curr_count = 1;
1080                } else {
1081                    curr_count += 1;
1082                }
1083            }
1084            elem(curr, curr_count);
1085
1086            format!("[{}]", v.join(", "))
1087        }
1088    };
1089
1090    debug!("{}", dump());
1091}
1092
1093#[inline(never)] // give this a place in the profiler
1094fn assert_symbols_are_distinct<'a, 'tcx, I>(tcx: TyCtxt<'tcx>, mono_items: I)
1095where
1096    I: Iterator<Item = &'a MonoItem<'tcx>>,
1097    'tcx: 'a,
1098{
1099    let _prof_timer = tcx.prof.generic_activity("assert_symbols_are_distinct");
1100
1101    let mut symbols: Vec<_> =
1102        mono_items.map(|mono_item| (mono_item, mono_item.symbol_name(tcx))).collect();
1103
1104    symbols.sort_by_key(|sym| sym.1);
1105
1106    for &[(mono_item1, ref sym1), (mono_item2, ref sym2)] in symbols.array_windows() {
1107        if sym1 == sym2 {
1108            let span1 = mono_item1.local_span(tcx);
1109            let span2 = mono_item2.local_span(tcx);
1110
1111            // Deterministically select one of the spans for error reporting
1112            let span = match (span1, span2) {
1113                (Some(span1), Some(span2)) => {
1114                    Some(if span1.lo().0 > span2.lo().0 { span1 } else { span2 })
1115                }
1116                (span1, span2) => span1.or(span2),
1117            };
1118
1119            tcx.dcx().emit_fatal(SymbolAlreadyDefined { span, symbol: sym1.to_string() });
1120        }
1121    }
1122}
1123
1124fn collect_and_partition_mono_items(tcx: TyCtxt<'_>, (): ()) -> MonoItemPartitions<'_> {
1125    let collection_strategy = if tcx.sess.link_dead_code() {
1126        MonoItemCollectionStrategy::Eager
1127    } else {
1128        MonoItemCollectionStrategy::Lazy
1129    };
1130
1131    let (items, usage_map) = collector::collect_crate_mono_items(tcx, collection_strategy);
1132
1133    // If there was an error during collection (e.g. from one of the constants we evaluated),
1134    // then we stop here. This way codegen does not have to worry about failing constants.
1135    // (codegen relies on this and ICEs will happen if this is violated.)
1136    tcx.dcx().abort_if_errors();
1137
1138    let (codegen_units, _) = tcx.sess.time("partition_and_assert_distinct_symbols", || {
1139        sync::join(
1140            || {
1141                let mut codegen_units = partition(tcx, items.iter().copied(), &usage_map);
1142                codegen_units[0].make_primary();
1143                &*tcx.arena.alloc_from_iter(codegen_units)
1144            },
1145            || assert_symbols_are_distinct(tcx, items.iter()),
1146        )
1147    });
1148
1149    if tcx.prof.enabled() {
1150        // Record CGU size estimates for self-profiling.
1151        for cgu in codegen_units {
1152            tcx.prof.artifact_size(
1153                "codegen_unit_size_estimate",
1154                cgu.name().as_str(),
1155                cgu.size_estimate() as u64,
1156            );
1157        }
1158    }
1159
1160    #[cfg(not(llvm_enzyme))]
1161    let autodiff_mono_items: Vec<_> = vec![];
1162    #[cfg(llvm_enzyme)]
1163    let mut autodiff_mono_items: Vec<_> = vec![];
1164    let mono_items: DefIdSet = items
1165        .iter()
1166        .filter_map(|mono_item| match *mono_item {
1167            MonoItem::Fn(ref instance) => {
1168                #[cfg(llvm_enzyme)]
1169                autodiff_mono_items.push((mono_item, instance));
1170                Some(instance.def_id())
1171            }
1172            MonoItem::Static(def_id) => Some(def_id),
1173            _ => None,
1174        })
1175        .collect();
1176
1177    let autodiff_items =
1178        autodiff::find_autodiff_source_functions(tcx, &usage_map, autodiff_mono_items);
1179    let autodiff_items = tcx.arena.alloc_from_iter(autodiff_items);
1180
1181    // Output monomorphization stats per def_id
1182    if let SwitchWithOptPath::Enabled(ref path) = tcx.sess.opts.unstable_opts.dump_mono_stats
1183        && let Err(err) =
1184            dump_mono_items_stats(tcx, codegen_units, path, tcx.crate_name(LOCAL_CRATE))
1185    {
1186        tcx.dcx().emit_fatal(CouldntDumpMonoStats { error: err.to_string() });
1187    }
1188
1189    if tcx.sess.opts.unstable_opts.print_mono_items {
1190        let mut item_to_cgus: UnordMap<_, Vec<_>> = Default::default();
1191
1192        for cgu in codegen_units {
1193            for (&mono_item, &data) in cgu.items() {
1194                item_to_cgus.entry(mono_item).or_default().push((cgu.name(), data.linkage));
1195            }
1196        }
1197
1198        let mut item_keys: Vec<_> = items
1199            .iter()
1200            .map(|i| {
1201                let mut output = with_no_trimmed_paths!(i.to_string());
1202                output.push_str(" @@");
1203                let mut empty = Vec::new();
1204                let cgus = item_to_cgus.get_mut(i).unwrap_or(&mut empty);
1205                cgus.sort_by_key(|(name, _)| *name);
1206                cgus.dedup();
1207                for &(ref cgu_name, linkage) in cgus.iter() {
1208                    output.push(' ');
1209                    output.push_str(cgu_name.as_str());
1210
1211                    let linkage_abbrev = match linkage {
1212                        Linkage::External => "External",
1213                        Linkage::AvailableExternally => "Available",
1214                        Linkage::LinkOnceAny => "OnceAny",
1215                        Linkage::LinkOnceODR => "OnceODR",
1216                        Linkage::WeakAny => "WeakAny",
1217                        Linkage::WeakODR => "WeakODR",
1218                        Linkage::Internal => "Internal",
1219                        Linkage::ExternalWeak => "ExternalWeak",
1220                        Linkage::Common => "Common",
1221                    };
1222
1223                    output.push('[');
1224                    output.push_str(linkage_abbrev);
1225                    output.push(']');
1226                }
1227                output
1228            })
1229            .collect();
1230
1231        item_keys.sort();
1232
1233        for item in item_keys {
1234            println!("MONO_ITEM {item}");
1235        }
1236    }
1237
1238    MonoItemPartitions {
1239        all_mono_items: tcx.arena.alloc(mono_items),
1240        codegen_units,
1241        autodiff_items,
1242    }
1243}
1244
1245/// Outputs stats about instantiation counts and estimated size, per `MonoItem`'s
1246/// def, to a file in the given output directory.
1247fn dump_mono_items_stats<'tcx>(
1248    tcx: TyCtxt<'tcx>,
1249    codegen_units: &[CodegenUnit<'tcx>],
1250    output_directory: &Option<PathBuf>,
1251    crate_name: Symbol,
1252) -> Result<(), Box<dyn std::error::Error>> {
1253    let output_directory = if let Some(directory) = output_directory {
1254        fs::create_dir_all(directory)?;
1255        directory
1256    } else {
1257        Path::new(".")
1258    };
1259
1260    let format = tcx.sess.opts.unstable_opts.dump_mono_stats_format;
1261    let ext = format.extension();
1262    let filename = format!("{crate_name}.mono_items.{ext}");
1263    let output_path = output_directory.join(&filename);
1264    let mut file = File::create_buffered(&output_path)?;
1265
1266    // Gather instantiated mono items grouped by def_id
1267    let mut items_per_def_id: FxIndexMap<_, Vec<_>> = Default::default();
1268    for cgu in codegen_units {
1269        cgu.items()
1270            .keys()
1271            // Avoid variable-sized compiler-generated shims
1272            .filter(|mono_item| mono_item.is_user_defined())
1273            .for_each(|mono_item| {
1274                items_per_def_id.entry(mono_item.def_id()).or_default().push(mono_item);
1275            });
1276    }
1277
1278    #[derive(serde::Serialize)]
1279    struct MonoItem {
1280        name: String,
1281        instantiation_count: usize,
1282        size_estimate: usize,
1283        total_estimate: usize,
1284    }
1285
1286    // Output stats sorted by total instantiated size, from heaviest to lightest
1287    let mut stats: Vec<_> = items_per_def_id
1288        .into_iter()
1289        .map(|(def_id, items)| {
1290            let name = with_no_trimmed_paths!(tcx.def_path_str(def_id));
1291            let instantiation_count = items.len();
1292            let size_estimate = items[0].size_estimate(tcx);
1293            let total_estimate = instantiation_count * size_estimate;
1294            MonoItem { name, instantiation_count, size_estimate, total_estimate }
1295        })
1296        .collect();
1297    stats.sort_unstable_by_key(|item| cmp::Reverse(item.total_estimate));
1298
1299    if !stats.is_empty() {
1300        match format {
1301            DumpMonoStatsFormat::Json => serde_json::to_writer(file, &stats)?,
1302            DumpMonoStatsFormat::Markdown => {
1303                writeln!(
1304                    file,
1305                    "| Item | Instantiation count | Estimated Cost Per Instantiation | Total Estimated Cost |"
1306                )?;
1307                writeln!(file, "| --- | ---: | ---: | ---: |")?;
1308
1309                for MonoItem { name, instantiation_count, size_estimate, total_estimate } in stats {
1310                    writeln!(
1311                        file,
1312                        "| `{name}` | {instantiation_count} | {size_estimate} | {total_estimate} |"
1313                    )?;
1314                }
1315            }
1316        }
1317    }
1318
1319    Ok(())
1320}
1321
1322pub(crate) fn provide(providers: &mut Providers) {
1323    providers.collect_and_partition_mono_items = collect_and_partition_mono_items;
1324
1325    providers.is_codegened_item =
1326        |tcx, def_id| tcx.collect_and_partition_mono_items(()).all_mono_items.contains(&def_id);
1327
1328    providers.codegen_unit = |tcx, name| {
1329        tcx.collect_and_partition_mono_items(())
1330            .codegen_units
1331            .iter()
1332            .find(|cgu| cgu.name() == name)
1333            .unwrap_or_else(|| panic!("failed to find cgu with name {name:?}"))
1334    };
1335
1336    providers.size_estimate = |tcx, instance| {
1337        match instance.def {
1338            // "Normal" functions size estimate: the number of
1339            // statements, plus one for the terminator.
1340            InstanceKind::Item(..)
1341            | InstanceKind::DropGlue(..)
1342            | InstanceKind::AsyncDropGlueCtorShim(..) => {
1343                let mir = tcx.instance_mir(instance.def);
1344                mir.basic_blocks.iter().map(|bb| bb.statements.len() + 1).sum()
1345            }
1346            // Other compiler-generated shims size estimate: 1
1347            _ => 1,
1348        }
1349    };
1350
1351    collector::provide(providers);
1352}