1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
use crate::ieee;
use crate::{Category, ExpInt, Float, FloatConvert, ParseError, Round, Status, StatusAnd};

use core::cmp::Ordering;
use core::fmt;
use core::ops::Neg;

#[must_use]
#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
pub struct DoubleFloat<F>(F, F);
pub type DoubleDouble = DoubleFloat<ieee::Double>;

// These are legacy semantics for the Fallback, inaccurate implementation of
// IBM double-double, if the accurate DoubleDouble doesn't handle the
// operation. It's equivalent to having an IEEE number with consecutive 106
// bits of mantissa and 11 bits of exponent.
//
// It's not equivalent to IBM double-double. For example, a legit IBM
// double-double, 1 + epsilon:
//
//   1 + epsilon = 1 + (1 >> 1076)
//
// is not representable by a consecutive 106 bits of mantissa.
//
// Currently, these semantics are used in the following way:
//
//   DoubleDouble -> (Double, Double) ->
//   DoubleDouble's Fallback -> IEEE operations
//
// FIXME: Implement all operations in DoubleDouble, and delete these
// semantics.
// FIXME(eddyb) This shouldn't need to be `pub`, it's only used in bounds.
pub struct FallbackS<F>(#[allow(unused)] F);
type Fallback<F> = ieee::IeeeFloat<FallbackS<F>>;
impl<F: Float> ieee::Semantics for FallbackS<F> {
    // Forbid any conversion to/from bits.
    const BITS: usize = 0;
    const PRECISION: usize = F::PRECISION * 2;
    const MAX_EXP: ExpInt = F::MAX_EXP as ExpInt;
    const MIN_EXP: ExpInt = F::MIN_EXP as ExpInt + F::PRECISION as ExpInt;
}

// Convert number to F. To avoid spurious underflows, we re-
// normalize against the F exponent range first, and only *then*
// truncate the mantissa. The result of that second conversion
// may be inexact, but should never underflow.
// FIXME(eddyb) This shouldn't need to be `pub`, it's only used in bounds.
pub struct FallbackExtendedS<F>(#[allow(unused)] F);
type FallbackExtended<F> = ieee::IeeeFloat<FallbackExtendedS<F>>;
impl<F: Float> ieee::Semantics for FallbackExtendedS<F> {
    // Forbid any conversion to/from bits.
    const BITS: usize = 0;
    const PRECISION: usize = Fallback::<F>::PRECISION;
    const MAX_EXP: ExpInt = F::MAX_EXP as ExpInt;
}

impl<F: Float> From<Fallback<F>> for DoubleFloat<F>
where
    F: FloatConvert<FallbackExtended<F>>,
    FallbackExtended<F>: FloatConvert<F>,
{
    fn from(x: Fallback<F>) -> Self {
        let mut status;
        let mut loses_info = false;

        let extended: FallbackExtended<F> = unpack!(status=, x.convert(&mut loses_info));
        assert_eq!((status, loses_info), (Status::OK, false));

        let a = unpack!(status=, extended.convert(&mut loses_info));
        assert_eq!(status - Status::INEXACT, Status::OK);

        // If conversion was exact or resulted in a special case, we're done;
        // just set the second double to zero. Otherwise, re-convert back to
        // the extended format and compute the difference. This now should
        // convert exactly to double.
        let b = if a.is_finite_non_zero() && loses_info {
            let u: FallbackExtended<F> = unpack!(status=, a.convert(&mut loses_info));
            assert_eq!((status, loses_info), (Status::OK, false));
            let v = unpack!(status=, extended - u);
            assert_eq!(status, Status::OK);
            let v = unpack!(status=, v.convert(&mut loses_info));
            assert_eq!((status, loses_info), (Status::OK, false));
            v
        } else {
            F::ZERO
        };

        DoubleFloat(a, b)
    }
}

impl<F: FloatConvert<Self>> From<DoubleFloat<F>> for Fallback<F> {
    fn from(DoubleFloat(a, b): DoubleFloat<F>) -> Self {
        let mut status;
        let mut loses_info = false;

        // Get the first F and convert to our format.
        let a = unpack!(status=, a.convert(&mut loses_info));
        assert_eq!((status, loses_info), (Status::OK, false));

        // Unless we have a special case, add in second F.
        if a.is_finite_non_zero() {
            let b = unpack!(status=, b.convert(&mut loses_info));
            assert_eq!((status, loses_info), (Status::OK, false));

            (a + b).value
        } else {
            a
        }
    }
}

float_common_impls!(DoubleFloat<F>);

impl<F: Float> Neg for DoubleFloat<F> {
    type Output = Self;
    fn neg(self) -> Self {
        if self.1.is_finite_non_zero() {
            DoubleFloat(-self.0, -self.1)
        } else {
            DoubleFloat(-self.0, self.1)
        }
    }
}

impl<F: FloatConvert<Fallback<F>>> fmt::Display for DoubleFloat<F> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&Fallback::from(*self), f)
    }
}

impl<F: FloatConvert<Fallback<F>>> Float for DoubleFloat<F>
where
    Self: From<Fallback<F>>,
{
    const BITS: usize = F::BITS * 2;
    const PRECISION: usize = Fallback::<F>::PRECISION;
    const MAX_EXP: ExpInt = Fallback::<F>::MAX_EXP;
    const MIN_EXP: ExpInt = Fallback::<F>::MIN_EXP;

    const ZERO: Self = DoubleFloat(F::ZERO, F::ZERO);

    const INFINITY: Self = DoubleFloat(F::INFINITY, F::ZERO);

    // FIXME(eddyb) remove when qnan becomes const fn.
    const NAN: Self = DoubleFloat(F::NAN, F::ZERO);

    fn qnan(payload: Option<u128>) -> Self {
        DoubleFloat(F::qnan(payload), F::ZERO)
    }

    fn snan(payload: Option<u128>) -> Self {
        DoubleFloat(F::snan(payload), F::ZERO)
    }

    fn largest() -> Self {
        let status;
        let mut r = DoubleFloat(F::largest(), F::largest());
        r.1 = r.1.scalbn(-(F::PRECISION as ExpInt + 1));
        r.1 = unpack!(status=, r.1.next_down());
        assert_eq!(status, Status::OK);
        r
    }

    const SMALLEST: Self = DoubleFloat(F::SMALLEST, F::ZERO);

    fn smallest_normalized() -> Self {
        DoubleFloat(F::smallest_normalized().scalbn(F::PRECISION as ExpInt), F::ZERO)
    }

    // Implement addition, subtraction, multiplication and division based on:
    // "Software for Doubled-Precision Floating-Point Computations",
    // by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283.

    fn add_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
        match (self.category(), rhs.category()) {
            (Category::Infinity, Category::Infinity) => {
                if self.is_negative() != rhs.is_negative() {
                    Status::INVALID_OP.and(Self::NAN.copy_sign(self))
                } else {
                    Status::OK.and(self)
                }
            }

            (_, Category::Zero) | (Category::NaN, _) | (Category::Infinity, Category::Normal) => {
                Status::OK.and(self)
            }

            (Category::Zero, _) | (_, Category::NaN | Category::Infinity) => Status::OK.and(rhs),

            (Category::Normal, Category::Normal) => {
                let mut status = Status::OK;
                let (a, aa, c, cc) = (self.0, self.1, rhs.0, rhs.1);
                let mut z = a;
                z = unpack!(status|=, z.add_r(c, round));
                if !z.is_finite() {
                    if !z.is_infinite() {
                        return status.and(DoubleFloat(z, F::ZERO));
                    }
                    status = Status::OK;
                    let a_cmp_c = a.cmp_abs_normal(c);
                    z = cc;
                    z = unpack!(status|=, z.add_r(aa, round));
                    if a_cmp_c == Ordering::Greater {
                        // z = cc + aa + c + a;
                        z = unpack!(status|=, z.add_r(c, round));
                        z = unpack!(status|=, z.add_r(a, round));
                    } else {
                        // z = cc + aa + a + c;
                        z = unpack!(status|=, z.add_r(a, round));
                        z = unpack!(status|=, z.add_r(c, round));
                    }
                    if !z.is_finite() {
                        return status.and(DoubleFloat(z, F::ZERO));
                    }
                    self.0 = z;
                    let mut zz = aa;
                    zz = unpack!(status|=, zz.add_r(cc, round));
                    if a_cmp_c == Ordering::Greater {
                        // self.1 = a - z + c + zz;
                        self.1 = a;
                        self.1 = unpack!(status|=, self.1.sub_r(z, round));
                        self.1 = unpack!(status|=, self.1.add_r(c, round));
                        self.1 = unpack!(status|=, self.1.add_r(zz, round));
                    } else {
                        // self.1 = c - z + a + zz;
                        self.1 = c;
                        self.1 = unpack!(status|=, self.1.sub_r(z, round));
                        self.1 = unpack!(status|=, self.1.add_r(a, round));
                        self.1 = unpack!(status|=, self.1.add_r(zz, round));
                    }
                } else {
                    // q = a - z;
                    let mut q = a;
                    q = unpack!(status|=, q.sub_r(z, round));

                    // zz = q + c + (a - (q + z)) + aa + cc;
                    // Compute a - (q + z) as -((q + z) - a) to avoid temporary copies.
                    let mut zz = q;
                    zz = unpack!(status|=, zz.add_r(c, round));
                    q = unpack!(status|=, q.add_r(z, round));
                    q = unpack!(status|=, q.sub_r(a, round));
                    q = -q;
                    zz = unpack!(status|=, zz.add_r(q, round));
                    zz = unpack!(status|=, zz.add_r(aa, round));
                    zz = unpack!(status|=, zz.add_r(cc, round));
                    if zz.is_zero() && !zz.is_negative() {
                        return Status::OK.and(DoubleFloat(z, F::ZERO));
                    }
                    self.0 = z;
                    self.0 = unpack!(status|=, self.0.add_r(zz, round));
                    if !self.0.is_finite() {
                        self.1 = F::ZERO;
                        return status.and(self);
                    }
                    self.1 = z;
                    self.1 = unpack!(status|=, self.1.sub_r(self.0, round));
                    self.1 = unpack!(status|=, self.1.add_r(zz, round));
                }
                status.and(self)
            }
        }
    }

    fn mul_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
        // Interesting observation: For special categories, finding the lowest
        // common ancestor of the following layered graph gives the correct
        // return category:
        //
        //    NaN
        //   /   \
        // Zero  Inf
        //   \   /
        //   Normal
        //
        // e.g., NaN * NaN = NaN
        //      Zero * Inf = NaN
        //      Normal * Zero = Zero
        //      Normal * Inf = Inf
        match (self.category(), rhs.category()) {
            (Category::NaN, _) => Status::OK.and(self),

            (_, Category::NaN) => Status::OK.and(rhs),

            (Category::Zero, Category::Infinity) | (Category::Infinity, Category::Zero) => {
                Status::OK.and(Self::NAN)
            }

            (Category::Zero | Category::Infinity, _) => Status::OK.and(self),

            (_, Category::Zero | Category::Infinity) => Status::OK.and(rhs),

            (Category::Normal, Category::Normal) => {
                let mut status = Status::OK;
                let (a, b, c, d) = (self.0, self.1, rhs.0, rhs.1);
                // t = a * c
                let mut t = a;
                t = unpack!(status|=, t.mul_r(c, round));
                if !t.is_finite_non_zero() {
                    return status.and(DoubleFloat(t, F::ZERO));
                }

                // tau = fmsub(a, c, t), that is -fmadd(-a, c, t).
                let mut tau = a;
                tau = unpack!(status|=, tau.mul_add_r(c, -t, round));
                // v = a * d
                let mut v = a;
                v = unpack!(status|=, v.mul_r(d, round));
                // w = b * c
                let mut w = b;
                w = unpack!(status|=, w.mul_r(c, round));
                v = unpack!(status|=, v.add_r(w, round));
                // tau += v + w
                tau = unpack!(status|=, tau.add_r(v, round));
                // u = t + tau
                let mut u = t;
                u = unpack!(status|=, u.add_r(tau, round));

                self.0 = u;
                if !u.is_finite() {
                    self.1 = F::ZERO;
                } else {
                    // self.1 = (t - u) + tau
                    t = unpack!(status|=, t.sub_r(u, round));
                    t = unpack!(status|=, t.add_r(tau, round));
                    self.1 = t;
                }
                status.and(self)
            }
        }
    }

    fn mul_add_r(self, multiplicand: Self, addend: Self, round: Round) -> StatusAnd<Self> {
        Fallback::from(self)
            .mul_add_r(Fallback::from(multiplicand), Fallback::from(addend), round)
            .map(Self::from)
    }

    fn div_r(self, rhs: Self, round: Round) -> StatusAnd<Self> {
        Fallback::from(self).div_r(Fallback::from(rhs), round).map(Self::from)
    }

    fn c_fmod(self, rhs: Self) -> StatusAnd<Self> {
        Fallback::from(self).c_fmod(Fallback::from(rhs)).map(Self::from)
    }

    fn round_to_integral(self, round: Round) -> StatusAnd<Self> {
        Fallback::from(self).round_to_integral(round).map(Self::from)
    }

    fn next_up(self) -> StatusAnd<Self> {
        Fallback::from(self).next_up().map(Self::from)
    }

    fn from_bits(input: u128) -> Self {
        let (a, b) = (input, input >> F::BITS);
        DoubleFloat(F::from_bits(a & ((1 << F::BITS) - 1)), F::from_bits(b & ((1 << F::BITS) - 1)))
    }

    fn from_u128_r(input: u128, round: Round) -> StatusAnd<Self> {
        Fallback::from_u128_r(input, round).map(Self::from)
    }

    fn from_str_r(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError> {
        Fallback::from_str_r(s, round).map(|r| r.map(Self::from))
    }

    fn to_bits(self) -> u128 {
        self.0.to_bits() | (self.1.to_bits() << F::BITS)
    }

    fn to_u128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<u128> {
        Fallback::from(self).to_u128_r(width, round, is_exact)
    }

    fn cmp_abs_normal(self, rhs: Self) -> Ordering {
        self.0.cmp_abs_normal(rhs.0).then_with(|| {
            let result = self.1.cmp_abs_normal(rhs.1);
            if result != Ordering::Equal {
                let against = self.0.is_negative() ^ self.1.is_negative();
                let rhs_against = rhs.0.is_negative() ^ rhs.1.is_negative();
                (!against)
                    .cmp(&!rhs_against)
                    .then_with(|| if against { result.reverse() } else { result })
            } else {
                result
            }
        })
    }

    fn bitwise_eq(self, rhs: Self) -> bool {
        self.0.bitwise_eq(rhs.0) && self.1.bitwise_eq(rhs.1)
    }

    fn is_negative(self) -> bool {
        self.0.is_negative()
    }

    fn is_denormal(self) -> bool {
        self.category() == Category::Normal
            && (self.0.is_denormal() || self.0.is_denormal() ||
          // (double)(Hi + Lo) == Hi defines a normal number.
          !(self.0 + self.1).value.bitwise_eq(self.0))
    }

    fn is_signaling(self) -> bool {
        self.0.is_signaling()
    }

    fn category(self) -> Category {
        self.0.category()
    }

    fn get_exact_inverse(self) -> Option<Self> {
        Fallback::from(self).get_exact_inverse().map(Self::from)
    }

    fn ilogb(self) -> ExpInt {
        self.0.ilogb()
    }

    fn scalbn_r(self, exp: ExpInt, round: Round) -> Self {
        DoubleFloat(self.0.scalbn_r(exp, round), self.1.scalbn_r(exp, round))
    }

    fn frexp_r(self, exp: &mut ExpInt, round: Round) -> Self {
        let a = self.0.frexp_r(exp, round);
        let mut b = self.1;
        if self.category() == Category::Normal {
            b = b.scalbn_r(-*exp, round);
        }
        DoubleFloat(a, b)
    }
}