Struct std::path::Path

1.0.0 · source ·
pub struct Path { /* private fields */ }
Expand description

A slice of a path (akin to str).

This type supports a number of operations for inspecting a path, including breaking the path into its components (separated by / on Unix and by either / or \ on Windows), extracting the file name, determining whether the path is absolute, and so on.

This is an unsized type, meaning that it must always be used behind a pointer like & or Box. For an owned version of this type, see PathBuf.

More details about the overall approach can be found in the module documentation.

Examples

use std::path::Path;
use std::ffi::OsStr;

// Note: this example does work on Windows
let path = Path::new("./foo/bar.txt");

let parent = path.parent();
assert_eq!(parent, Some(Path::new("./foo")));

let file_stem = path.file_stem();
assert_eq!(file_stem, Some(OsStr::new("bar")));

let extension = path.extension();
assert_eq!(extension, Some(OsStr::new("txt")));
Run

Implementations

Directly wraps a string slice as a Path slice.

This is a cost-free conversion.

Examples
use std::path::Path;

Path::new("foo.txt");
Run

You can create Paths from Strings, or even other Paths:

use std::path::Path;

let string = String::from("foo.txt");
let from_string = Path::new(&string);
let from_path = Path::new(&from_string);
assert_eq!(from_string, from_path);
Run

Yields the underlying OsStr slice.

Examples
use std::path::Path;

let os_str = Path::new("foo.txt").as_os_str();
assert_eq!(os_str, std::ffi::OsStr::new("foo.txt"));
Run

Yields a &str slice if the Path is valid unicode.

This conversion may entail doing a check for UTF-8 validity. Note that validation is performed because non-UTF-8 strings are perfectly valid for some OS.

Examples
use std::path::Path;

let path = Path::new("foo.txt");
assert_eq!(path.to_str(), Some("foo.txt"));
Run

Converts a Path to a Cow<str>.

Any non-Unicode sequences are replaced with U+FFFD REPLACEMENT CHARACTER.

Examples

Calling to_string_lossy on a Path with valid unicode:

use std::path::Path;

let path = Path::new("foo.txt");
assert_eq!(path.to_string_lossy(), "foo.txt");
Run

Had path contained invalid unicode, the to_string_lossy call might have returned "fo�.txt".

Converts a Path to an owned PathBuf.

Examples
use std::path::Path;

let path_buf = Path::new("foo.txt").to_path_buf();
assert_eq!(path_buf, std::path::PathBuf::from("foo.txt"));
Run

Returns true if the Path is absolute, i.e., if it is independent of the current directory.

  • On Unix, a path is absolute if it starts with the root, so is_absolute and has_root are equivalent.

  • On Windows, a path is absolute if it has a prefix and starts with the root: c:\windows is absolute, while c:temp and \temp are not.

Examples
use std::path::Path;

assert!(!Path::new("foo.txt").is_absolute());
Run

Returns true if the Path is relative, i.e., not absolute.

See is_absolute’s documentation for more details.

Examples
use std::path::Path;

assert!(Path::new("foo.txt").is_relative());
Run

Returns true if the Path has a root.

  • On Unix, a path has a root if it begins with /.

  • On Windows, a path has a root if it:

    • has no prefix and begins with a separator, e.g., \windows
    • has a prefix followed by a separator, e.g., c:\windows but not c:windows
    • has any non-disk prefix, e.g., \\server\share
Examples
use std::path::Path;

assert!(Path::new("/etc/passwd").has_root());
Run

Returns the Path without its final component, if there is one.

Returns None if the path terminates in a root or prefix.

Examples
use std::path::Path;

let path = Path::new("/foo/bar");
let parent = path.parent().unwrap();
assert_eq!(parent, Path::new("/foo"));

let grand_parent = parent.parent().unwrap();
assert_eq!(grand_parent, Path::new("/"));
assert_eq!(grand_parent.parent(), None);
Run

Produces an iterator over Path and its ancestors.

The iterator will yield the Path that is returned if the parent method is used zero or more times. That means, the iterator will yield &self, &self.parent().unwrap(), &self.parent().unwrap().parent().unwrap() and so on. If the parent method returns None, the iterator will do likewise. The iterator will always yield at least one value, namely &self.

Examples
use std::path::Path;

let mut ancestors = Path::new("/foo/bar").ancestors();
assert_eq!(ancestors.next(), Some(Path::new("/foo/bar")));
assert_eq!(ancestors.next(), Some(Path::new("/foo")));
assert_eq!(ancestors.next(), Some(Path::new("/")));
assert_eq!(ancestors.next(), None);

let mut ancestors = Path::new("../foo/bar").ancestors();
assert_eq!(ancestors.next(), Some(Path::new("../foo/bar")));
assert_eq!(ancestors.next(), Some(Path::new("../foo")));
assert_eq!(ancestors.next(), Some(Path::new("..")));
assert_eq!(ancestors.next(), Some(Path::new("")));
assert_eq!(ancestors.next(), None);
Run

Returns the final component of the Path, if there is one.

If the path is a normal file, this is the file name. If it’s the path of a directory, this is the directory name.

Returns None if the path terminates in ...

Examples
use std::path::Path;
use std::ffi::OsStr;

assert_eq!(Some(OsStr::new("bin")), Path::new("/usr/bin/").file_name());
assert_eq!(Some(OsStr::new("foo.txt")), Path::new("tmp/foo.txt").file_name());
assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.").file_name());
assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.//").file_name());
assert_eq!(None, Path::new("foo.txt/..").file_name());
assert_eq!(None, Path::new("/").file_name());
Run

Returns a path that, when joined onto base, yields self.

Errors

If base is not a prefix of self (i.e., starts_with returns false), returns Err.

Examples
use std::path::{Path, PathBuf};

let path = Path::new("/test/haha/foo.txt");

assert_eq!(path.strip_prefix("/"), Ok(Path::new("test/haha/foo.txt")));
assert_eq!(path.strip_prefix("/test"), Ok(Path::new("haha/foo.txt")));
assert_eq!(path.strip_prefix("/test/"), Ok(Path::new("haha/foo.txt")));
assert_eq!(path.strip_prefix("/test/haha/foo.txt"), Ok(Path::new("")));
assert_eq!(path.strip_prefix("/test/haha/foo.txt/"), Ok(Path::new("")));

assert!(path.strip_prefix("test").is_err());
assert!(path.strip_prefix("/haha").is_err());

let prefix = PathBuf::from("/test/");
assert_eq!(path.strip_prefix(prefix), Ok(Path::new("haha/foo.txt")));
Run

Determines whether base is a prefix of self.

Only considers whole path components to match.

Examples
use std::path::Path;

let path = Path::new("/etc/passwd");

assert!(path.starts_with("/etc"));
assert!(path.starts_with("/etc/"));
assert!(path.starts_with("/etc/passwd"));
assert!(path.starts_with("/etc/passwd/")); // extra slash is okay
assert!(path.starts_with("/etc/passwd///")); // multiple extra slashes are okay

assert!(!path.starts_with("/e"));
assert!(!path.starts_with("/etc/passwd.txt"));

assert!(!Path::new("/etc/foo.rs").starts_with("/etc/foo"));
Run

Determines whether child is a suffix of self.

Only considers whole path components to match.

Examples
use std::path::Path;

let path = Path::new("/etc/resolv.conf");

assert!(path.ends_with("resolv.conf"));
assert!(path.ends_with("etc/resolv.conf"));
assert!(path.ends_with("/etc/resolv.conf"));

assert!(!path.ends_with("/resolv.conf"));
assert!(!path.ends_with("conf")); // use .extension() instead
Run

Extracts the stem (non-extension) portion of self.file_name.

The stem is:

  • None, if there is no file name;
  • The entire file name if there is no embedded .;
  • The entire file name if the file name begins with . and has no other .s within;
  • Otherwise, the portion of the file name before the final .
Examples
use std::path::Path;

assert_eq!("foo", Path::new("foo.rs").file_stem().unwrap());
assert_eq!("foo.tar", Path::new("foo.tar.gz").file_stem().unwrap());
Run
See Also

This method is similar to Path::file_prefix, which extracts the portion of the file name before the first .

🔬This is a nightly-only experimental API. (path_file_prefix #86319)

Extracts the prefix of self.file_name.

The prefix is:

  • None, if there is no file name;
  • The entire file name if there is no embedded .;
  • The portion of the file name before the first non-beginning .;
  • The entire file name if the file name begins with . and has no other .s within;
  • The portion of the file name before the second . if the file name begins with .
Examples
use std::path::Path;

assert_eq!("foo", Path::new("foo.rs").file_prefix().unwrap());
assert_eq!("foo", Path::new("foo.tar.gz").file_prefix().unwrap());
Run
See Also

This method is similar to Path::file_stem, which extracts the portion of the file name before the last .

Extracts the extension (without the leading dot) of self.file_name, if possible.

The extension is:

  • None, if there is no file name;
  • None, if there is no embedded .;
  • None, if the file name begins with . and has no other .s within;
  • Otherwise, the portion of the file name after the final .
Examples
use std::path::Path;

assert_eq!("rs", Path::new("foo.rs").extension().unwrap());
assert_eq!("gz", Path::new("foo.tar.gz").extension().unwrap());
Run

Creates an owned PathBuf with path adjoined to self.

See PathBuf::push for more details on what it means to adjoin a path.

Examples
use std::path::{Path, PathBuf};

assert_eq!(Path::new("/etc").join("passwd"), PathBuf::from("/etc/passwd"));
Run

Creates an owned PathBuf like self but with the given file name.

See PathBuf::set_file_name for more details.

Examples
use std::path::{Path, PathBuf};

let path = Path::new("/tmp/foo.txt");
assert_eq!(path.with_file_name("bar.txt"), PathBuf::from("/tmp/bar.txt"));

let path = Path::new("/tmp");
assert_eq!(path.with_file_name("var"), PathBuf::from("/var"));
Run

Creates an owned PathBuf like self but with the given extension.

See PathBuf::set_extension for more details.

Examples
use std::path::{Path, PathBuf};

let path = Path::new("foo.rs");
assert_eq!(path.with_extension("txt"), PathBuf::from("foo.txt"));

let path = Path::new("foo.tar.gz");
assert_eq!(path.with_extension(""), PathBuf::from("foo.tar"));
assert_eq!(path.with_extension("xz"), PathBuf::from("foo.tar.xz"));
assert_eq!(path.with_extension("").with_extension("txt"), PathBuf::from("foo.txt"));
Run

Produces an iterator over the Components of the path.

When parsing the path, there is a small amount of normalization:

  • Repeated separators are ignored, so a/b and a//b both have a and b as components.

  • Occurrences of . are normalized away, except if they are at the beginning of the path. For example, a/./b, a/b/, a/b/. and a/b all have a and b as components, but ./a/b starts with an additional CurDir component.

  • A trailing slash is normalized away, /a/b and /a/b/ are equivalent.

Note that no other normalization takes place; in particular, a/c and a/b/../c are distinct, to account for the possibility that b is a symbolic link (so its parent isn’t a).

Examples
use std::path::{Path, Component};
use std::ffi::OsStr;

let mut components = Path::new("/tmp/foo.txt").components();

assert_eq!(components.next(), Some(Component::RootDir));
assert_eq!(components.next(), Some(Component::Normal(OsStr::new("tmp"))));
assert_eq!(components.next(), Some(Component::Normal(OsStr::new("foo.txt"))));
assert_eq!(components.next(), None)
Run

Produces an iterator over the path’s components viewed as OsStr slices.

For more information about the particulars of how the path is separated into components, see components.

Examples
use std::path::{self, Path};
use std::ffi::OsStr;

let mut it = Path::new("/tmp/foo.txt").iter();
assert_eq!(it.next(), Some(OsStr::new(&path::MAIN_SEPARATOR.to_string())));
assert_eq!(it.next(), Some(OsStr::new("tmp")));
assert_eq!(it.next(), Some(OsStr::new("foo.txt")));
assert_eq!(it.next(), None)
Run

Returns an object that implements Display for safely printing paths that may contain non-Unicode data. This may perform lossy conversion, depending on the platform. If you would like an implementation which escapes the path please use Debug instead.

Examples
use std::path::Path;

let path = Path::new("/tmp/foo.rs");

println!("{}", path.display());
Run

Queries the file system to get information about a file, directory, etc.

This function will traverse symbolic links to query information about the destination file.

This is an alias to fs::metadata.

Examples
use std::path::Path;

let path = Path::new("/Minas/tirith");
let metadata = path.metadata().expect("metadata call failed");
println!("{:?}", metadata.file_type());
Run

Queries the metadata about a file without following symlinks.

This is an alias to fs::symlink_metadata.

Examples
use std::path::Path;

let path = Path::new("/Minas/tirith");
let metadata = path.symlink_metadata().expect("symlink_metadata call failed");
println!("{:?}", metadata.file_type());
Run

Returns the canonical, absolute form of the path with all intermediate components normalized and symbolic links resolved.

This is an alias to fs::canonicalize.

Examples
use std::path::{Path, PathBuf};

let path = Path::new("/foo/test/../test/bar.rs");
assert_eq!(path.canonicalize().unwrap(), PathBuf::from("/foo/test/bar.rs"));
Run

Reads a symbolic link, returning the file that the link points to.

This is an alias to fs::read_link.

Examples
use std::path::Path;

let path = Path::new("/laputa/sky_castle.rs");
let path_link = path.read_link().expect("read_link call failed");
Run

Returns an iterator over the entries within a directory.

The iterator will yield instances of io::Result<fs::DirEntry>. New errors may be encountered after an iterator is initially constructed.

This is an alias to fs::read_dir.

Examples
use std::path::Path;

let path = Path::new("/laputa");
for entry in path.read_dir().expect("read_dir call failed") {
    if let Ok(entry) = entry {
        println!("{:?}", entry.path());
    }
}
Run

Returns true if the path points at an existing entity.

Warning: this method may be error-prone, consider using try_exists() instead! It also has a risk of introducing time-of-check to time-of-use (TOCTOU) bugs.

This function will traverse symbolic links to query information about the destination file.

If you cannot access the metadata of the file, e.g. because of a permission error or broken symbolic links, this will return false.

Examples
use std::path::Path;
assert!(!Path::new("does_not_exist.txt").exists());
Run
See Also

This is a convenience function that coerces errors to false. If you want to check errors, call Path::try_exists.

Returns Ok(true) if the path points at an existing entity.

This function will traverse symbolic links to query information about the destination file. In case of broken symbolic links this will return Ok(false).

As opposed to the exists() method, this one doesn’t silently ignore errors unrelated to the path not existing. (E.g. it will return Err(_) in case of permission denied on some of the parent directories.)

Note that while this avoids some pitfalls of the exists() method, it still can not prevent time-of-check to time-of-use (TOCTOU) bugs. You should only use it in scenarios where those bugs are not an issue.

Examples
use std::path::Path;
assert!(!Path::new("does_not_exist.txt").try_exists().expect("Can't check existence of file does_not_exist.txt"));
assert!(Path::new("/root/secret_file.txt").try_exists().is_err());
Run

Returns true if the path exists on disk and is pointing at a regular file.

This function will traverse symbolic links to query information about the destination file.

If you cannot access the metadata of the file, e.g. because of a permission error or broken symbolic links, this will return false.

Examples
use std::path::Path;
assert_eq!(Path::new("./is_a_directory/").is_file(), false);
assert_eq!(Path::new("a_file.txt").is_file(), true);
Run
See Also

This is a convenience function that coerces errors to false. If you want to check errors, call fs::metadata and handle its Result. Then call fs::Metadata::is_file if it was Ok.

When the goal is simply to read from (or write to) the source, the most reliable way to test the source can be read (or written to) is to open it. Only using is_file can break workflows like diff <( prog_a ) on a Unix-like system for example. See fs::File::open or fs::OpenOptions::open for more information.

Returns true if the path exists on disk and is pointing at a directory.

This function will traverse symbolic links to query information about the destination file.

If you cannot access the metadata of the file, e.g. because of a permission error or broken symbolic links, this will return false.

Examples
use std::path::Path;
assert_eq!(Path::new("./is_a_directory/").is_dir(), true);
assert_eq!(Path::new("a_file.txt").is_dir(), false);
Run
See Also

This is a convenience function that coerces errors to false. If you want to check errors, call fs::metadata and handle its Result. Then call fs::Metadata::is_dir if it was Ok.

Returns true if the path exists on disk and is pointing at a symbolic link.

This function will not traverse symbolic links. In case of a broken symbolic link this will also return true.

If you cannot access the directory containing the file, e.g., because of a permission error, this will return false.

Examples
use std::path::Path;
use std::os::unix::fs::symlink;

let link_path = Path::new("link");
symlink("/origin_does_not_exist/", link_path).unwrap();
assert_eq!(link_path.is_symlink(), true);
assert_eq!(link_path.exists(), false);
Run
See Also

This is a convenience function that coerces errors to false. If you want to check errors, call fs::symlink_metadata and handle its Result. Then call fs::Metadata::is_symlink if it was Ok.

Converts a Box<Path> into a PathBuf without copying or allocating.

Trait Implementations

Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Immutably borrows from an owned value. Read more
Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more

Creates a clone-on-write pointer from a reference to Path.

This conversion does not clone or allocate.

Converts a Path into an Arc by copying the Path data into a new Arc buffer.

Creates a boxed Path from a reference.

This will allocate and clone path to it.

Converts a Path into an Rc by copying the Path data into a new Rc buffer.

Creates a boxed Path from a clone-on-write pointer.

Converting from a Cow::Owned does not clone or allocate.

Converts a PathBuf into a Box<Path>.

This conversion currently should not allocate memory, but this behavior is not guaranteed on all platforms or in all future versions.

Feeds this value into the given Hasher. Read more
The type of the elements being iterated over.
Which kind of iterator are we turning this into?
Creates an iterator from a value. Read more
This method returns an Ordering between self and other. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more