rustc_infer::traits

Enum Reveal

pub enum Reveal {
    UserFacing,
    All,
}
Expand description

Depending on the stage of compilation, we want projection to be more or less conservative.

Variants§

§

UserFacing

At type-checking time, we refuse to project any associated type that is marked default. Non-default (“final”) types are always projected. This is necessary in general for soundness of specialization. However, we could allow projections in fully-monomorphic cases. We choose not to, because we prefer for default type to force the type definition to be treated abstractly by any consumers of the impl. Concretely, that means that the following example will fail to compile:

#![feature(specialization)]
trait Assoc {
    type Output;
}

impl<T> Assoc for T {
    default type Output = bool;
}

fn main() {
    let x: <() as Assoc>::Output = true;
}

We also do not reveal the hidden type of opaque types during type-checking.

§

All

At codegen time, all monomorphic projections will succeed. Also, impl Trait is normalized to the concrete type, which has to be already collected by type-checking.

NOTE: as impl Trait’s concrete type should never be observable directly by the user, Reveal::All should not be used by checks which may expose type equality or type contents to the user. There are some exceptions, e.g., around auto traits and transmute-checking, which expose some details, but not the whole concrete type of the impl Trait.

Trait Implementations§

§

impl Clone for Reveal

§

fn clone(&self) -> Reveal

Returns a copy of the value. Read more
Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl Debug for Reveal

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl<__D> Decodable<__D> for Reveal
where __D: TyDecoder,

§

fn decode(__decoder: &mut __D) -> Reveal

§

impl<__E> Encodable<__E> for Reveal
where __E: TyEncoder,

§

fn encode(&self, __encoder: &mut __E)

§

impl Hash for Reveal

§

fn hash<__H>(&self, state: &mut __H)
where __H: Hasher,

Feeds this value into the given Hasher. Read more
Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
§

impl<__CTX> HashStable<__CTX> for Reveal

§

fn hash_stable( &self, __hcx: &mut __CTX, __hasher: &mut StableHasher<SipHasher128>, )

§

impl PartialEq for Reveal

§

fn eq(&self, other: &Reveal) -> bool

Tests for self and other values to be equal, and is used by ==.
Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for Reveal

Source§

fn try_fold_with<F>( self, _: &mut F, ) -> Result<Reveal, <F as FallibleTypeFolder<TyCtxt<'tcx>>>::Error>
where F: FallibleTypeFolder<TyCtxt<'tcx>>,

The entry point for folding. To fold a value t with a folder f call: t.try_fold_with(f). Read more
Source§

fn fold_with<F>(self, _: &mut F) -> Reveal
where F: TypeFolder<TyCtxt<'tcx>>,

A convenient alternative to try_fold_with for use with infallible folders. Do not override this method, to ensure coherence with try_fold_with.
Source§

impl<'tcx> TypeVisitable<TyCtxt<'tcx>> for Reveal

Source§

fn visit_with<F>(&self, _: &mut F) -> <F as TypeVisitor<TyCtxt<'tcx>>>::Result
where F: TypeVisitor<TyCtxt<'tcx>>,

The entry point for visiting. To visit a value t with a visitor v call: t.visit_with(v). Read more
§

impl Copy for Reveal

§

impl Eq for Reveal

§

impl StructuralPartialEq for Reveal

Auto Trait Implementations§

§

impl DynSend for Reveal

§

impl DynSync for Reveal

§

impl Freeze for Reveal

§

impl RefUnwindSafe for Reveal

§

impl Send for Reveal

§

impl Sync for Reveal

§

impl Unpin for Reveal

§

impl UnwindSafe for Reveal

Blanket Implementations§

Source§

impl<T> Aligned for T

Source§

const ALIGN: Alignment = _

Alignment of Self.
Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> AnyEq for T
where T: Any + PartialEq,

Source§

fn equals(&self, other: &(dyn Any + 'static)) -> bool

Source§

fn as_any(&self) -> &(dyn Any + 'static)

§

impl<'tcx, T> ArenaAllocatable<'tcx, IsCopy> for T
where T: Copy,

§

fn allocate_on(self, arena: &'tcx Arena<'tcx>) -> &'tcx mut T

§

fn allocate_from_iter( arena: &'tcx Arena<'tcx>, iter: impl IntoIterator<Item = T>, ) -> &'tcx mut [T]

Source§

impl<'tcx, T> ArenaAllocatable<'tcx, IsCopy> for T
where T: Copy,

Source§

fn allocate_on(self, arena: &'tcx Arena<'tcx>) -> &'tcx mut T

Source§

fn allocate_from_iter( arena: &'tcx Arena<'tcx>, iter: impl IntoIterator<Item = T>, ) -> &'tcx mut [T]

Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
§

impl<T, R> CollectAndApply<T, R> for T

§

fn collect_and_apply<I, F>(iter: I, f: F) -> R
where I: Iterator<Item = T>, F: FnOnce(&[T]) -> R,

Equivalent to f(&iter.collect::<Vec<_>>()).

§

type Output = R

Source§

impl<Tcx, T> DepNodeParams<Tcx> for T
where Tcx: DepContext, T: for<'a> HashStable<StableHashingContext<'a>> + Debug,

Source§

default fn fingerprint_style() -> FingerprintStyle

Source§

default fn to_fingerprint(&self, tcx: Tcx) -> Fingerprint

This method turns the parameters of a DepNodeConstructor into an opaque Fingerprint to be used in DepNode. Not all DepNodeParams support being turned into a Fingerprint (they don’t need to if the corresponding DepNode is anonymous).
Source§

default fn to_debug_str(&self, _: Tcx) -> String

Source§

default fn recover(_: Tcx, _: &DepNode) -> Option<T>

This method tries to recover the query key from the given DepNode, something which is needed when forcing DepNodes during red-green evaluation. The query system will only call this method if fingerprint_style() is not FingerprintStyle::Opaque. It is always valid to return None here, in which case incremental compilation will treat the query as having changed instead of forcing it.
Source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

Source§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
Source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

Source§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
Source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

Source§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
Source§

impl<T> Filterable for T

Source§

fn filterable( self, filter_name: &'static str, ) -> RequestFilterDataProvider<T, fn(_: DataRequest<'_>) -> bool>

Creates a filterable data provider with the given name for debugging. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<P> IntoQueryParam<P> for P

Source§

impl<'tcx, T> IsSuggestable<'tcx> for T
where T: TypeVisitable<TyCtxt<'tcx>> + TypeFoldable<TyCtxt<'tcx>>,

Source§

fn is_suggestable(self, tcx: TyCtxt<'tcx>, infer_suggestable: bool) -> bool

Whether this makes sense to suggest in a diagnostic. Read more
Source§

fn make_suggestable( self, tcx: TyCtxt<'tcx>, infer_suggestable: bool, placeholder: Option<Ty<'tcx>>, ) -> Option<T>

Source§

impl<T> MaybeResult<T> for T

Source§

type Error = !

Source§

fn from(_: Result<T, <T as MaybeResult<T>>::Error>) -> T

Source§

fn to_result(self) -> Result<T, <T as MaybeResult<T>>::Error>

Source§

impl<T> Pointable for T

Source§

const ALIGN: usize = _

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<I, T> TypeVisitableExt<I> for T
where I: Interner, T: TypeVisitable<I>,

§

fn has_type_flags(&self, flags: TypeFlags) -> bool

§

fn has_vars_bound_at_or_above(&self, binder: DebruijnIndex) -> bool

Returns true if self has any late-bound regions that are either bound by binder or bound by some binder outside of binder. If binder is ty::INNERMOST, this indicates whether there are any late-bound regions that appear free.
§

fn error_reported(&self) -> Result<(), <I as Interner>::ErrorGuaranteed>

§

fn has_vars_bound_above(&self, binder: DebruijnIndex) -> bool

Returns true if this type has any regions that escape binder (and hence are not bound by it).
§

fn has_escaping_bound_vars(&self) -> bool

Return true if this type has regions that are not a part of the type. For example, for<'a> fn(&'a i32) return false, while fn(&'a i32) would return true. The latter can occur when traversing through the former. Read more
§

fn has_aliases(&self) -> bool

§

fn has_opaque_types(&self) -> bool

§

fn has_coroutines(&self) -> bool

§

fn references_error(&self) -> bool

§

fn has_non_region_param(&self) -> bool

§

fn has_infer_regions(&self) -> bool

§

fn has_infer_types(&self) -> bool

§

fn has_non_region_infer(&self) -> bool

§

fn has_infer(&self) -> bool

§

fn has_placeholders(&self) -> bool

§

fn has_non_region_placeholders(&self) -> bool

§

fn has_param(&self) -> bool

§

fn has_free_regions(&self) -> bool

“Free” regions in this context means that it has any region that is not (a) erased or (b) late-bound.
§

fn has_erased_regions(&self) -> bool

§

fn has_erasable_regions(&self) -> bool

True if there are any un-erased free regions.
§

fn is_global(&self) -> bool

Indicates whether this value references only ‘global’ generic parameters that are the same regardless of what fn we are in. This is used for caching.
§

fn has_bound_regions(&self) -> bool

True if there are any late-bound regions
§

fn has_non_region_bound_vars(&self) -> bool

True if there are any late-bound non-region variables
§

fn has_bound_vars(&self) -> bool

True if there are any bound variables
§

fn still_further_specializable(&self) -> bool

Indicates whether this value still has parameters/placeholders/inference variables which could be replaced later, in a way that would change the results of impl specialization.
§

impl<I, T, U> Upcast<I, U> for T
where U: UpcastFrom<I, T>,

§

fn upcast(self, interner: I) -> U

§

impl<I, T> UpcastFrom<I, T> for T

§

fn upcast_from(from: T, _tcx: I) -> T

Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<Tcx, T> Value<Tcx> for T
where Tcx: DepContext,

Source§

default fn from_cycle_error( tcx: Tcx, cycle_error: &CycleError, _guar: ErrorGuaranteed, ) -> T

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<'a, T> Captures<'a> for T
where T: ?Sized,

Source§

impl<T> ErasedDestructor for T
where T: 'static,

Source§

impl<T> MaybeSendSync for T
where T: Send + Sync,

Layout§

Note: Most layout information is completely unstable and may even differ between compilations. The only exception is types with certain repr(...) attributes. Please see the Rust Reference's “Type Layout” chapter for details on type layout guarantees.

Size: 1 byte

Size for each variant:

  • UserFacing: 0 bytes
  • All: 0 bytes