Struct std::collections::LinkedList

1.0.0 · source ·
pub struct LinkedList<T, A = Global>
where A: Allocator,
{ /* private fields */ }
Expand description

A doubly-linked list with owned nodes.

The LinkedList allows pushing and popping elements at either end in constant time.

A LinkedList with a known list of items can be initialized from an array:

use std::collections::LinkedList;

let list = LinkedList::from([1, 2, 3]);

NOTE: It is almost always better to use Vec or VecDeque because array-based containers are generally faster, more memory efficient, and make better use of CPU cache.

Implementations§

source§

impl<T> LinkedList<T>

1.0.0 (const: 1.39.0) · source

pub const fn new() -> LinkedList<T>

Creates an empty LinkedList.

§Examples
use std::collections::LinkedList;

let list: LinkedList<u32> = LinkedList::new();
1.0.0 · source

pub fn append(&mut self, other: &mut LinkedList<T>)

Moves all elements from other to the end of the list.

This reuses all the nodes from other and moves them into self. After this operation, other becomes empty.

This operation should compute in O(1) time and O(1) memory.

§Examples
use std::collections::LinkedList;

let mut list1 = LinkedList::new();
list1.push_back('a');

let mut list2 = LinkedList::new();
list2.push_back('b');
list2.push_back('c');

list1.append(&mut list2);

let mut iter = list1.iter();
assert_eq!(iter.next(), Some(&'a'));
assert_eq!(iter.next(), Some(&'b'));
assert_eq!(iter.next(), Some(&'c'));
assert!(iter.next().is_none());

assert!(list2.is_empty());
source§

impl<T, A> LinkedList<T, A>
where A: Allocator,

source

pub const fn new_in(alloc: A) -> LinkedList<T, A>

🔬This is a nightly-only experimental API. (allocator_api #32838)

Constructs an empty LinkedList<T, A>.

§Examples
#![feature(allocator_api)]

use std::alloc::System;
use std::collections::LinkedList;

let list: LinkedList<u32, _> = LinkedList::new_in(System);
1.0.0 · source

pub fn iter(&self) -> Iter<'_, T>

Provides a forward iterator.

§Examples
use std::collections::LinkedList;

let mut list: LinkedList<u32> = LinkedList::new();

list.push_back(0);
list.push_back(1);
list.push_back(2);

let mut iter = list.iter();
assert_eq!(iter.next(), Some(&0));
assert_eq!(iter.next(), Some(&1));
assert_eq!(iter.next(), Some(&2));
assert_eq!(iter.next(), None);
1.0.0 · source

pub fn iter_mut(&mut self) -> IterMut<'_, T>

Provides a forward iterator with mutable references.

§Examples
use std::collections::LinkedList;

let mut list: LinkedList<u32> = LinkedList::new();

list.push_back(0);
list.push_back(1);
list.push_back(2);

for element in list.iter_mut() {
    *element += 10;
}

let mut iter = list.iter();
assert_eq!(iter.next(), Some(&10));
assert_eq!(iter.next(), Some(&11));
assert_eq!(iter.next(), Some(&12));
assert_eq!(iter.next(), None);
source

pub fn cursor_front(&self) -> Cursor<'_, T, A>

🔬This is a nightly-only experimental API. (linked_list_cursors #58533)

Provides a cursor at the front element.

The cursor is pointing to the “ghost” non-element if the list is empty.

source

pub fn cursor_front_mut(&mut self) -> CursorMut<'_, T, A>

🔬This is a nightly-only experimental API. (linked_list_cursors #58533)

Provides a cursor with editing operations at the front element.

The cursor is pointing to the “ghost” non-element if the list is empty.

source

pub fn cursor_back(&self) -> Cursor<'_, T, A>

🔬This is a nightly-only experimental API. (linked_list_cursors #58533)

Provides a cursor at the back element.

The cursor is pointing to the “ghost” non-element if the list is empty.

source

pub fn cursor_back_mut(&mut self) -> CursorMut<'_, T, A>

🔬This is a nightly-only experimental API. (linked_list_cursors #58533)

Provides a cursor with editing operations at the back element.

The cursor is pointing to the “ghost” non-element if the list is empty.

1.0.0 · source

pub fn is_empty(&self) -> bool

Returns true if the LinkedList is empty.

This operation should compute in O(1) time.

§Examples
use std::collections::LinkedList;

let mut dl = LinkedList::new();
assert!(dl.is_empty());

dl.push_front("foo");
assert!(!dl.is_empty());
1.0.0 · source

pub fn len(&self) -> usize

Returns the length of the LinkedList.

This operation should compute in O(1) time.

§Examples
use std::collections::LinkedList;

let mut dl = LinkedList::new();

dl.push_front(2);
assert_eq!(dl.len(), 1);

dl.push_front(1);
assert_eq!(dl.len(), 2);

dl.push_back(3);
assert_eq!(dl.len(), 3);
1.0.0 · source

pub fn clear(&mut self)

Removes all elements from the LinkedList.

This operation should compute in O(n) time.

§Examples
use std::collections::LinkedList;

let mut dl = LinkedList::new();

dl.push_front(2);
dl.push_front(1);
assert_eq!(dl.len(), 2);
assert_eq!(dl.front(), Some(&1));

dl.clear();
assert_eq!(dl.len(), 0);
assert_eq!(dl.front(), None);
1.12.0 · source

pub fn contains(&self, x: &T) -> bool
where T: PartialEq,

Returns true if the LinkedList contains an element equal to the given value.

This operation should compute linearly in O(n) time.

§Examples
use std::collections::LinkedList;

let mut list: LinkedList<u32> = LinkedList::new();

list.push_back(0);
list.push_back(1);
list.push_back(2);

assert_eq!(list.contains(&0), true);
assert_eq!(list.contains(&10), false);
1.0.0 · source

pub fn front(&self) -> Option<&T>

Provides a reference to the front element, or None if the list is empty.

This operation should compute in O(1) time.

§Examples
use std::collections::LinkedList;

let mut dl = LinkedList::new();
assert_eq!(dl.front(), None);

dl.push_front(1);
assert_eq!(dl.front(), Some(&1));
1.0.0 · source

pub fn front_mut(&mut self) -> Option<&mut T>

Provides a mutable reference to the front element, or None if the list is empty.

This operation should compute in O(1) time.

§Examples
use std::collections::LinkedList;

let mut dl = LinkedList::new();
assert_eq!(dl.front(), None);

dl.push_front(1);
assert_eq!(dl.front(), Some(&1));

match dl.front_mut() {
    None => {},
    Some(x) => *x = 5,
}
assert_eq!(dl.front(), Some(&5));
1.0.0 · source

pub fn back(&self) -> Option<&T>

Provides a reference to the back element, or None if the list is empty.

This operation should compute in O(1) time.

§Examples
use std::collections::LinkedList;

let mut dl = LinkedList::new();
assert_eq!(dl.back(), None);

dl.push_back(1);
assert_eq!(dl.back(), Some(&1));
1.0.0 · source

pub fn back_mut(&mut self) -> Option<&mut T>

Provides a mutable reference to the back element, or None if the list is empty.

This operation should compute in O(1) time.

§Examples
use std::collections::LinkedList;

let mut dl = LinkedList::new();
assert_eq!(dl.back(), None);

dl.push_back(1);
assert_eq!(dl.back(), Some(&1));

match dl.back_mut() {
    None => {},
    Some(x) => *x = 5,
}
assert_eq!(dl.back(), Some(&5));
1.0.0 · source

pub fn push_front(&mut self, elt: T)

Adds an element first in the list.

This operation should compute in O(1) time.

§Examples
use std::collections::LinkedList;

let mut dl = LinkedList::new();

dl.push_front(2);
assert_eq!(dl.front().unwrap(), &2);

dl.push_front(1);
assert_eq!(dl.front().unwrap(), &1);
1.0.0 · source

pub fn pop_front(&mut self) -> Option<T>

Removes the first element and returns it, or None if the list is empty.

This operation should compute in O(1) time.

§Examples
use std::collections::LinkedList;

let mut d = LinkedList::new();
assert_eq!(d.pop_front(), None);

d.push_front(1);
d.push_front(3);
assert_eq!(d.pop_front(), Some(3));
assert_eq!(d.pop_front(), Some(1));
assert_eq!(d.pop_front(), None);
1.0.0 · source

pub fn push_back(&mut self, elt: T)

Appends an element to the back of a list.

This operation should compute in O(1) time.

§Examples
use std::collections::LinkedList;

let mut d = LinkedList::new();
d.push_back(1);
d.push_back(3);
assert_eq!(3, *d.back().unwrap());
1.0.0 · source

pub fn pop_back(&mut self) -> Option<T>

Removes the last element from a list and returns it, or None if it is empty.

This operation should compute in O(1) time.

§Examples
use std::collections::LinkedList;

let mut d = LinkedList::new();
assert_eq!(d.pop_back(), None);
d.push_back(1);
d.push_back(3);
assert_eq!(d.pop_back(), Some(3));
1.0.0 · source

pub fn split_off(&mut self, at: usize) -> LinkedList<T, A>
where A: Clone,

Splits the list into two at the given index. Returns everything after the given index, including the index.

This operation should compute in O(n) time.

§Panics

Panics if at > len.

§Examples
use std::collections::LinkedList;

let mut d = LinkedList::new();

d.push_front(1);
d.push_front(2);
d.push_front(3);

let mut split = d.split_off(2);

assert_eq!(split.pop_front(), Some(1));
assert_eq!(split.pop_front(), None);
source

pub fn remove(&mut self, at: usize) -> T

🔬This is a nightly-only experimental API. (linked_list_remove #69210)

Removes the element at the given index and returns it.

This operation should compute in O(n) time.

§Panics

Panics if at >= len

§Examples
#![feature(linked_list_remove)]
use std::collections::LinkedList;

let mut d = LinkedList::new();

d.push_front(1);
d.push_front(2);
d.push_front(3);

assert_eq!(d.remove(1), 2);
assert_eq!(d.remove(0), 3);
assert_eq!(d.remove(0), 1);
source

pub fn retain<F>(&mut self, f: F)
where F: FnMut(&T) -> bool,

🔬This is a nightly-only experimental API. (linked_list_retain #114135)

Retains only the elements specified by the predicate.

In other words, remove all elements e for which f(&e) returns false. This method operates in place, visiting each element exactly once in the original order, and preserves the order of the retained elements.

§Examples
#![feature(linked_list_retain)]
use std::collections::LinkedList;

let mut d = LinkedList::new();

d.push_front(1);
d.push_front(2);
d.push_front(3);

d.retain(|&x| x % 2 == 0);

assert_eq!(d.pop_front(), Some(2));
assert_eq!(d.pop_front(), None);

Because the elements are visited exactly once in the original order, external state may be used to decide which elements to keep.

#![feature(linked_list_retain)]
use std::collections::LinkedList;

let mut d = LinkedList::new();

d.push_front(1);
d.push_front(2);
d.push_front(3);

let keep = [false, true, false];
let mut iter = keep.iter();
d.retain(|_| *iter.next().unwrap());
assert_eq!(d.pop_front(), Some(2));
assert_eq!(d.pop_front(), None);
source

pub fn retain_mut<F>(&mut self, f: F)
where F: FnMut(&mut T) -> bool,

🔬This is a nightly-only experimental API. (linked_list_retain #114135)

Retains only the elements specified by the predicate.

In other words, remove all elements e for which f(&e) returns false. This method operates in place, visiting each element exactly once in the original order, and preserves the order of the retained elements.

§Examples
#![feature(linked_list_retain)]
use std::collections::LinkedList;

let mut d = LinkedList::new();

d.push_front(1);
d.push_front(2);
d.push_front(3);

d.retain_mut(|x| if *x % 2 == 0 {
    *x += 1;
    true
} else {
    false
});
assert_eq!(d.pop_front(), Some(3));
assert_eq!(d.pop_front(), None);
source

pub fn extract_if<F>(&mut self, filter: F) -> ExtractIf<'_, T, F, A>
where F: FnMut(&mut T) -> bool,

🔬This is a nightly-only experimental API. (extract_if #43244)

Creates an iterator which uses a closure to determine if an element should be removed.

If the closure returns true, then the element is removed and yielded. If the closure returns false, the element will remain in the list and will not be yielded by the iterator.

If the returned ExtractIf is not exhausted, e.g. because it is dropped without iterating or the iteration short-circuits, then the remaining elements will be retained. Use extract_if().for_each(drop) if you do not need the returned iterator.

Note that extract_if lets you mutate every element in the filter closure, regardless of whether you choose to keep or remove it.

§Examples

Splitting a list into evens and odds, reusing the original list:

#![feature(extract_if)]
use std::collections::LinkedList;

let mut numbers: LinkedList<u32> = LinkedList::new();
numbers.extend(&[1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]);

let evens = numbers.extract_if(|x| *x % 2 == 0).collect::<LinkedList<_>>();
let odds = numbers;

assert_eq!(evens.into_iter().collect::<Vec<_>>(), vec![2, 4, 6, 8, 14]);
assert_eq!(odds.into_iter().collect::<Vec<_>>(), vec![1, 3, 5, 9, 11, 13, 15]);

Trait Implementations§

1.0.0 · source§

impl<T, A> Clone for LinkedList<T, A>
where T: Clone, A: Allocator + Clone,

source§

fn clone_from(&mut self, source: &LinkedList<T, A>)

Overwrites the contents of self with a clone of the contents of source.

This method is preferred over simply assigning source.clone() to self, as it avoids reallocation of the nodes of the linked list. Additionally, if the element type T overrides clone_from(), this will reuse the resources of self’s elements as well.

source§

fn clone(&self) -> LinkedList<T, A>

Returns a copy of the value. Read more
1.0.0 · source§

impl<T, A> Debug for LinkedList<T, A>
where T: Debug, A: Allocator,

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
1.0.0 · source§

impl<T> Default for LinkedList<T>

source§

fn default() -> LinkedList<T>

Creates an empty LinkedList<T>.

1.0.0 · source§

impl<T, A> Drop for LinkedList<T, A>
where A: Allocator,

source§

fn drop(&mut self)

Executes the destructor for this type. Read more
1.2.0 · source§

impl<'a, T, A> Extend<&'a T> for LinkedList<T, A>
where T: 'a + Copy, A: Allocator,

source§

fn extend<I>(&mut self, iter: I)
where I: IntoIterator<Item = &'a T>,

Extends a collection with the contents of an iterator. Read more
source§

fn extend_one(&mut self, _: &'a T)

🔬This is a nightly-only experimental API. (extend_one #72631)
Extends a collection with exactly one element.
source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one #72631)
Reserves capacity in a collection for the given number of additional elements. Read more
1.0.0 · source§

impl<T, A> Extend<T> for LinkedList<T, A>
where A: Allocator,

source§

fn extend<I>(&mut self, iter: I)
where I: IntoIterator<Item = T>,

Extends a collection with the contents of an iterator. Read more
source§

fn extend_one(&mut self, elem: T)

🔬This is a nightly-only experimental API. (extend_one #72631)
Extends a collection with exactly one element.
source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one #72631)
Reserves capacity in a collection for the given number of additional elements. Read more
1.56.0 · source§

impl<T, const N: usize> From<[T; N]> for LinkedList<T>

source§

fn from(arr: [T; N]) -> LinkedList<T>

Converts a [T; N] into a LinkedList<T>.

use std::collections::LinkedList;

let list1 = LinkedList::from([1, 2, 3, 4]);
let list2: LinkedList<_> = [1, 2, 3, 4].into();
assert_eq!(list1, list2);
1.0.0 · source§

impl<T> FromIterator<T> for LinkedList<T>

source§

fn from_iter<I>(iter: I) -> LinkedList<T>
where I: IntoIterator<Item = T>,

Creates a value from an iterator. Read more
1.0.0 · source§

impl<T, A> Hash for LinkedList<T, A>
where T: Hash, A: Allocator,

source§

fn hash<H>(&self, state: &mut H)
where H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
1.0.0 · source§

impl<'a, T, A> IntoIterator for &'a LinkedList<T, A>
where A: Allocator,

§

type Item = &'a T

The type of the elements being iterated over.
§

type IntoIter = Iter<'a, T>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> Iter<'a, T>

Creates an iterator from a value. Read more
1.0.0 · source§

impl<'a, T, A> IntoIterator for &'a mut LinkedList<T, A>
where A: Allocator,

§

type Item = &'a mut T

The type of the elements being iterated over.
§

type IntoIter = IterMut<'a, T>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> IterMut<'a, T>

Creates an iterator from a value. Read more
1.0.0 · source§

impl<T, A> IntoIterator for LinkedList<T, A>
where A: Allocator,

source§

fn into_iter(self) -> IntoIter<T, A>

Consumes the list into an iterator yielding elements by value.

§

type Item = T

The type of the elements being iterated over.
§

type IntoIter = IntoIter<T, A>

Which kind of iterator are we turning this into?
1.0.0 · source§

impl<T, A> Ord for LinkedList<T, A>
where T: Ord, A: Allocator,

source§

fn cmp(&self, other: &LinkedList<T, A>) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized + PartialOrd,

Restrict a value to a certain interval. Read more
1.0.0 · source§

impl<T, A> PartialEq for LinkedList<T, A>
where T: PartialEq, A: Allocator,

source§

fn eq(&self, other: &LinkedList<T, A>) -> bool

Tests for self and other values to be equal, and is used by ==.
source§

fn ne(&self, other: &LinkedList<T, A>) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
1.0.0 · source§

impl<T, A> PartialOrd for LinkedList<T, A>
where T: PartialOrd, A: Allocator,

source§

fn partial_cmp(&self, other: &LinkedList<T, A>) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
1.0.0 · source§

impl<T, A> Eq for LinkedList<T, A>
where T: Eq, A: Allocator,

1.0.0 · source§

impl<T, A> Send for LinkedList<T, A>
where T: Send, A: Allocator + Send,

1.0.0 · source§

impl<T, A> Sync for LinkedList<T, A>
where T: Sync, A: Allocator + Sync,

Auto Trait Implementations§

§

impl<T, A> Freeze for LinkedList<T, A>
where A: Freeze,

§

impl<T, A> RefUnwindSafe for LinkedList<T, A>

§

impl<T, A> Unpin for LinkedList<T, A>
where A: Unpin,

§

impl<T, A> UnwindSafe for LinkedList<T, A>

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit #126799)
Performs copy-assignment from self to dst. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.