rustc_monomorphize/
collector.rs

1//! Mono Item Collection
2//! ====================
3//!
4//! This module is responsible for discovering all items that will contribute
5//! to code generation of the crate. The important part here is that it not only
6//! needs to find syntax-level items (functions, structs, etc) but also all
7//! their monomorphized instantiations. Every non-generic, non-const function
8//! maps to one LLVM artifact. Every generic function can produce
9//! from zero to N artifacts, depending on the sets of type arguments it
10//! is instantiated with.
11//! This also applies to generic items from other crates: A generic definition
12//! in crate X might produce monomorphizations that are compiled into crate Y.
13//! We also have to collect these here.
14//!
15//! The following kinds of "mono items" are handled here:
16//!
17//! - Functions
18//! - Methods
19//! - Closures
20//! - Statics
21//! - Drop glue
22//!
23//! The following things also result in LLVM artifacts, but are not collected
24//! here, since we instantiate them locally on demand when needed in a given
25//! codegen unit:
26//!
27//! - Constants
28//! - VTables
29//! - Object Shims
30//!
31//! The main entry point is `collect_crate_mono_items`, at the bottom of this file.
32//!
33//! General Algorithm
34//! -----------------
35//! Let's define some terms first:
36//!
37//! - A "mono item" is something that results in a function or global in
38//!   the LLVM IR of a codegen unit. Mono items do not stand on their
39//!   own, they can use other mono items. For example, if function
40//!   `foo()` calls function `bar()` then the mono item for `foo()`
41//!   uses the mono item for function `bar()`. In general, the
42//!   definition for mono item A using a mono item B is that
43//!   the LLVM artifact produced for A uses the LLVM artifact produced
44//!   for B.
45//!
46//! - Mono items and the uses between them form a directed graph,
47//!   where the mono items are the nodes and uses form the edges.
48//!   Let's call this graph the "mono item graph".
49//!
50//! - The mono item graph for a program contains all mono items
51//!   that are needed in order to produce the complete LLVM IR of the program.
52//!
53//! The purpose of the algorithm implemented in this module is to build the
54//! mono item graph for the current crate. It runs in two phases:
55//!
56//! 1. Discover the roots of the graph by traversing the HIR of the crate.
57//! 2. Starting from the roots, find uses by inspecting the MIR
58//!    representation of the item corresponding to a given node, until no more
59//!    new nodes are found.
60//!
61//! ### Discovering roots
62//! The roots of the mono item graph correspond to the public non-generic
63//! syntactic items in the source code. We find them by walking the HIR of the
64//! crate, and whenever we hit upon a public function, method, or static item,
65//! we create a mono item consisting of the items DefId and, since we only
66//! consider non-generic items, an empty type-parameters set. (In eager
67//! collection mode, during incremental compilation, all non-generic functions
68//! are considered as roots, as well as when the `-Clink-dead-code` option is
69//! specified. Functions marked `#[no_mangle]` and functions called by inlinable
70//! functions also always act as roots.)
71//!
72//! ### Finding uses
73//! Given a mono item node, we can discover uses by inspecting its MIR. We walk
74//! the MIR to find other mono items used by each mono item. Since the mono
75//! item we are currently at is always monomorphic, we also know the concrete
76//! type arguments of its used mono items. The specific forms a use can take in
77//! MIR are quite diverse. Here is an overview:
78//!
79//! #### Calling Functions/Methods
80//! The most obvious way for one mono item to use another is a
81//! function or method call (represented by a CALL terminator in MIR). But
82//! calls are not the only thing that might introduce a use between two
83//! function mono items, and as we will see below, they are just a
84//! specialization of the form described next, and consequently will not get any
85//! special treatment in the algorithm.
86//!
87//! #### Taking a reference to a function or method
88//! A function does not need to actually be called in order to be used by
89//! another function. It suffices to just take a reference in order to introduce
90//! an edge. Consider the following example:
91//!
92//! ```
93//! # use core::fmt::Display;
94//! fn print_val<T: Display>(x: T) {
95//!     println!("{}", x);
96//! }
97//!
98//! fn call_fn(f: &dyn Fn(i32), x: i32) {
99//!     f(x);
100//! }
101//!
102//! fn main() {
103//!     let print_i32 = print_val::<i32>;
104//!     call_fn(&print_i32, 0);
105//! }
106//! ```
107//! The MIR of none of these functions will contain an explicit call to
108//! `print_val::<i32>`. Nonetheless, in order to mono this program, we need
109//! an instance of this function. Thus, whenever we encounter a function or
110//! method in operand position, we treat it as a use of the current
111//! mono item. Calls are just a special case of that.
112//!
113//! #### Drop glue
114//! Drop glue mono items are introduced by MIR drop-statements. The
115//! generated mono item will have additional drop-glue item uses if the
116//! type to be dropped contains nested values that also need to be dropped. It
117//! might also have a function item use for the explicit `Drop::drop`
118//! implementation of its type.
119//!
120//! #### Unsizing Casts
121//! A subtle way of introducing use edges is by casting to a trait object.
122//! Since the resulting wide-pointer contains a reference to a vtable, we need to
123//! instantiate all dyn-compatible methods of the trait, as we need to store
124//! pointers to these functions even if they never get called anywhere. This can
125//! be seen as a special case of taking a function reference.
126//!
127//!
128//! Interaction with Cross-Crate Inlining
129//! -------------------------------------
130//! The binary of a crate will not only contain machine code for the items
131//! defined in the source code of that crate. It will also contain monomorphic
132//! instantiations of any extern generic functions and of functions marked with
133//! `#[inline]`.
134//! The collection algorithm handles this more or less mono. If it is
135//! about to create a mono item for something with an external `DefId`,
136//! it will take a look if the MIR for that item is available, and if so just
137//! proceed normally. If the MIR is not available, it assumes that the item is
138//! just linked to and no node is created; which is exactly what we want, since
139//! no machine code should be generated in the current crate for such an item.
140//!
141//! Eager and Lazy Collection Strategy
142//! ----------------------------------
143//! Mono item collection can be performed with one of two strategies:
144//!
145//! - Lazy strategy means that items will only be instantiated when actually
146//!   used. The goal is to produce the least amount of machine code
147//!   possible.
148//!
149//! - Eager strategy is meant to be used in conjunction with incremental compilation
150//!   where a stable set of mono items is more important than a minimal
151//!   one. Thus, eager strategy will instantiate drop-glue for every drop-able type
152//!   in the crate, even if no drop call for that type exists (yet). It will
153//!   also instantiate default implementations of trait methods, something that
154//!   otherwise is only done on demand.
155//!
156//! Collection-time const evaluation and "mentioned" items
157//! ------------------------------------------------------
158//!
159//! One important role of collection is to evaluate all constants that are used by all the items
160//! which are being collected. Codegen can then rely on only encountering constants that evaluate
161//! successfully, and if a constant fails to evaluate, the collector has much better context to be
162//! able to show where this constant comes up.
163//!
164//! However, the exact set of "used" items (collected as described above), and therefore the exact
165//! set of used constants, can depend on optimizations. Optimizing away dead code may optimize away
166//! a function call that uses a failing constant, so an unoptimized build may fail where an
167//! optimized build succeeds. This is undesirable.
168//!
169//! To avoid this, the collector has the concept of "mentioned" items. Some time during the MIR
170//! pipeline, before any optimization-level-dependent optimizations, we compute a list of all items
171//! that syntactically appear in the code. These are considered "mentioned", and even if they are in
172//! dead code and get optimized away (which makes them no longer "used"), they are still
173//! "mentioned". For every used item, the collector ensures that all mentioned items, recursively,
174//! do not use a failing constant. This is reflected via the [`CollectionMode`], which determines
175//! whether we are visiting a used item or merely a mentioned item.
176//!
177//! The collector and "mentioned items" gathering (which lives in `rustc_mir_transform::mentioned_items`)
178//! need to stay in sync in the following sense:
179//!
180//! - For every item that the collector gather that could eventually lead to build failure (most
181//!   likely due to containing a constant that fails to evaluate), a corresponding mentioned item
182//!   must be added. This should use the exact same strategy as the ecollector to make sure they are
183//!   in sync. However, while the collector works on monomorphized types, mentioned items are
184//!   collected on generic MIR -- so any time the collector checks for a particular type (such as
185//!   `ty::FnDef`), we have to just onconditionally add this as a mentioned item.
186//! - In `visit_mentioned_item`, we then do with that mentioned item exactly what the collector
187//!   would have done during regular MIR visiting. Basically you can think of the collector having
188//!   two stages, a pre-monomorphization stage and a post-monomorphization stage (usually quite
189//!   literally separated by a call to `self.monomorphize`); the pre-monomorphizationn stage is
190//!   duplicated in mentioned items gathering and the post-monomorphization stage is duplicated in
191//!   `visit_mentioned_item`.
192//! - Finally, as a performance optimization, the collector should fill `used_mentioned_item` during
193//!   its MIR traversal with exactly what mentioned item gathering would have added in the same
194//!   situation. This detects mentioned items that have *not* been optimized away and hence don't
195//!   need a dedicated traversal.
196//!
197//! Open Issues
198//! -----------
199//! Some things are not yet fully implemented in the current version of this
200//! module.
201//!
202//! ### Const Fns
203//! Ideally, no mono item should be generated for const fns unless there
204//! is a call to them that cannot be evaluated at compile time. At the moment
205//! this is not implemented however: a mono item will be produced
206//! regardless of whether it is actually needed or not.
207
208use std::cell::OnceCell;
209
210use rustc_data_structures::fx::FxIndexMap;
211use rustc_data_structures::sync::{MTLock, par_for_each_in};
212use rustc_data_structures::unord::{UnordMap, UnordSet};
213use rustc_hir as hir;
214use rustc_hir::attrs::InlineAttr;
215use rustc_hir::def::DefKind;
216use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId};
217use rustc_hir::lang_items::LangItem;
218use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
219use rustc_middle::mir::interpret::{AllocId, ErrorHandled, GlobalAlloc, Scalar};
220use rustc_middle::mir::mono::{CollectionMode, InstantiationMode, MonoItem};
221use rustc_middle::mir::visit::Visitor as MirVisitor;
222use rustc_middle::mir::{self, Location, MentionedItem, traversal};
223use rustc_middle::query::TyCtxtAt;
224use rustc_middle::ty::adjustment::{CustomCoerceUnsized, PointerCoercion};
225use rustc_middle::ty::layout::ValidityRequirement;
226use rustc_middle::ty::{
227    self, GenericArgs, GenericParamDefKind, Instance, InstanceKind, Ty, TyCtxt, TypeFoldable,
228    TypeVisitableExt, VtblEntry,
229};
230use rustc_middle::util::Providers;
231use rustc_middle::{bug, span_bug};
232use rustc_session::Limit;
233use rustc_session::config::{DebugInfo, EntryFnType};
234use rustc_span::source_map::{Spanned, dummy_spanned, respan};
235use rustc_span::{DUMMY_SP, Span};
236use tracing::{debug, instrument, trace};
237
238use crate::errors::{
239    self, EncounteredErrorWhileInstantiating, EncounteredErrorWhileInstantiatingGlobalAsm,
240    NoOptimizedMir, RecursionLimit,
241};
242
243#[derive(PartialEq)]
244pub(crate) enum MonoItemCollectionStrategy {
245    Eager,
246    Lazy,
247}
248
249/// The state that is shared across the concurrent threads that are doing collection.
250struct SharedState<'tcx> {
251    /// Items that have been or are currently being recursively collected.
252    visited: MTLock<UnordSet<MonoItem<'tcx>>>,
253    /// Items that have been or are currently being recursively treated as "mentioned", i.e., their
254    /// consts are evaluated but nothing is added to the collection.
255    mentioned: MTLock<UnordSet<MonoItem<'tcx>>>,
256    /// Which items are being used where, for better errors.
257    usage_map: MTLock<UsageMap<'tcx>>,
258}
259
260pub(crate) struct UsageMap<'tcx> {
261    // Maps every mono item to the mono items used by it.
262    pub used_map: UnordMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>>,
263
264    // Maps every mono item to the mono items that use it.
265    user_map: UnordMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>>,
266}
267
268impl<'tcx> UsageMap<'tcx> {
269    fn new() -> UsageMap<'tcx> {
270        UsageMap { used_map: Default::default(), user_map: Default::default() }
271    }
272
273    fn record_used<'a>(&mut self, user_item: MonoItem<'tcx>, used_items: &'a MonoItems<'tcx>)
274    where
275        'tcx: 'a,
276    {
277        for used_item in used_items.items() {
278            self.user_map.entry(used_item).or_default().push(user_item);
279        }
280
281        assert!(self.used_map.insert(user_item, used_items.items().collect()).is_none());
282    }
283
284    pub(crate) fn get_user_items(&self, item: MonoItem<'tcx>) -> &[MonoItem<'tcx>] {
285        self.user_map.get(&item).map(|items| items.as_slice()).unwrap_or(&[])
286    }
287
288    /// Internally iterate over all inlined items used by `item`.
289    pub(crate) fn for_each_inlined_used_item<F>(
290        &self,
291        tcx: TyCtxt<'tcx>,
292        item: MonoItem<'tcx>,
293        mut f: F,
294    ) where
295        F: FnMut(MonoItem<'tcx>),
296    {
297        let used_items = self.used_map.get(&item).unwrap();
298        for used_item in used_items.iter() {
299            let is_inlined = used_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy;
300            if is_inlined {
301                f(*used_item);
302            }
303        }
304    }
305}
306
307struct MonoItems<'tcx> {
308    // We want a set of MonoItem + Span where trying to re-insert a MonoItem with a different Span
309    // is ignored. Map does that, but it looks odd.
310    items: FxIndexMap<MonoItem<'tcx>, Span>,
311}
312
313impl<'tcx> MonoItems<'tcx> {
314    fn new() -> Self {
315        Self { items: FxIndexMap::default() }
316    }
317
318    fn is_empty(&self) -> bool {
319        self.items.is_empty()
320    }
321
322    fn push(&mut self, item: Spanned<MonoItem<'tcx>>) {
323        // Insert only if the entry does not exist. A normal insert would stomp the first span that
324        // got inserted.
325        self.items.entry(item.node).or_insert(item.span);
326    }
327
328    fn items(&self) -> impl Iterator<Item = MonoItem<'tcx>> {
329        self.items.keys().cloned()
330    }
331}
332
333impl<'tcx> IntoIterator for MonoItems<'tcx> {
334    type Item = Spanned<MonoItem<'tcx>>;
335    type IntoIter = impl Iterator<Item = Spanned<MonoItem<'tcx>>>;
336
337    fn into_iter(self) -> Self::IntoIter {
338        self.items.into_iter().map(|(item, span)| respan(span, item))
339    }
340}
341
342impl<'tcx> Extend<Spanned<MonoItem<'tcx>>> for MonoItems<'tcx> {
343    fn extend<I>(&mut self, iter: I)
344    where
345        I: IntoIterator<Item = Spanned<MonoItem<'tcx>>>,
346    {
347        for item in iter {
348            self.push(item)
349        }
350    }
351}
352
353fn collect_items_root<'tcx>(
354    tcx: TyCtxt<'tcx>,
355    starting_item: Spanned<MonoItem<'tcx>>,
356    state: &SharedState<'tcx>,
357    recursion_limit: Limit,
358) {
359    if !state.visited.lock_mut().insert(starting_item.node) {
360        // We've been here already, no need to search again.
361        return;
362    }
363    let mut recursion_depths = DefIdMap::default();
364    collect_items_rec(
365        tcx,
366        starting_item,
367        state,
368        &mut recursion_depths,
369        recursion_limit,
370        CollectionMode::UsedItems,
371    );
372}
373
374/// Collect all monomorphized items reachable from `starting_point`, and emit a note diagnostic if a
375/// post-monomorphization error is encountered during a collection step.
376///
377/// `mode` determined whether we are scanning for [used items][CollectionMode::UsedItems]
378/// or [mentioned items][CollectionMode::MentionedItems].
379#[instrument(skip(tcx, state, recursion_depths, recursion_limit), level = "debug")]
380fn collect_items_rec<'tcx>(
381    tcx: TyCtxt<'tcx>,
382    starting_item: Spanned<MonoItem<'tcx>>,
383    state: &SharedState<'tcx>,
384    recursion_depths: &mut DefIdMap<usize>,
385    recursion_limit: Limit,
386    mode: CollectionMode,
387) {
388    let mut used_items = MonoItems::new();
389    let mut mentioned_items = MonoItems::new();
390    let recursion_depth_reset;
391
392    // Post-monomorphization errors MVP
393    //
394    // We can encounter errors while monomorphizing an item, but we don't have a good way of
395    // showing a complete stack of spans ultimately leading to collecting the erroneous one yet.
396    // (It's also currently unclear exactly which diagnostics and information would be interesting
397    // to report in such cases)
398    //
399    // This leads to suboptimal error reporting: a post-monomorphization error (PME) will be
400    // shown with just a spanned piece of code causing the error, without information on where
401    // it was called from. This is especially obscure if the erroneous mono item is in a
402    // dependency. See for example issue #85155, where, before minimization, a PME happened two
403    // crates downstream from libcore's stdarch, without a way to know which dependency was the
404    // cause.
405    //
406    // If such an error occurs in the current crate, its span will be enough to locate the
407    // source. If the cause is in another crate, the goal here is to quickly locate which mono
408    // item in the current crate is ultimately responsible for causing the error.
409    //
410    // To give at least _some_ context to the user: while collecting mono items, we check the
411    // error count. If it has changed, a PME occurred, and we trigger some diagnostics about the
412    // current step of mono items collection.
413    //
414    // FIXME: don't rely on global state, instead bubble up errors. Note: this is very hard to do.
415    let error_count = tcx.dcx().err_count();
416
417    // In `mentioned_items` we collect items that were mentioned in this MIR but possibly do not
418    // need to be monomorphized. This is done to ensure that optimizing away function calls does not
419    // hide const-eval errors that those calls would otherwise have triggered.
420    match starting_item.node {
421        MonoItem::Static(def_id) => {
422            recursion_depth_reset = None;
423
424            // Statics always get evaluated (which is possible because they can't be generic), so for
425            // `MentionedItems` collection there's nothing to do here.
426            if mode == CollectionMode::UsedItems {
427                let instance = Instance::mono(tcx, def_id);
428
429                // Sanity check whether this ended up being collected accidentally
430                debug_assert!(tcx.should_codegen_locally(instance));
431
432                let DefKind::Static { nested, .. } = tcx.def_kind(def_id) else { bug!() };
433                // Nested statics have no type.
434                if !nested {
435                    let ty = instance.ty(tcx, ty::TypingEnv::fully_monomorphized());
436                    visit_drop_use(tcx, ty, true, starting_item.span, &mut used_items);
437                }
438
439                if let Ok(alloc) = tcx.eval_static_initializer(def_id) {
440                    for &prov in alloc.inner().provenance().ptrs().values() {
441                        collect_alloc(tcx, prov.alloc_id(), &mut used_items);
442                    }
443                }
444
445                if tcx.needs_thread_local_shim(def_id) {
446                    used_items.push(respan(
447                        starting_item.span,
448                        MonoItem::Fn(Instance {
449                            def: InstanceKind::ThreadLocalShim(def_id),
450                            args: GenericArgs::empty(),
451                        }),
452                    ));
453                }
454            }
455
456            // mentioned_items stays empty since there's no codegen for statics. statics don't get
457            // optimized, and if they did then the const-eval interpreter would have to worry about
458            // mentioned_items.
459        }
460        MonoItem::Fn(instance) => {
461            // Sanity check whether this ended up being collected accidentally
462            debug_assert!(tcx.should_codegen_locally(instance));
463
464            // Keep track of the monomorphization recursion depth
465            recursion_depth_reset = Some(check_recursion_limit(
466                tcx,
467                instance,
468                starting_item.span,
469                recursion_depths,
470                recursion_limit,
471            ));
472
473            rustc_data_structures::stack::ensure_sufficient_stack(|| {
474                let (used, mentioned) = tcx.items_of_instance((instance, mode));
475                used_items.extend(used.into_iter().copied());
476                mentioned_items.extend(mentioned.into_iter().copied());
477            });
478        }
479        MonoItem::GlobalAsm(item_id) => {
480            assert!(
481                mode == CollectionMode::UsedItems,
482                "should never encounter global_asm when collecting mentioned items"
483            );
484            recursion_depth_reset = None;
485
486            let item = tcx.hir_item(item_id);
487            if let hir::ItemKind::GlobalAsm { asm, .. } = item.kind {
488                for (op, op_sp) in asm.operands {
489                    match *op {
490                        hir::InlineAsmOperand::Const { .. } => {
491                            // Only constants which resolve to a plain integer
492                            // are supported. Therefore the value should not
493                            // depend on any other items.
494                        }
495                        hir::InlineAsmOperand::SymFn { expr } => {
496                            let fn_ty = tcx.typeck(item_id.owner_id).expr_ty(expr);
497                            visit_fn_use(tcx, fn_ty, false, *op_sp, &mut used_items);
498                        }
499                        hir::InlineAsmOperand::SymStatic { path: _, def_id } => {
500                            let instance = Instance::mono(tcx, def_id);
501                            if tcx.should_codegen_locally(instance) {
502                                trace!("collecting static {:?}", def_id);
503                                used_items.push(dummy_spanned(MonoItem::Static(def_id)));
504                            }
505                        }
506                        hir::InlineAsmOperand::In { .. }
507                        | hir::InlineAsmOperand::Out { .. }
508                        | hir::InlineAsmOperand::InOut { .. }
509                        | hir::InlineAsmOperand::SplitInOut { .. }
510                        | hir::InlineAsmOperand::Label { .. } => {
511                            span_bug!(*op_sp, "invalid operand type for global_asm!")
512                        }
513                    }
514                }
515            } else {
516                span_bug!(item.span, "Mismatch between hir::Item type and MonoItem type")
517            }
518
519            // mention_items stays empty as nothing gets optimized here.
520        }
521    };
522
523    // Check for PMEs and emit a diagnostic if one happened. To try to show relevant edges of the
524    // mono item graph.
525    if tcx.dcx().err_count() > error_count
526        && starting_item.node.is_generic_fn()
527        && starting_item.node.is_user_defined()
528    {
529        match starting_item.node {
530            MonoItem::Fn(instance) => tcx.dcx().emit_note(EncounteredErrorWhileInstantiating {
531                span: starting_item.span,
532                kind: "fn",
533                instance,
534            }),
535            MonoItem::Static(def_id) => tcx.dcx().emit_note(EncounteredErrorWhileInstantiating {
536                span: starting_item.span,
537                kind: "static",
538                instance: Instance::new_raw(def_id, GenericArgs::empty()),
539            }),
540            MonoItem::GlobalAsm(_) => {
541                tcx.dcx().emit_note(EncounteredErrorWhileInstantiatingGlobalAsm {
542                    span: starting_item.span,
543                })
544            }
545        }
546    }
547    // Only updating `usage_map` for used items as otherwise we may be inserting the same item
548    // multiple times (if it is first 'mentioned' and then later actually used), and the usage map
549    // logic does not like that.
550    // This is part of the output of collection and hence only relevant for "used" items.
551    // ("Mentioned" items are only considered internally during collection.)
552    if mode == CollectionMode::UsedItems {
553        state.usage_map.lock_mut().record_used(starting_item.node, &used_items);
554    }
555
556    {
557        let mut visited = OnceCell::default();
558        if mode == CollectionMode::UsedItems {
559            used_items
560                .items
561                .retain(|k, _| visited.get_mut_or_init(|| state.visited.lock_mut()).insert(*k));
562        }
563
564        let mut mentioned = OnceCell::default();
565        mentioned_items.items.retain(|k, _| {
566            !visited.get_or_init(|| state.visited.lock()).contains(k)
567                && mentioned.get_mut_or_init(|| state.mentioned.lock_mut()).insert(*k)
568        });
569    }
570    if mode == CollectionMode::MentionedItems {
571        assert!(used_items.is_empty(), "'mentioned' collection should never encounter used items");
572    } else {
573        for used_item in used_items {
574            collect_items_rec(
575                tcx,
576                used_item,
577                state,
578                recursion_depths,
579                recursion_limit,
580                CollectionMode::UsedItems,
581            );
582        }
583    }
584
585    // Walk over mentioned items *after* used items, so that if an item is both mentioned and used then
586    // the loop above has fully collected it, so this loop will skip it.
587    for mentioned_item in mentioned_items {
588        collect_items_rec(
589            tcx,
590            mentioned_item,
591            state,
592            recursion_depths,
593            recursion_limit,
594            CollectionMode::MentionedItems,
595        );
596    }
597
598    if let Some((def_id, depth)) = recursion_depth_reset {
599        recursion_depths.insert(def_id, depth);
600    }
601}
602
603fn check_recursion_limit<'tcx>(
604    tcx: TyCtxt<'tcx>,
605    instance: Instance<'tcx>,
606    span: Span,
607    recursion_depths: &mut DefIdMap<usize>,
608    recursion_limit: Limit,
609) -> (DefId, usize) {
610    let def_id = instance.def_id();
611    let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
612    debug!(" => recursion depth={}", recursion_depth);
613
614    let adjusted_recursion_depth = if tcx.is_lang_item(def_id, LangItem::DropInPlace) {
615        // HACK: drop_in_place creates tight monomorphization loops. Give
616        // it more margin.
617        recursion_depth / 4
618    } else {
619        recursion_depth
620    };
621
622    // Code that needs to instantiate the same function recursively
623    // more than the recursion limit is assumed to be causing an
624    // infinite expansion.
625    if !recursion_limit.value_within_limit(adjusted_recursion_depth) {
626        let def_span = tcx.def_span(def_id);
627        let def_path_str = tcx.def_path_str(def_id);
628        tcx.dcx().emit_fatal(RecursionLimit { span, instance, def_span, def_path_str });
629    }
630
631    recursion_depths.insert(def_id, recursion_depth + 1);
632
633    (def_id, recursion_depth)
634}
635
636struct MirUsedCollector<'a, 'tcx> {
637    tcx: TyCtxt<'tcx>,
638    body: &'a mir::Body<'tcx>,
639    used_items: &'a mut MonoItems<'tcx>,
640    /// See the comment in `collect_items_of_instance` for the purpose of this set.
641    /// Note that this contains *not-monomorphized* items!
642    used_mentioned_items: &'a mut UnordSet<MentionedItem<'tcx>>,
643    instance: Instance<'tcx>,
644}
645
646impl<'a, 'tcx> MirUsedCollector<'a, 'tcx> {
647    fn monomorphize<T>(&self, value: T) -> T
648    where
649        T: TypeFoldable<TyCtxt<'tcx>>,
650    {
651        trace!("monomorphize: self.instance={:?}", self.instance);
652        self.instance.instantiate_mir_and_normalize_erasing_regions(
653            self.tcx,
654            ty::TypingEnv::fully_monomorphized(),
655            ty::EarlyBinder::bind(value),
656        )
657    }
658
659    /// Evaluates a *not yet monomorphized* constant.
660    fn eval_constant(&mut self, constant: &mir::ConstOperand<'tcx>) -> Option<mir::ConstValue> {
661        let const_ = self.monomorphize(constant.const_);
662        // Evaluate the constant. This makes const eval failure a collection-time error (rather than
663        // a codegen-time error). rustc stops after collection if there was an error, so this
664        // ensures codegen never has to worry about failing consts.
665        // (codegen relies on this and ICEs will happen if this is violated.)
666        match const_.eval(self.tcx, ty::TypingEnv::fully_monomorphized(), constant.span) {
667            Ok(v) => Some(v),
668            Err(ErrorHandled::TooGeneric(..)) => span_bug!(
669                constant.span,
670                "collection encountered polymorphic constant: {:?}",
671                const_
672            ),
673            Err(err @ ErrorHandled::Reported(..)) => {
674                err.emit_note(self.tcx);
675                return None;
676            }
677        }
678    }
679}
680
681impl<'a, 'tcx> MirVisitor<'tcx> for MirUsedCollector<'a, 'tcx> {
682    fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
683        debug!("visiting rvalue {:?}", *rvalue);
684
685        let span = self.body.source_info(location).span;
686
687        match *rvalue {
688            // When doing an cast from a regular pointer to a wide pointer, we
689            // have to instantiate all methods of the trait being cast to, so we
690            // can build the appropriate vtable.
691            mir::Rvalue::Cast(
692                mir::CastKind::PointerCoercion(PointerCoercion::Unsize, _),
693                ref operand,
694                target_ty,
695            ) => {
696                let source_ty = operand.ty(self.body, self.tcx);
697                // *Before* monomorphizing, record that we already handled this mention.
698                self.used_mentioned_items
699                    .insert(MentionedItem::UnsizeCast { source_ty, target_ty });
700                let target_ty = self.monomorphize(target_ty);
701                let source_ty = self.monomorphize(source_ty);
702                let (source_ty, target_ty) =
703                    find_tails_for_unsizing(self.tcx.at(span), source_ty, target_ty);
704                // This could also be a different Unsize instruction, like
705                // from a fixed sized array to a slice. But we are only
706                // interested in things that produce a vtable.
707                if target_ty.is_trait() && !source_ty.is_trait() {
708                    create_mono_items_for_vtable_methods(
709                        self.tcx,
710                        target_ty,
711                        source_ty,
712                        span,
713                        self.used_items,
714                    );
715                }
716            }
717            mir::Rvalue::Cast(
718                mir::CastKind::PointerCoercion(PointerCoercion::ReifyFnPointer, _),
719                ref operand,
720                _,
721            ) => {
722                let fn_ty = operand.ty(self.body, self.tcx);
723                // *Before* monomorphizing, record that we already handled this mention.
724                self.used_mentioned_items.insert(MentionedItem::Fn(fn_ty));
725                let fn_ty = self.monomorphize(fn_ty);
726                visit_fn_use(self.tcx, fn_ty, false, span, self.used_items);
727            }
728            mir::Rvalue::Cast(
729                mir::CastKind::PointerCoercion(PointerCoercion::ClosureFnPointer(_), _),
730                ref operand,
731                _,
732            ) => {
733                let source_ty = operand.ty(self.body, self.tcx);
734                // *Before* monomorphizing, record that we already handled this mention.
735                self.used_mentioned_items.insert(MentionedItem::Closure(source_ty));
736                let source_ty = self.monomorphize(source_ty);
737                if let ty::Closure(def_id, args) = *source_ty.kind() {
738                    let instance =
739                        Instance::resolve_closure(self.tcx, def_id, args, ty::ClosureKind::FnOnce);
740                    if self.tcx.should_codegen_locally(instance) {
741                        self.used_items.push(create_fn_mono_item(self.tcx, instance, span));
742                    }
743                } else {
744                    bug!()
745                }
746            }
747            mir::Rvalue::ThreadLocalRef(def_id) => {
748                assert!(self.tcx.is_thread_local_static(def_id));
749                let instance = Instance::mono(self.tcx, def_id);
750                if self.tcx.should_codegen_locally(instance) {
751                    trace!("collecting thread-local static {:?}", def_id);
752                    self.used_items.push(respan(span, MonoItem::Static(def_id)));
753                }
754            }
755            _ => { /* not interesting */ }
756        }
757
758        self.super_rvalue(rvalue, location);
759    }
760
761    /// This does not walk the MIR of the constant as that is not needed for codegen, all we need is
762    /// to ensure that the constant evaluates successfully and walk the result.
763    #[instrument(skip(self), level = "debug")]
764    fn visit_const_operand(&mut self, constant: &mir::ConstOperand<'tcx>, _location: Location) {
765        // No `super_constant` as we don't care about `visit_ty`/`visit_ty_const`.
766        let Some(val) = self.eval_constant(constant) else { return };
767        collect_const_value(self.tcx, val, self.used_items);
768    }
769
770    fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) {
771        debug!("visiting terminator {:?} @ {:?}", terminator, location);
772        let source = self.body.source_info(location).span;
773
774        let tcx = self.tcx;
775        let push_mono_lang_item = |this: &mut Self, lang_item: LangItem| {
776            let instance = Instance::mono(tcx, tcx.require_lang_item(lang_item, source));
777            if tcx.should_codegen_locally(instance) {
778                this.used_items.push(create_fn_mono_item(tcx, instance, source));
779            }
780        };
781
782        match terminator.kind {
783            mir::TerminatorKind::Call { ref func, .. }
784            | mir::TerminatorKind::TailCall { ref func, .. } => {
785                let callee_ty = func.ty(self.body, tcx);
786                // *Before* monomorphizing, record that we already handled this mention.
787                self.used_mentioned_items.insert(MentionedItem::Fn(callee_ty));
788                let callee_ty = self.monomorphize(callee_ty);
789                visit_fn_use(self.tcx, callee_ty, true, source, &mut self.used_items)
790            }
791            mir::TerminatorKind::Drop { ref place, .. } => {
792                let ty = place.ty(self.body, self.tcx).ty;
793                // *Before* monomorphizing, record that we already handled this mention.
794                self.used_mentioned_items.insert(MentionedItem::Drop(ty));
795                let ty = self.monomorphize(ty);
796                visit_drop_use(self.tcx, ty, true, source, self.used_items);
797            }
798            mir::TerminatorKind::InlineAsm { ref operands, .. } => {
799                for op in operands {
800                    match *op {
801                        mir::InlineAsmOperand::SymFn { ref value } => {
802                            let fn_ty = value.const_.ty();
803                            // *Before* monomorphizing, record that we already handled this mention.
804                            self.used_mentioned_items.insert(MentionedItem::Fn(fn_ty));
805                            let fn_ty = self.monomorphize(fn_ty);
806                            visit_fn_use(self.tcx, fn_ty, false, source, self.used_items);
807                        }
808                        mir::InlineAsmOperand::SymStatic { def_id } => {
809                            let instance = Instance::mono(self.tcx, def_id);
810                            if self.tcx.should_codegen_locally(instance) {
811                                trace!("collecting asm sym static {:?}", def_id);
812                                self.used_items.push(respan(source, MonoItem::Static(def_id)));
813                            }
814                        }
815                        _ => {}
816                    }
817                }
818            }
819            mir::TerminatorKind::Assert { ref msg, .. } => match &**msg {
820                mir::AssertKind::BoundsCheck { .. } => {
821                    push_mono_lang_item(self, LangItem::PanicBoundsCheck);
822                }
823                mir::AssertKind::MisalignedPointerDereference { .. } => {
824                    push_mono_lang_item(self, LangItem::PanicMisalignedPointerDereference);
825                }
826                mir::AssertKind::NullPointerDereference => {
827                    push_mono_lang_item(self, LangItem::PanicNullPointerDereference);
828                }
829                mir::AssertKind::InvalidEnumConstruction(_) => {
830                    push_mono_lang_item(self, LangItem::PanicInvalidEnumConstruction);
831                }
832                _ => {
833                    push_mono_lang_item(self, msg.panic_function());
834                }
835            },
836            mir::TerminatorKind::UnwindTerminate(reason) => {
837                push_mono_lang_item(self, reason.lang_item());
838            }
839            mir::TerminatorKind::Goto { .. }
840            | mir::TerminatorKind::SwitchInt { .. }
841            | mir::TerminatorKind::UnwindResume
842            | mir::TerminatorKind::Return
843            | mir::TerminatorKind::Unreachable => {}
844            mir::TerminatorKind::CoroutineDrop
845            | mir::TerminatorKind::Yield { .. }
846            | mir::TerminatorKind::FalseEdge { .. }
847            | mir::TerminatorKind::FalseUnwind { .. } => bug!(),
848        }
849
850        if let Some(mir::UnwindAction::Terminate(reason)) = terminator.unwind() {
851            push_mono_lang_item(self, reason.lang_item());
852        }
853
854        self.super_terminator(terminator, location);
855    }
856}
857
858fn visit_drop_use<'tcx>(
859    tcx: TyCtxt<'tcx>,
860    ty: Ty<'tcx>,
861    is_direct_call: bool,
862    source: Span,
863    output: &mut MonoItems<'tcx>,
864) {
865    let instance = Instance::resolve_drop_in_place(tcx, ty);
866    visit_instance_use(tcx, instance, is_direct_call, source, output);
867}
868
869/// For every call of this function in the visitor, make sure there is a matching call in the
870/// `mentioned_items` pass!
871fn visit_fn_use<'tcx>(
872    tcx: TyCtxt<'tcx>,
873    ty: Ty<'tcx>,
874    is_direct_call: bool,
875    source: Span,
876    output: &mut MonoItems<'tcx>,
877) {
878    if let ty::FnDef(def_id, args) = *ty.kind() {
879        let instance = if is_direct_call {
880            ty::Instance::expect_resolve(
881                tcx,
882                ty::TypingEnv::fully_monomorphized(),
883                def_id,
884                args,
885                source,
886            )
887        } else {
888            match ty::Instance::resolve_for_fn_ptr(
889                tcx,
890                ty::TypingEnv::fully_monomorphized(),
891                def_id,
892                args,
893            ) {
894                Some(instance) => instance,
895                _ => bug!("failed to resolve instance for {ty}"),
896            }
897        };
898        visit_instance_use(tcx, instance, is_direct_call, source, output);
899    }
900}
901
902fn visit_instance_use<'tcx>(
903    tcx: TyCtxt<'tcx>,
904    instance: ty::Instance<'tcx>,
905    is_direct_call: bool,
906    source: Span,
907    output: &mut MonoItems<'tcx>,
908) {
909    debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call);
910    if !tcx.should_codegen_locally(instance) {
911        return;
912    }
913    if let Some(intrinsic) = tcx.intrinsic(instance.def_id()) {
914        if let Some(_requirement) = ValidityRequirement::from_intrinsic(intrinsic.name) {
915            // The intrinsics assert_inhabited, assert_zero_valid, and assert_mem_uninitialized_valid will
916            // be lowered in codegen to nothing or a call to panic_nounwind. So if we encounter any
917            // of those intrinsics, we need to include a mono item for panic_nounwind, else we may try to
918            // codegen a call to that function without generating code for the function itself.
919            let def_id = tcx.require_lang_item(LangItem::PanicNounwind, source);
920            let panic_instance = Instance::mono(tcx, def_id);
921            if tcx.should_codegen_locally(panic_instance) {
922                output.push(create_fn_mono_item(tcx, panic_instance, source));
923            }
924        } else if !intrinsic.must_be_overridden {
925            // Codegen the fallback body of intrinsics with fallback bodies.
926            // We explicitly skip this otherwise to ensure we get a linker error
927            // if anyone tries to call this intrinsic and the codegen backend did not
928            // override the implementation.
929            let instance = ty::Instance::new_raw(instance.def_id(), instance.args);
930            if tcx.should_codegen_locally(instance) {
931                output.push(create_fn_mono_item(tcx, instance, source));
932            }
933        }
934    }
935
936    match instance.def {
937        ty::InstanceKind::Virtual(..) | ty::InstanceKind::Intrinsic(_) => {
938            if !is_direct_call {
939                bug!("{:?} being reified", instance);
940            }
941        }
942        ty::InstanceKind::ThreadLocalShim(..) => {
943            bug!("{:?} being reified", instance);
944        }
945        ty::InstanceKind::DropGlue(_, None) => {
946            // Don't need to emit noop drop glue if we are calling directly.
947            //
948            // Note that we also optimize away the call to visit_instance_use in vtable construction
949            // (see create_mono_items_for_vtable_methods).
950            if !is_direct_call {
951                output.push(create_fn_mono_item(tcx, instance, source));
952            }
953        }
954        ty::InstanceKind::DropGlue(_, Some(_))
955        | ty::InstanceKind::FutureDropPollShim(..)
956        | ty::InstanceKind::AsyncDropGlue(_, _)
957        | ty::InstanceKind::AsyncDropGlueCtorShim(_, _)
958        | ty::InstanceKind::VTableShim(..)
959        | ty::InstanceKind::ReifyShim(..)
960        | ty::InstanceKind::ClosureOnceShim { .. }
961        | ty::InstanceKind::ConstructCoroutineInClosureShim { .. }
962        | ty::InstanceKind::Item(..)
963        | ty::InstanceKind::FnPtrShim(..)
964        | ty::InstanceKind::CloneShim(..)
965        | ty::InstanceKind::FnPtrAddrShim(..) => {
966            output.push(create_fn_mono_item(tcx, instance, source));
967        }
968    }
969}
970
971/// Returns `true` if we should codegen an instance in the local crate, or returns `false` if we
972/// can just link to the upstream crate and therefore don't need a mono item.
973fn should_codegen_locally<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) -> bool {
974    let Some(def_id) = instance.def.def_id_if_not_guaranteed_local_codegen() else {
975        return true;
976    };
977
978    if tcx.is_foreign_item(def_id) {
979        // Foreign items are always linked against, there's no way of instantiating them.
980        return false;
981    }
982
983    if tcx.def_kind(def_id).has_codegen_attrs()
984        && matches!(tcx.codegen_fn_attrs(def_id).inline, InlineAttr::Force { .. })
985    {
986        // `#[rustc_force_inline]` items should never be codegened. This should be caught by
987        // the MIR validator.
988        tcx.dcx().delayed_bug("attempt to codegen `#[rustc_force_inline]` item");
989    }
990
991    if def_id.is_local() {
992        // Local items cannot be referred to locally without monomorphizing them locally.
993        return true;
994    }
995
996    if tcx.is_reachable_non_generic(def_id) || instance.upstream_monomorphization(tcx).is_some() {
997        // We can link to the item in question, no instance needed in this crate.
998        return false;
999    }
1000
1001    if let DefKind::Static { .. } = tcx.def_kind(def_id) {
1002        // We cannot monomorphize statics from upstream crates.
1003        return false;
1004    }
1005
1006    if !tcx.is_mir_available(def_id) {
1007        tcx.dcx().emit_fatal(NoOptimizedMir {
1008            span: tcx.def_span(def_id),
1009            crate_name: tcx.crate_name(def_id.krate),
1010            instance: instance.to_string(),
1011        });
1012    }
1013
1014    true
1015}
1016
1017/// For a given pair of source and target type that occur in an unsizing coercion,
1018/// this function finds the pair of types that determines the vtable linking
1019/// them.
1020///
1021/// For example, the source type might be `&SomeStruct` and the target type
1022/// might be `&dyn SomeTrait` in a cast like:
1023///
1024/// ```rust,ignore (not real code)
1025/// let src: &SomeStruct = ...;
1026/// let target = src as &dyn SomeTrait;
1027/// ```
1028///
1029/// Then the output of this function would be (SomeStruct, SomeTrait) since for
1030/// constructing the `target` wide-pointer we need the vtable for that pair.
1031///
1032/// Things can get more complicated though because there's also the case where
1033/// the unsized type occurs as a field:
1034///
1035/// ```rust
1036/// struct ComplexStruct<T: ?Sized> {
1037///    a: u32,
1038///    b: f64,
1039///    c: T
1040/// }
1041/// ```
1042///
1043/// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
1044/// is unsized, `&SomeStruct` is a wide pointer, and the vtable it points to is
1045/// for the pair of `T` (which is a trait) and the concrete type that `T` was
1046/// originally coerced from:
1047///
1048/// ```rust,ignore (not real code)
1049/// let src: &ComplexStruct<SomeStruct> = ...;
1050/// let target = src as &ComplexStruct<dyn SomeTrait>;
1051/// ```
1052///
1053/// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
1054/// `(SomeStruct, SomeTrait)`.
1055///
1056/// Finally, there is also the case of custom unsizing coercions, e.g., for
1057/// smart pointers such as `Rc` and `Arc`.
1058fn find_tails_for_unsizing<'tcx>(
1059    tcx: TyCtxtAt<'tcx>,
1060    source_ty: Ty<'tcx>,
1061    target_ty: Ty<'tcx>,
1062) -> (Ty<'tcx>, Ty<'tcx>) {
1063    let typing_env = ty::TypingEnv::fully_monomorphized();
1064    debug_assert!(!source_ty.has_param(), "{source_ty} should be fully monomorphic");
1065    debug_assert!(!target_ty.has_param(), "{target_ty} should be fully monomorphic");
1066
1067    match (source_ty.kind(), target_ty.kind()) {
1068        (
1069            &ty::Ref(_, source_pointee, _),
1070            &ty::Ref(_, target_pointee, _) | &ty::RawPtr(target_pointee, _),
1071        )
1072        | (&ty::RawPtr(source_pointee, _), &ty::RawPtr(target_pointee, _)) => {
1073            tcx.struct_lockstep_tails_for_codegen(source_pointee, target_pointee, typing_env)
1074        }
1075
1076        // `Box<T>` could go through the ADT code below, b/c it'll unpeel to `Unique<T>`,
1077        // and eventually bottom out in a raw ref, but we can micro-optimize it here.
1078        (_, _)
1079            if let Some(source_boxed) = source_ty.boxed_ty()
1080                && let Some(target_boxed) = target_ty.boxed_ty() =>
1081        {
1082            tcx.struct_lockstep_tails_for_codegen(source_boxed, target_boxed, typing_env)
1083        }
1084
1085        (&ty::Adt(source_adt_def, source_args), &ty::Adt(target_adt_def, target_args)) => {
1086            assert_eq!(source_adt_def, target_adt_def);
1087            let CustomCoerceUnsized::Struct(coerce_index) =
1088                match crate::custom_coerce_unsize_info(tcx, source_ty, target_ty) {
1089                    Ok(ccu) => ccu,
1090                    Err(e) => {
1091                        let e = Ty::new_error(tcx.tcx, e);
1092                        return (e, e);
1093                    }
1094                };
1095            let coerce_field = &source_adt_def.non_enum_variant().fields[coerce_index];
1096            // We're getting a possibly unnormalized type, so normalize it.
1097            let source_field =
1098                tcx.normalize_erasing_regions(typing_env, coerce_field.ty(*tcx, source_args));
1099            let target_field =
1100                tcx.normalize_erasing_regions(typing_env, coerce_field.ty(*tcx, target_args));
1101            find_tails_for_unsizing(tcx, source_field, target_field)
1102        }
1103
1104        _ => bug!(
1105            "find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
1106            source_ty,
1107            target_ty
1108        ),
1109    }
1110}
1111
1112#[instrument(skip(tcx), level = "debug", ret)]
1113fn create_fn_mono_item<'tcx>(
1114    tcx: TyCtxt<'tcx>,
1115    instance: Instance<'tcx>,
1116    source: Span,
1117) -> Spanned<MonoItem<'tcx>> {
1118    let def_id = instance.def_id();
1119    if tcx.sess.opts.unstable_opts.profile_closures
1120        && def_id.is_local()
1121        && tcx.is_closure_like(def_id)
1122    {
1123        crate::util::dump_closure_profile(tcx, instance);
1124    }
1125
1126    respan(source, MonoItem::Fn(instance))
1127}
1128
1129/// Creates a `MonoItem` for each method that is referenced by the vtable for
1130/// the given trait/impl pair.
1131fn create_mono_items_for_vtable_methods<'tcx>(
1132    tcx: TyCtxt<'tcx>,
1133    trait_ty: Ty<'tcx>,
1134    impl_ty: Ty<'tcx>,
1135    source: Span,
1136    output: &mut MonoItems<'tcx>,
1137) {
1138    assert!(!trait_ty.has_escaping_bound_vars() && !impl_ty.has_escaping_bound_vars());
1139
1140    let ty::Dynamic(trait_ty, ..) = trait_ty.kind() else {
1141        bug!("create_mono_items_for_vtable_methods: {trait_ty:?} not a trait type");
1142    };
1143    if let Some(principal) = trait_ty.principal() {
1144        let trait_ref =
1145            tcx.instantiate_bound_regions_with_erased(principal.with_self_ty(tcx, impl_ty));
1146        assert!(!trait_ref.has_escaping_bound_vars());
1147
1148        // Walk all methods of the trait, including those of its supertraits
1149        let entries = tcx.vtable_entries(trait_ref);
1150        debug!(?entries);
1151        let methods = entries
1152            .iter()
1153            .filter_map(|entry| match entry {
1154                VtblEntry::MetadataDropInPlace
1155                | VtblEntry::MetadataSize
1156                | VtblEntry::MetadataAlign
1157                | VtblEntry::Vacant => None,
1158                VtblEntry::TraitVPtr(_) => {
1159                    // all super trait items already covered, so skip them.
1160                    None
1161                }
1162                VtblEntry::Method(instance) => {
1163                    Some(*instance).filter(|instance| tcx.should_codegen_locally(*instance))
1164                }
1165            })
1166            .map(|item| create_fn_mono_item(tcx, item, source));
1167        output.extend(methods);
1168    }
1169
1170    // Also add the destructor, if it's necessary.
1171    //
1172    // This matches the check in vtable_allocation_provider in middle/ty/vtable.rs,
1173    // if we don't need drop we're not adding an actual pointer to the vtable.
1174    if impl_ty.needs_drop(tcx, ty::TypingEnv::fully_monomorphized()) {
1175        visit_drop_use(tcx, impl_ty, false, source, output);
1176    }
1177}
1178
1179/// Scans the CTFE alloc in order to find function pointers and statics that must be monomorphized.
1180fn collect_alloc<'tcx>(tcx: TyCtxt<'tcx>, alloc_id: AllocId, output: &mut MonoItems<'tcx>) {
1181    match tcx.global_alloc(alloc_id) {
1182        GlobalAlloc::Static(def_id) => {
1183            assert!(!tcx.is_thread_local_static(def_id));
1184            let instance = Instance::mono(tcx, def_id);
1185            if tcx.should_codegen_locally(instance) {
1186                trace!("collecting static {:?}", def_id);
1187                output.push(dummy_spanned(MonoItem::Static(def_id)));
1188            }
1189        }
1190        GlobalAlloc::Memory(alloc) => {
1191            trace!("collecting {:?} with {:#?}", alloc_id, alloc);
1192            let ptrs = alloc.inner().provenance().ptrs();
1193            // avoid `ensure_sufficient_stack` in the common case of "no pointers"
1194            if !ptrs.is_empty() {
1195                rustc_data_structures::stack::ensure_sufficient_stack(move || {
1196                    for &prov in ptrs.values() {
1197                        collect_alloc(tcx, prov.alloc_id(), output);
1198                    }
1199                });
1200            }
1201        }
1202        GlobalAlloc::Function { instance, .. } => {
1203            if tcx.should_codegen_locally(instance) {
1204                trace!("collecting {:?} with {:#?}", alloc_id, instance);
1205                output.push(create_fn_mono_item(tcx, instance, DUMMY_SP));
1206            }
1207        }
1208        GlobalAlloc::VTable(ty, dyn_ty) => {
1209            let alloc_id = tcx.vtable_allocation((
1210                ty,
1211                dyn_ty
1212                    .principal()
1213                    .map(|principal| tcx.instantiate_bound_regions_with_erased(principal)),
1214            ));
1215            collect_alloc(tcx, alloc_id, output)
1216        }
1217        GlobalAlloc::TypeId { .. } => {}
1218    }
1219}
1220
1221/// Scans the MIR in order to find function calls, closures, and drop-glue.
1222///
1223/// Anything that's found is added to `output`. Furthermore the "mentioned items" of the MIR are returned.
1224#[instrument(skip(tcx), level = "debug")]
1225fn collect_items_of_instance<'tcx>(
1226    tcx: TyCtxt<'tcx>,
1227    instance: Instance<'tcx>,
1228    mode: CollectionMode,
1229) -> (MonoItems<'tcx>, MonoItems<'tcx>) {
1230    // This item is getting monomorphized, do mono-time checks.
1231    tcx.ensure_ok().check_mono_item(instance);
1232
1233    let body = tcx.instance_mir(instance.def);
1234    // Naively, in "used" collection mode, all functions get added to *both* `used_items` and
1235    // `mentioned_items`. Mentioned items processing will then notice that they have already been
1236    // visited, but at that point each mentioned item has been monomorphized, added to the
1237    // `mentioned_items` worklist, and checked in the global set of visited items. To remove that
1238    // overhead, we have a special optimization that avoids adding items to `mentioned_items` when
1239    // they are already added in `used_items`. We could just scan `used_items`, but that's a linear
1240    // scan and not very efficient. Furthermore we can only do that *after* monomorphizing the
1241    // mentioned item. So instead we collect all pre-monomorphized `MentionedItem` that were already
1242    // added to `used_items` in a hash set, which can efficiently query in the
1243    // `body.mentioned_items` loop below without even having to monomorphize the item.
1244    let mut used_items = MonoItems::new();
1245    let mut mentioned_items = MonoItems::new();
1246    let mut used_mentioned_items = Default::default();
1247    let mut collector = MirUsedCollector {
1248        tcx,
1249        body,
1250        used_items: &mut used_items,
1251        used_mentioned_items: &mut used_mentioned_items,
1252        instance,
1253    };
1254
1255    if mode == CollectionMode::UsedItems {
1256        if tcx.sess.opts.debuginfo == DebugInfo::Full {
1257            for var_debug_info in &body.var_debug_info {
1258                collector.visit_var_debug_info(var_debug_info);
1259            }
1260        }
1261        for (bb, data) in traversal::mono_reachable(body, tcx, instance) {
1262            collector.visit_basic_block_data(bb, data)
1263        }
1264    }
1265
1266    // Always visit all `required_consts`, so that we evaluate them and abort compilation if any of
1267    // them errors.
1268    for const_op in body.required_consts() {
1269        if let Some(val) = collector.eval_constant(const_op) {
1270            collect_const_value(tcx, val, &mut mentioned_items);
1271        }
1272    }
1273
1274    // Always gather mentioned items. We try to avoid processing items that we have already added to
1275    // `used_items` above.
1276    for item in body.mentioned_items() {
1277        if !collector.used_mentioned_items.contains(&item.node) {
1278            let item_mono = collector.monomorphize(item.node);
1279            visit_mentioned_item(tcx, &item_mono, item.span, &mut mentioned_items);
1280        }
1281    }
1282
1283    (used_items, mentioned_items)
1284}
1285
1286fn items_of_instance<'tcx>(
1287    tcx: TyCtxt<'tcx>,
1288    (instance, mode): (Instance<'tcx>, CollectionMode),
1289) -> (&'tcx [Spanned<MonoItem<'tcx>>], &'tcx [Spanned<MonoItem<'tcx>>]) {
1290    let (used_items, mentioned_items) = collect_items_of_instance(tcx, instance, mode);
1291
1292    let used_items = tcx.arena.alloc_from_iter(used_items);
1293    let mentioned_items = tcx.arena.alloc_from_iter(mentioned_items);
1294
1295    (used_items, mentioned_items)
1296}
1297
1298/// `item` must be already monomorphized.
1299#[instrument(skip(tcx, span, output), level = "debug")]
1300fn visit_mentioned_item<'tcx>(
1301    tcx: TyCtxt<'tcx>,
1302    item: &MentionedItem<'tcx>,
1303    span: Span,
1304    output: &mut MonoItems<'tcx>,
1305) {
1306    match *item {
1307        MentionedItem::Fn(ty) => {
1308            if let ty::FnDef(def_id, args) = *ty.kind() {
1309                let instance = Instance::expect_resolve(
1310                    tcx,
1311                    ty::TypingEnv::fully_monomorphized(),
1312                    def_id,
1313                    args,
1314                    span,
1315                );
1316                // `visit_instance_use` was written for "used" item collection but works just as well
1317                // for "mentioned" item collection.
1318                // We can set `is_direct_call`; that just means we'll skip a bunch of shims that anyway
1319                // can't have their own failing constants.
1320                visit_instance_use(tcx, instance, /*is_direct_call*/ true, span, output);
1321            }
1322        }
1323        MentionedItem::Drop(ty) => {
1324            visit_drop_use(tcx, ty, /*is_direct_call*/ true, span, output);
1325        }
1326        MentionedItem::UnsizeCast { source_ty, target_ty } => {
1327            let (source_ty, target_ty) =
1328                find_tails_for_unsizing(tcx.at(span), source_ty, target_ty);
1329            // This could also be a different Unsize instruction, like
1330            // from a fixed sized array to a slice. But we are only
1331            // interested in things that produce a vtable.
1332            if target_ty.is_trait() && !source_ty.is_trait() {
1333                create_mono_items_for_vtable_methods(tcx, target_ty, source_ty, span, output);
1334            }
1335        }
1336        MentionedItem::Closure(source_ty) => {
1337            if let ty::Closure(def_id, args) = *source_ty.kind() {
1338                let instance =
1339                    Instance::resolve_closure(tcx, def_id, args, ty::ClosureKind::FnOnce);
1340                if tcx.should_codegen_locally(instance) {
1341                    output.push(create_fn_mono_item(tcx, instance, span));
1342                }
1343            } else {
1344                bug!()
1345            }
1346        }
1347    }
1348}
1349
1350#[instrument(skip(tcx, output), level = "debug")]
1351fn collect_const_value<'tcx>(
1352    tcx: TyCtxt<'tcx>,
1353    value: mir::ConstValue,
1354    output: &mut MonoItems<'tcx>,
1355) {
1356    match value {
1357        mir::ConstValue::Scalar(Scalar::Ptr(ptr, _size)) => {
1358            collect_alloc(tcx, ptr.provenance.alloc_id(), output)
1359        }
1360        mir::ConstValue::Indirect { alloc_id, .. }
1361        | mir::ConstValue::Slice { alloc_id, meta: _ } => collect_alloc(tcx, alloc_id, output),
1362        _ => {}
1363    }
1364}
1365
1366//=-----------------------------------------------------------------------------
1367// Root Collection
1368//=-----------------------------------------------------------------------------
1369
1370// Find all non-generic items by walking the HIR. These items serve as roots to
1371// start monomorphizing from.
1372#[instrument(skip(tcx, mode), level = "debug")]
1373fn collect_roots(tcx: TyCtxt<'_>, mode: MonoItemCollectionStrategy) -> Vec<MonoItem<'_>> {
1374    debug!("collecting roots");
1375    let mut roots = MonoItems::new();
1376
1377    {
1378        let entry_fn = tcx.entry_fn(());
1379
1380        debug!("collect_roots: entry_fn = {:?}", entry_fn);
1381
1382        let mut collector = RootCollector { tcx, strategy: mode, entry_fn, output: &mut roots };
1383
1384        let crate_items = tcx.hir_crate_items(());
1385
1386        for id in crate_items.free_items() {
1387            collector.process_item(id);
1388        }
1389
1390        for id in crate_items.impl_items() {
1391            collector.process_impl_item(id);
1392        }
1393
1394        for id in crate_items.nested_bodies() {
1395            collector.process_nested_body(id);
1396        }
1397
1398        collector.push_extra_entry_roots();
1399    }
1400
1401    // We can only codegen items that are instantiable - items all of
1402    // whose predicates hold. Luckily, items that aren't instantiable
1403    // can't actually be used, so we can just skip codegenning them.
1404    roots
1405        .into_iter()
1406        .filter_map(|Spanned { node: mono_item, .. }| {
1407            mono_item.is_instantiable(tcx).then_some(mono_item)
1408        })
1409        .collect()
1410}
1411
1412struct RootCollector<'a, 'tcx> {
1413    tcx: TyCtxt<'tcx>,
1414    strategy: MonoItemCollectionStrategy,
1415    output: &'a mut MonoItems<'tcx>,
1416    entry_fn: Option<(DefId, EntryFnType)>,
1417}
1418
1419impl<'v> RootCollector<'_, 'v> {
1420    fn process_item(&mut self, id: hir::ItemId) {
1421        match self.tcx.def_kind(id.owner_id) {
1422            DefKind::Enum | DefKind::Struct | DefKind::Union => {
1423                if self.strategy == MonoItemCollectionStrategy::Eager
1424                    && !self.tcx.generics_of(id.owner_id).requires_monomorphization(self.tcx)
1425                {
1426                    debug!("RootCollector: ADT drop-glue for `{id:?}`",);
1427                    let id_args =
1428                        ty::GenericArgs::for_item(self.tcx, id.owner_id.to_def_id(), |param, _| {
1429                            match param.kind {
1430                                GenericParamDefKind::Lifetime => {
1431                                    self.tcx.lifetimes.re_erased.into()
1432                                }
1433                                GenericParamDefKind::Type { .. }
1434                                | GenericParamDefKind::Const { .. } => {
1435                                    unreachable!(
1436                                        "`own_requires_monomorphization` check means that \
1437                                we should have no type/const params"
1438                                    )
1439                                }
1440                            }
1441                        });
1442
1443                    // This type is impossible to instantiate, so we should not try to
1444                    // generate a `drop_in_place` instance for it.
1445                    if self.tcx.instantiate_and_check_impossible_predicates((
1446                        id.owner_id.to_def_id(),
1447                        id_args,
1448                    )) {
1449                        return;
1450                    }
1451
1452                    let ty =
1453                        self.tcx.type_of(id.owner_id.to_def_id()).instantiate(self.tcx, id_args);
1454                    assert!(!ty.has_non_region_param());
1455                    visit_drop_use(self.tcx, ty, true, DUMMY_SP, self.output);
1456                }
1457            }
1458            DefKind::GlobalAsm => {
1459                debug!(
1460                    "RootCollector: ItemKind::GlobalAsm({})",
1461                    self.tcx.def_path_str(id.owner_id)
1462                );
1463                self.output.push(dummy_spanned(MonoItem::GlobalAsm(id)));
1464            }
1465            DefKind::Static { .. } => {
1466                let def_id = id.owner_id.to_def_id();
1467                debug!("RootCollector: ItemKind::Static({})", self.tcx.def_path_str(def_id));
1468                self.output.push(dummy_spanned(MonoItem::Static(def_id)));
1469            }
1470            DefKind::Const => {
1471                // Const items only generate mono items if they are actually used somewhere.
1472                // Just declaring them is insufficient.
1473
1474                // If we're collecting items eagerly, then recurse into all constants.
1475                // Otherwise the value is only collected when explicitly mentioned in other items.
1476                if self.strategy == MonoItemCollectionStrategy::Eager {
1477                    if !self.tcx.generics_of(id.owner_id).own_requires_monomorphization()
1478                        && let Ok(val) = self.tcx.const_eval_poly(id.owner_id.to_def_id())
1479                    {
1480                        collect_const_value(self.tcx, val, self.output);
1481                    }
1482                }
1483            }
1484            DefKind::Impl { .. } => {
1485                if self.strategy == MonoItemCollectionStrategy::Eager {
1486                    create_mono_items_for_default_impls(self.tcx, id, self.output);
1487                }
1488            }
1489            DefKind::Fn => {
1490                self.push_if_root(id.owner_id.def_id);
1491            }
1492            _ => {}
1493        }
1494    }
1495
1496    fn process_impl_item(&mut self, id: hir::ImplItemId) {
1497        if matches!(self.tcx.def_kind(id.owner_id), DefKind::AssocFn) {
1498            self.push_if_root(id.owner_id.def_id);
1499        }
1500    }
1501
1502    fn process_nested_body(&mut self, def_id: LocalDefId) {
1503        match self.tcx.def_kind(def_id) {
1504            DefKind::Closure => {
1505                if self.strategy == MonoItemCollectionStrategy::Eager
1506                    && !self
1507                        .tcx
1508                        .generics_of(self.tcx.typeck_root_def_id(def_id.to_def_id()))
1509                        .requires_monomorphization(self.tcx)
1510                {
1511                    let instance = match *self.tcx.type_of(def_id).instantiate_identity().kind() {
1512                        ty::Closure(def_id, args)
1513                        | ty::Coroutine(def_id, args)
1514                        | ty::CoroutineClosure(def_id, args) => {
1515                            Instance::new_raw(def_id, self.tcx.erase_regions(args))
1516                        }
1517                        _ => unreachable!(),
1518                    };
1519                    let Ok(instance) = self.tcx.try_normalize_erasing_regions(
1520                        ty::TypingEnv::fully_monomorphized(),
1521                        instance,
1522                    ) else {
1523                        // Don't ICE on an impossible-to-normalize closure.
1524                        return;
1525                    };
1526                    let mono_item = create_fn_mono_item(self.tcx, instance, DUMMY_SP);
1527                    if mono_item.node.is_instantiable(self.tcx) {
1528                        self.output.push(mono_item);
1529                    }
1530                }
1531            }
1532            _ => {}
1533        }
1534    }
1535
1536    fn is_root(&self, def_id: LocalDefId) -> bool {
1537        !self.tcx.generics_of(def_id).requires_monomorphization(self.tcx)
1538            && match self.strategy {
1539                MonoItemCollectionStrategy::Eager => {
1540                    !matches!(self.tcx.codegen_fn_attrs(def_id).inline, InlineAttr::Force { .. })
1541                }
1542                MonoItemCollectionStrategy::Lazy => {
1543                    self.entry_fn.and_then(|(id, _)| id.as_local()) == Some(def_id)
1544                        || self.tcx.is_reachable_non_generic(def_id)
1545                        || self
1546                            .tcx
1547                            .codegen_fn_attrs(def_id)
1548                            .flags
1549                            .contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL)
1550                }
1551            }
1552    }
1553
1554    /// If `def_id` represents a root, pushes it onto the list of
1555    /// outputs. (Note that all roots must be monomorphic.)
1556    #[instrument(skip(self), level = "debug")]
1557    fn push_if_root(&mut self, def_id: LocalDefId) {
1558        if self.is_root(def_id) {
1559            debug!("found root");
1560
1561            let instance = Instance::mono(self.tcx, def_id.to_def_id());
1562            self.output.push(create_fn_mono_item(self.tcx, instance, DUMMY_SP));
1563        }
1564    }
1565
1566    /// As a special case, when/if we encounter the
1567    /// `main()` function, we also have to generate a
1568    /// monomorphized copy of the start lang item based on
1569    /// the return type of `main`. This is not needed when
1570    /// the user writes their own `start` manually.
1571    fn push_extra_entry_roots(&mut self) {
1572        let Some((main_def_id, EntryFnType::Main { .. })) = self.entry_fn else {
1573            return;
1574        };
1575
1576        let main_instance = Instance::mono(self.tcx, main_def_id);
1577        if self.tcx.should_codegen_locally(main_instance) {
1578            self.output.push(create_fn_mono_item(
1579                self.tcx,
1580                main_instance,
1581                self.tcx.def_span(main_def_id),
1582            ));
1583        }
1584
1585        let Some(start_def_id) = self.tcx.lang_items().start_fn() else {
1586            self.tcx.dcx().emit_fatal(errors::StartNotFound);
1587        };
1588        let main_ret_ty = self.tcx.fn_sig(main_def_id).no_bound_vars().unwrap().output();
1589
1590        // Given that `main()` has no arguments,
1591        // then its return type cannot have
1592        // late-bound regions, since late-bound
1593        // regions must appear in the argument
1594        // listing.
1595        let main_ret_ty = self.tcx.normalize_erasing_regions(
1596            ty::TypingEnv::fully_monomorphized(),
1597            main_ret_ty.no_bound_vars().unwrap(),
1598        );
1599
1600        let start_instance = Instance::expect_resolve(
1601            self.tcx,
1602            ty::TypingEnv::fully_monomorphized(),
1603            start_def_id,
1604            self.tcx.mk_args(&[main_ret_ty.into()]),
1605            DUMMY_SP,
1606        );
1607
1608        self.output.push(create_fn_mono_item(self.tcx, start_instance, DUMMY_SP));
1609    }
1610}
1611
1612#[instrument(level = "debug", skip(tcx, output))]
1613fn create_mono_items_for_default_impls<'tcx>(
1614    tcx: TyCtxt<'tcx>,
1615    item: hir::ItemId,
1616    output: &mut MonoItems<'tcx>,
1617) {
1618    let Some(impl_) = tcx.impl_trait_header(item.owner_id) else {
1619        return;
1620    };
1621
1622    if matches!(impl_.polarity, ty::ImplPolarity::Negative) {
1623        return;
1624    }
1625
1626    if tcx.generics_of(item.owner_id).own_requires_monomorphization() {
1627        return;
1628    }
1629
1630    // Lifetimes never affect trait selection, so we are allowed to eagerly
1631    // instantiate an instance of an impl method if the impl (and method,
1632    // which we check below) is only parameterized over lifetime. In that case,
1633    // we use the ReErased, which has no lifetime information associated with
1634    // it, to validate whether or not the impl is legal to instantiate at all.
1635    let only_region_params = |param: &ty::GenericParamDef, _: &_| match param.kind {
1636        GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
1637        GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
1638            unreachable!(
1639                "`own_requires_monomorphization` check means that \
1640                we should have no type/const params"
1641            )
1642        }
1643    };
1644    let impl_args = GenericArgs::for_item(tcx, item.owner_id.to_def_id(), only_region_params);
1645    let trait_ref = impl_.trait_ref.instantiate(tcx, impl_args);
1646
1647    // Unlike 'lazy' monomorphization that begins by collecting items transitively
1648    // called by `main` or other global items, when eagerly monomorphizing impl
1649    // items, we never actually check that the predicates of this impl are satisfied
1650    // in a empty param env (i.e. with no assumptions).
1651    //
1652    // Even though this impl has no type or const generic parameters, because we don't
1653    // consider higher-ranked predicates such as `for<'a> &'a mut [u8]: Copy` to
1654    // be trivially false. We must now check that the impl has no impossible-to-satisfy
1655    // predicates.
1656    if tcx.instantiate_and_check_impossible_predicates((item.owner_id.to_def_id(), impl_args)) {
1657        return;
1658    }
1659
1660    let typing_env = ty::TypingEnv::fully_monomorphized();
1661    let trait_ref = tcx.normalize_erasing_regions(typing_env, trait_ref);
1662    let overridden_methods = tcx.impl_item_implementor_ids(item.owner_id);
1663    for method in tcx.provided_trait_methods(trait_ref.def_id) {
1664        if overridden_methods.contains_key(&method.def_id) {
1665            continue;
1666        }
1667
1668        if tcx.generics_of(method.def_id).own_requires_monomorphization() {
1669            continue;
1670        }
1671
1672        // As mentioned above, the method is legal to eagerly instantiate if it
1673        // only has lifetime generic parameters. This is validated by calling
1674        // `own_requires_monomorphization` on both the impl and method.
1675        let args = trait_ref.args.extend_to(tcx, method.def_id, only_region_params);
1676        let instance = ty::Instance::expect_resolve(tcx, typing_env, method.def_id, args, DUMMY_SP);
1677
1678        let mono_item = create_fn_mono_item(tcx, instance, DUMMY_SP);
1679        if mono_item.node.is_instantiable(tcx) && tcx.should_codegen_locally(instance) {
1680            output.push(mono_item);
1681        }
1682    }
1683}
1684
1685//=-----------------------------------------------------------------------------
1686// Top-level entry point, tying it all together
1687//=-----------------------------------------------------------------------------
1688
1689#[instrument(skip(tcx, strategy), level = "debug")]
1690pub(crate) fn collect_crate_mono_items<'tcx>(
1691    tcx: TyCtxt<'tcx>,
1692    strategy: MonoItemCollectionStrategy,
1693) -> (Vec<MonoItem<'tcx>>, UsageMap<'tcx>) {
1694    let _prof_timer = tcx.prof.generic_activity("monomorphization_collector");
1695
1696    let roots = tcx
1697        .sess
1698        .time("monomorphization_collector_root_collections", || collect_roots(tcx, strategy));
1699
1700    debug!("building mono item graph, beginning at roots");
1701
1702    let state = SharedState {
1703        visited: MTLock::new(UnordSet::default()),
1704        mentioned: MTLock::new(UnordSet::default()),
1705        usage_map: MTLock::new(UsageMap::new()),
1706    };
1707    let recursion_limit = tcx.recursion_limit();
1708
1709    tcx.sess.time("monomorphization_collector_graph_walk", || {
1710        par_for_each_in(roots, |root| {
1711            collect_items_root(tcx, dummy_spanned(*root), &state, recursion_limit);
1712        });
1713    });
1714
1715    // The set of MonoItems was created in an inherently indeterministic order because
1716    // of parallelism. We sort it here to ensure that the output is deterministic.
1717    let mono_items = tcx.with_stable_hashing_context(move |ref hcx| {
1718        state.visited.into_inner().into_sorted(hcx, true)
1719    });
1720
1721    (mono_items, state.usage_map.into_inner())
1722}
1723
1724pub(crate) fn provide(providers: &mut Providers) {
1725    providers.hooks.should_codegen_locally = should_codegen_locally;
1726    providers.items_of_instance = items_of_instance;
1727}