1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
//! Port of LLVM's APFloat software floating-point implementation from the
//! following C++ sources (please update commit hash when backporting):
//! <https://github.com/llvm-mirror/llvm/tree/23efab2bbd424ed13495a420ad8641cb2c6c28f9>
//!
//! * `include/llvm/ADT/APFloat.h` -> `Float` and `FloatConvert` traits
//! * `lib/Support/APFloat.cpp` -> `ieee` and `ppc` modules
//! * `unittests/ADT/APFloatTest.cpp` -> `tests` directory
//!
//! The port contains no unsafe code, global state, or side-effects in general,
//! and the only allocations are in the conversion to/from decimal strings.
//!
//! Most of the API and the testcases are intact in some form or another,
//! with some ergonomic changes, such as idiomatic short names, returning
//! new values instead of mutating the receiver, and having separate method
//! variants that take a non-default rounding mode (with the suffix `_r`).
//! Comments have been preserved where possible, only slightly adapted.
//!
//! Instead of keeping a pointer to a configuration struct and inspecting it
//! dynamically on every operation, types (e.g., `ieee::Double`), traits
//! (e.g., `ieee::Semantics`) and associated constants are employed for
//! increased type safety and performance.
//!
//! On-heap bigints are replaced everywhere (except in decimal conversion),
//! with short arrays of `type Limb = u128` elements (instead of `u64`),
//! This allows fitting the largest supported significands in one integer
//! (`ieee::Quad` and `ppc::Fallback` use slightly less than 128 bits).
//! All of the functions in the `ieee::sig` module operate on slices.
//!
//! # Note
//!
//! This API is completely unstable and subject to change.
#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
#![no_std]
#![forbid(unsafe_code)]
#![deny(rustc::untranslatable_diagnostic)]
#![deny(rustc::diagnostic_outside_of_impl)]
#[macro_use]
extern crate alloc;
use core::cmp::Ordering;
use core::fmt;
use core::ops::{Add, Div, Mul, Neg, Rem, Sub};
use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
use core::str::FromStr;
bitflags::bitflags! {
/// IEEE-754R 7: Default exception handling.
///
/// UNDERFLOW or OVERFLOW are always returned or-ed with INEXACT.
#[must_use]
pub struct Status: u8 {
const OK = 0x00;
const INVALID_OP = 0x01;
const DIV_BY_ZERO = 0x02;
const OVERFLOW = 0x04;
const UNDERFLOW = 0x08;
const INEXACT = 0x10;
}
}
#[must_use]
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub struct StatusAnd<T> {
pub status: Status,
pub value: T,
}
impl Status {
pub fn and<T>(self, value: T) -> StatusAnd<T> {
StatusAnd { status: self, value }
}
}
impl<T> StatusAnd<T> {
pub fn map<F: FnOnce(T) -> U, U>(self, f: F) -> StatusAnd<U> {
StatusAnd { status: self.status, value: f(self.value) }
}
}
#[macro_export]
macro_rules! unpack {
($status:ident|=, $e:expr) => {
match $e {
$crate::StatusAnd { status, value } => {
$status |= status;
value
}
}
};
($status:ident=, $e:expr) => {
match $e {
$crate::StatusAnd { status, value } => {
$status = status;
value
}
}
};
}
/// Category of internally-represented number.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum Category {
Infinity,
NaN,
Normal,
Zero,
}
/// IEEE-754R 4.3: Rounding-direction attributes.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum Round {
NearestTiesToEven,
TowardPositive,
TowardNegative,
TowardZero,
NearestTiesToAway,
}
impl Neg for Round {
type Output = Round;
fn neg(self) -> Round {
match self {
Round::TowardPositive => Round::TowardNegative,
Round::TowardNegative => Round::TowardPositive,
Round::NearestTiesToEven | Round::TowardZero | Round::NearestTiesToAway => self,
}
}
}
/// A signed type to represent a floating point number's unbiased exponent.
pub type ExpInt = i16;
// \c ilogb error results.
pub const IEK_INF: ExpInt = ExpInt::MAX;
pub const IEK_NAN: ExpInt = ExpInt::MIN;
pub const IEK_ZERO: ExpInt = ExpInt::MIN + 1;
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct ParseError(pub &'static str);
/// A self-contained host- and target-independent arbitrary-precision
/// floating-point software implementation.
///
/// `apfloat` uses significand bignum integer arithmetic as provided by functions
/// in the `ieee::sig`.
///
/// Written for clarity rather than speed, in particular with a view to use in
/// the front-end of a cross compiler so that target arithmetic can be correctly
/// performed on the host. Performance should nonetheless be reasonable,
/// particularly for its intended use. It may be useful as a base
/// implementation for a run-time library during development of a faster
/// target-specific one.
///
/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
/// implemented operations. Currently implemented operations are add, subtract,
/// multiply, divide, fused-multiply-add, conversion-to-float,
/// conversion-to-integer and conversion-from-integer. New rounding modes
/// (e.g., away from zero) can be added with three or four lines of code.
///
/// Four formats are built-in: IEEE single precision, double precision,
/// quadruple precision, and x87 80-bit extended double (when operating with
/// full extended precision). Adding a new format that obeys IEEE semantics
/// only requires adding two lines of code: a declaration and definition of the
/// format.
///
/// All operations return the status of that operation as an exception bit-mask,
/// so multiple operations can be done consecutively with their results or-ed
/// together. The returned status can be useful for compiler diagnostics; e.g.,
/// inexact, underflow and overflow can be easily diagnosed on constant folding,
/// and compiler optimizers can determine what exceptions would be raised by
/// folding operations and optimize, or perhaps not optimize, accordingly.
///
/// At present, underflow tininess is detected after rounding; it should be
/// straight forward to add support for the before-rounding case too.
///
/// The library reads hexadecimal floating point numbers as per C99, and
/// correctly rounds if necessary according to the specified rounding mode.
/// Syntax is required to have been validated by the caller.
///
/// It also reads decimal floating point numbers and correctly rounds according
/// to the specified rounding mode.
///
/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
/// signed exponent, and the significand as an array of integer limbs. After
/// normalization of a number of precision P the exponent is within the range of
/// the format, and if the number is not denormal the P-th bit of the
/// significand is set as an explicit integer bit. For denormals the most
/// significant bit is shifted right so that the exponent is maintained at the
/// format's minimum, so that the smallest denormal has just the least
/// significant bit of the significand set. The sign of zeros and infinities
/// is significant; the exponent and significand of such numbers is not stored,
/// but has a known implicit (deterministic) value: 0 for the significands, 0
/// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and
/// significand are deterministic, although not really meaningful, and preserved
/// in non-conversion operations. The exponent is implicitly all 1 bits.
///
/// `apfloat` does not provide any exception handling beyond default exception
/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
/// by encoding Signaling NaNs with the first bit of its trailing significand
/// as 0.
///
/// Future work
/// ===========
///
/// Some features that may or may not be worth adding:
///
/// Optional ability to detect underflow tininess before rounding.
///
/// New formats: x87 in single and double precision mode (IEEE apart from
/// extended exponent range) (hard).
///
/// New operations: sqrt, nexttoward.
///
pub trait Float:
Copy
+ Default
+ FromStr<Err = ParseError>
+ PartialOrd
+ fmt::Display
+ Neg<Output = Self>
+ AddAssign
+ SubAssign
+ MulAssign
+ DivAssign
+ RemAssign
+ Add<Output = StatusAnd<Self>>
+ Sub<Output = StatusAnd<Self>>
+ Mul<Output = StatusAnd<Self>>
+ Div<Output = StatusAnd<Self>>
+ Rem<Output = StatusAnd<Self>>
{
/// Total number of bits in the in-memory format.
const BITS: usize;
/// Number of bits in the significand. This includes the integer bit.
const PRECISION: usize;
/// The largest E such that 2<sup>E</sup> is representable; this matches the
/// definition of IEEE 754.
const MAX_EXP: ExpInt;
/// The smallest E such that 2<sup>E</sup> is a normalized number; this
/// matches the definition of IEEE 754.
const MIN_EXP: ExpInt;
/// Positive Zero.
const ZERO: Self;
/// Positive Infinity.
const INFINITY: Self;
/// NaN (Not a Number).
// FIXME(eddyb) provide a default when qnan becomes const fn.
const NAN: Self;
/// Factory for QNaN values.
// FIXME(eddyb) should be const fn.
fn qnan(payload: Option<u128>) -> Self;
/// Factory for SNaN values.
// FIXME(eddyb) should be const fn.
fn snan(payload: Option<u128>) -> Self;
/// Largest finite number.
// FIXME(eddyb) should be const (but FloatPair::largest is nontrivial).
fn largest() -> Self;
/// Smallest (by magnitude) finite number.
/// Might be denormalized, which implies a relative loss of precision.
const SMALLEST: Self;
/// Smallest (by magnitude) normalized finite number.
// FIXME(eddyb) should be const (but FloatPair::smallest_normalized is nontrivial).
fn smallest_normalized() -> Self;
// Arithmetic
fn add_r(self, rhs: Self, round: Round) -> StatusAnd<Self>;
fn sub_r(self, rhs: Self, round: Round) -> StatusAnd<Self> {
self.add_r(-rhs, round)
}
fn mul_r(self, rhs: Self, round: Round) -> StatusAnd<Self>;
fn mul_add_r(self, multiplicand: Self, addend: Self, round: Round) -> StatusAnd<Self>;
fn mul_add(self, multiplicand: Self, addend: Self) -> StatusAnd<Self> {
self.mul_add_r(multiplicand, addend, Round::NearestTiesToEven)
}
fn div_r(self, rhs: Self, round: Round) -> StatusAnd<Self>;
/// IEEE remainder.
// This is not currently correct in all cases.
fn ieee_rem(self, rhs: Self) -> StatusAnd<Self> {
let mut v = self;
let status;
v = unpack!(status=, v / rhs);
if status == Status::DIV_BY_ZERO {
return status.and(self);
}
assert!(Self::PRECISION < 128);
let status;
let x = unpack!(status=, v.to_i128_r(128, Round::NearestTiesToEven, &mut false));
if status == Status::INVALID_OP {
return status.and(self);
}
let status;
let mut v = unpack!(status=, Self::from_i128(x));
assert_eq!(status, Status::OK); // should always work
let status;
v = unpack!(status=, v * rhs);
assert_eq!(status - Status::INEXACT, Status::OK); // should not overflow or underflow
let status;
v = unpack!(status=, self - v);
assert_eq!(status - Status::INEXACT, Status::OK); // likewise
if v.is_zero() {
status.and(v.copy_sign(self)) // IEEE754 requires this
} else {
status.and(v)
}
}
/// C fmod, or llvm frem.
fn c_fmod(self, rhs: Self) -> StatusAnd<Self>;
fn round_to_integral(self, round: Round) -> StatusAnd<Self>;
/// IEEE-754R 2008 5.3.1: nextUp.
fn next_up(self) -> StatusAnd<Self>;
/// IEEE-754R 2008 5.3.1: nextDown.
///
/// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with
/// appropriate sign switching before/after the computation.
fn next_down(self) -> StatusAnd<Self> {
(-self).next_up().map(|r| -r)
}
fn abs(self) -> Self {
if self.is_negative() { -self } else { self }
}
fn copy_sign(self, rhs: Self) -> Self {
if self.is_negative() != rhs.is_negative() { -self } else { self }
}
// Conversions
fn from_bits(input: u128) -> Self;
fn from_i128_r(input: i128, round: Round) -> StatusAnd<Self> {
if input < 0 {
Self::from_u128_r(input.wrapping_neg() as u128, -round).map(|r| -r)
} else {
Self::from_u128_r(input as u128, round)
}
}
fn from_i128(input: i128) -> StatusAnd<Self> {
Self::from_i128_r(input, Round::NearestTiesToEven)
}
fn from_u128_r(input: u128, round: Round) -> StatusAnd<Self>;
fn from_u128(input: u128) -> StatusAnd<Self> {
Self::from_u128_r(input, Round::NearestTiesToEven)
}
fn from_str_r(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError>;
fn to_bits(self) -> u128;
/// Converts a floating point number to an integer according to the
/// rounding mode. In case of an invalid operation exception,
/// deterministic values are returned, namely zero for NaNs and the
/// minimal or maximal value respectively for underflow or overflow.
/// If the rounded value is in range but the floating point number is
/// not the exact integer, the C standard doesn't require an inexact
/// exception to be raised. IEEE-854 does require it so we do that.
///
/// Note that for conversions to integer type the C standard requires
/// round-to-zero to always be used.
///
/// The *is_exact output tells whether the result is exact, in the sense
/// that converting it back to the original floating point type produces
/// the original value. This is almost equivalent to `result == Status::OK`,
/// except for negative zeroes.
fn to_i128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<i128> {
let status;
if self.is_negative() {
if self.is_zero() {
// Negative zero can't be represented as an int.
*is_exact = false;
}
let r = unpack!(status=, (-self).to_u128_r(width, -round, is_exact));
// Check for values that don't fit in the signed integer.
if r > (1 << (width - 1)) {
// Return the most negative integer for the given width.
*is_exact = false;
Status::INVALID_OP.and(-1 << (width - 1))
} else {
status.and(r.wrapping_neg() as i128)
}
} else {
// Positive case is simpler, can pretend it's a smaller unsigned
// integer, and `to_u128` will take care of all the edge cases.
self.to_u128_r(width - 1, round, is_exact).map(|r| r as i128)
}
}
fn to_i128(self, width: usize) -> StatusAnd<i128> {
self.to_i128_r(width, Round::TowardZero, &mut true)
}
fn to_u128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<u128>;
fn to_u128(self, width: usize) -> StatusAnd<u128> {
self.to_u128_r(width, Round::TowardZero, &mut true)
}
fn cmp_abs_normal(self, rhs: Self) -> Ordering;
/// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
fn bitwise_eq(self, rhs: Self) -> bool;
// IEEE-754R 5.7.2 General operations.
/// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
/// both are not NaN. If either argument is a NaN, returns the other argument.
fn min(self, other: Self) -> Self {
if self.is_nan() {
other
} else if other.is_nan() {
self
} else if other.partial_cmp(&self) == Some(Ordering::Less) {
other
} else {
self
}
}
/// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
/// both are not NaN. If either argument is a NaN, returns the other argument.
fn max(self, other: Self) -> Self {
if self.is_nan() {
other
} else if other.is_nan() {
self
} else if self.partial_cmp(&other) == Some(Ordering::Less) {
other
} else {
self
}
}
/// IEEE-754R isSignMinus: Returns whether the current value is
/// negative.
///
/// This applies to zeros and NaNs as well.
fn is_negative(self) -> bool;
/// IEEE-754R isNormal: Returns whether the current value is normal.
///
/// This implies that the current value of the float is not zero, subnormal,
/// infinite, or NaN following the definition of normality from IEEE-754R.
fn is_normal(self) -> bool {
!self.is_denormal() && self.is_finite_non_zero()
}
/// Returns `true` if the current value is zero, subnormal, or
/// normal.
///
/// This means that the value is not infinite or NaN.
fn is_finite(self) -> bool {
!self.is_nan() && !self.is_infinite()
}
/// Returns `true` if the float is plus or minus zero.
fn is_zero(self) -> bool {
self.category() == Category::Zero
}
/// IEEE-754R isSubnormal(): Returns whether the float is a
/// denormal.
fn is_denormal(self) -> bool;
/// IEEE-754R isInfinite(): Returns whether the float is infinity.
fn is_infinite(self) -> bool {
self.category() == Category::Infinity
}
/// Returns `true` if the float is a quiet or signaling NaN.
fn is_nan(self) -> bool {
self.category() == Category::NaN
}
/// Returns `true` if the float is a signaling NaN.
fn is_signaling(self) -> bool;
// Simple Queries
fn category(self) -> Category;
fn is_non_zero(self) -> bool {
!self.is_zero()
}
fn is_finite_non_zero(self) -> bool {
self.is_finite() && !self.is_zero()
}
fn is_pos_zero(self) -> bool {
self.is_zero() && !self.is_negative()
}
fn is_neg_zero(self) -> bool {
self.is_zero() && self.is_negative()
}
/// Returns `true` if the number has the smallest possible non-zero
/// magnitude in the current semantics.
fn is_smallest(self) -> bool {
Self::SMALLEST.copy_sign(self).bitwise_eq(self)
}
/// Returns `true` if the number has the largest possible finite
/// magnitude in the current semantics.
fn is_largest(self) -> bool {
Self::largest().copy_sign(self).bitwise_eq(self)
}
/// Returns `true` if the number is an exact integer.
fn is_integer(self) -> bool {
// This could be made more efficient; I'm going for obviously correct.
if !self.is_finite() {
return false;
}
self.round_to_integral(Round::TowardZero).value.bitwise_eq(self)
}
/// If this value has an exact multiplicative inverse, return it.
fn get_exact_inverse(self) -> Option<Self>;
/// Returns the exponent of the internal representation of the Float.
///
/// Because the radix of Float is 2, this is equivalent to floor(log2(x)).
/// For special Float values, this returns special error codes:
///
/// NaN -> \c IEK_NAN
/// 0 -> \c IEK_ZERO
/// Inf -> \c IEK_INF
///
fn ilogb(self) -> ExpInt;
/// Returns: self * 2<sup>exp</sup> for integral exponents.
/// Equivalent to C standard library function `ldexp`.
fn scalbn_r(self, exp: ExpInt, round: Round) -> Self;
fn scalbn(self, exp: ExpInt) -> Self {
self.scalbn_r(exp, Round::NearestTiesToEven)
}
/// Equivalent to C standard library function with the same name.
///
/// While the C standard says exp is an unspecified value for infinity and nan,
/// this returns INT_MAX for infinities, and INT_MIN for NaNs (see `ilogb`).
fn frexp_r(self, exp: &mut ExpInt, round: Round) -> Self;
fn frexp(self, exp: &mut ExpInt) -> Self {
self.frexp_r(exp, Round::NearestTiesToEven)
}
}
pub trait FloatConvert<T: Float>: Float {
/// Converts a value of one floating point type to another.
/// The return value corresponds to the IEEE754 exceptions. *loses_info
/// records whether the transformation lost information, i.e., whether
/// converting the result back to the original type will produce the
/// original value (this is almost the same as return `value == Status::OK`,
/// but there are edge cases where this is not so).
fn convert_r(self, round: Round, loses_info: &mut bool) -> StatusAnd<T>;
fn convert(self, loses_info: &mut bool) -> StatusAnd<T> {
self.convert_r(Round::NearestTiesToEven, loses_info)
}
}
macro_rules! float_common_impls {
($ty:ident<$t:tt>) => {
impl<$t> Default for $ty<$t>
where
Self: Float,
{
fn default() -> Self {
Self::ZERO
}
}
impl<$t> ::core::str::FromStr for $ty<$t>
where
Self: Float,
{
type Err = ParseError;
fn from_str(s: &str) -> Result<Self, ParseError> {
Self::from_str_r(s, Round::NearestTiesToEven).map(|x| x.value)
}
}
// Rounding ties to the nearest even, by default.
impl<$t> ::core::ops::Add for $ty<$t>
where
Self: Float,
{
type Output = StatusAnd<Self>;
fn add(self, rhs: Self) -> StatusAnd<Self> {
self.add_r(rhs, Round::NearestTiesToEven)
}
}
impl<$t> ::core::ops::Sub for $ty<$t>
where
Self: Float,
{
type Output = StatusAnd<Self>;
fn sub(self, rhs: Self) -> StatusAnd<Self> {
self.sub_r(rhs, Round::NearestTiesToEven)
}
}
impl<$t> ::core::ops::Mul for $ty<$t>
where
Self: Float,
{
type Output = StatusAnd<Self>;
fn mul(self, rhs: Self) -> StatusAnd<Self> {
self.mul_r(rhs, Round::NearestTiesToEven)
}
}
impl<$t> ::core::ops::Div for $ty<$t>
where
Self: Float,
{
type Output = StatusAnd<Self>;
fn div(self, rhs: Self) -> StatusAnd<Self> {
self.div_r(rhs, Round::NearestTiesToEven)
}
}
impl<$t> ::core::ops::Rem for $ty<$t>
where
Self: Float,
{
type Output = StatusAnd<Self>;
fn rem(self, rhs: Self) -> StatusAnd<Self> {
self.c_fmod(rhs)
}
}
impl<$t> ::core::ops::AddAssign for $ty<$t>
where
Self: Float,
{
fn add_assign(&mut self, rhs: Self) {
*self = (*self + rhs).value;
}
}
impl<$t> ::core::ops::SubAssign for $ty<$t>
where
Self: Float,
{
fn sub_assign(&mut self, rhs: Self) {
*self = (*self - rhs).value;
}
}
impl<$t> ::core::ops::MulAssign for $ty<$t>
where
Self: Float,
{
fn mul_assign(&mut self, rhs: Self) {
*self = (*self * rhs).value;
}
}
impl<$t> ::core::ops::DivAssign for $ty<$t>
where
Self: Float,
{
fn div_assign(&mut self, rhs: Self) {
*self = (*self / rhs).value;
}
}
impl<$t> ::core::ops::RemAssign for $ty<$t>
where
Self: Float,
{
fn rem_assign(&mut self, rhs: Self) {
*self = (*self % rhs).value;
}
}
};
}
pub mod ieee;
pub mod ppc;