Type Alias core::num::NonZeroU128
1.28.0 · source · pub type NonZeroU128 = NonZero<u128>;
Expand description
An integer that is known not to equal zero.
This enables some memory layout optimization.
For example, Option<NonZeroU128>
is the same size as u128
:
use std::mem::size_of;
assert_eq!(size_of::<Option<core::num::NonZeroU128>>(), size_of::<u128>());
Run§Layout
NonZeroU128
is guaranteed to have the same layout and bit validity as u128
with the exception that 0
is not a valid instance.
Option<NonZeroU128>
is guaranteed to be compatible with u128
,
including in FFI.
Thanks to the null pointer optimization,
NonZeroU128
and Option<NonZeroU128>
are guaranteed to have the same size and alignment:
use std::num::NonZeroU128;
assert_eq!(size_of::<NonZeroU128>(), size_of::<Option<NonZeroU128>>());
assert_eq!(align_of::<NonZeroU128>(), align_of::<Option<NonZeroU128>>());
RunAliased Type§
struct NonZeroU128(/* private fields */);
Implementations§
source§impl NonZeroU128
impl NonZeroU128
1.67.0 · sourcepub const BITS: u32 = 128u32
pub const BITS: u32 = 128u32
The size of this non-zero integer type in bits.
This value is equal to u128::BITS
.
§Examples
assert_eq!(NonZeroU128::BITS, u128::BITS);
Run1.53.0 (const: 1.53.0) · sourcepub const fn leading_zeros(self) -> u32
pub const fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation of self
.
On many architectures, this function can perform better than leading_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = std::num::NonZeroU128::new(u128::MAX).unwrap();
assert_eq!(n.leading_zeros(), 0);
Run1.53.0 (const: 1.53.0) · sourcepub const fn trailing_zeros(self) -> u32
pub const fn trailing_zeros(self) -> u32
Returns the number of trailing zeros in the binary representation
of self
.
On many architectures, this function can perform better than trailing_zeros()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let n = std::num::NonZeroU128::new(0b0101000).unwrap();
assert_eq!(n.trailing_zeros(), 3);
Runconst: unstable · sourcepub fn count_ones(self) -> NonZero<u32>
🔬This is a nightly-only experimental API. (non_zero_count_ones
#120287)
pub fn count_ones(self) -> NonZero<u32>
non_zero_count_ones
#120287)Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
#![feature(generic_nonzero, non_zero_count_ones)]
let a = NonZero::<u128>::new(0b100_0000)?;
let b = NonZero::<u128>::new(0b100_0011)?;
assert_eq!(a.count_ones(), NonZero::new(1)?);
assert_eq!(b.count_ones(), NonZero::new(3)?);
Run1.64.0 (const: 1.64.0) · sourcepub const fn checked_add(self, other: u128) -> Option<Self>
pub const fn checked_add(self, other: u128) -> Option<Self>
Adds an unsigned integer to a non-zero value.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let one = NonZeroU128::new(1)?;
let two = NonZeroU128::new(2)?;
let max = NonZeroU128::new(u128::MAX)?;
assert_eq!(Some(two), one.checked_add(1));
assert_eq!(None, max.checked_add(1));
Run1.64.0 (const: 1.64.0) · sourcepub const fn saturating_add(self, other: u128) -> Self
pub const fn saturating_add(self, other: u128) -> Self
Adds an unsigned integer to a non-zero value.
Return NonZeroU128::MAX
on overflow.
§Examples
let one = NonZeroU128::new(1)?;
let two = NonZeroU128::new(2)?;
let max = NonZeroU128::new(u128::MAX)?;
assert_eq!(two, one.saturating_add(1));
assert_eq!(max, max.saturating_add(1));
Runsourcepub const unsafe fn unchecked_add(self, other: u128) -> Self
🔬This is a nightly-only experimental API. (nonzero_ops
#84186)
pub const unsafe fn unchecked_add(self, other: u128) -> Self
nonzero_ops
#84186)Adds an unsigned integer to a non-zero value,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self + rhs > u128::MAX
.
§Examples
#![feature(nonzero_ops)]
let one = NonZeroU128::new(1)?;
let two = NonZeroU128::new(2)?;
assert_eq!(two, unsafe { one.unchecked_add(1) });
Run1.64.0 (const: 1.64.0) · sourcepub const fn checked_next_power_of_two(self) -> Option<Self>
pub const fn checked_next_power_of_two(self) -> Option<Self>
Returns the smallest power of two greater than or equal to n.
Checks for overflow and returns None
if the next power of two is greater than the type’s maximum value.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZeroU128::new(2)?;
let three = NonZeroU128::new(3)?;
let four = NonZeroU128::new(4)?;
let max = NonZeroU128::new(u128::MAX)?;
assert_eq!(Some(two), two.checked_next_power_of_two() );
assert_eq!(Some(four), three.checked_next_power_of_two() );
assert_eq!(None, max.checked_next_power_of_two() );
Run1.67.0 (const: 1.67.0) · sourcepub const fn ilog2(self) -> u32
pub const fn ilog2(self) -> u32
Returns the base 2 logarithm of the number, rounded down.
This is the same operation as
u128::ilog2
,
except that it has no failure cases to worry about
since this value can never be zero.
§Examples
assert_eq!(NonZeroU128::new(7).unwrap().ilog2(), 2);
assert_eq!(NonZeroU128::new(8).unwrap().ilog2(), 3);
assert_eq!(NonZeroU128::new(9).unwrap().ilog2(), 3);
Run1.67.0 (const: 1.67.0) · sourcepub const fn ilog10(self) -> u32
pub const fn ilog10(self) -> u32
Returns the base 10 logarithm of the number, rounded down.
This is the same operation as
u128::ilog10
,
except that it has no failure cases to worry about
since this value can never be zero.
§Examples
assert_eq!(NonZeroU128::new(99).unwrap().ilog10(), 1);
assert_eq!(NonZeroU128::new(100).unwrap().ilog10(), 2);
assert_eq!(NonZeroU128::new(101).unwrap().ilog10(), 2);
Runconst: unstable · sourcepub fn midpoint(self, rhs: Self) -> Self
🔬This is a nightly-only experimental API. (num_midpoint
#110840)
pub fn midpoint(self, rhs: Self) -> Self
num_midpoint
#110840)Calculates the middle point of self
and rhs
.
midpoint(a, b)
is (a + b) >> 1
as if it were performed in a
sufficiently-large signed integral type. This implies that the result is
always rounded towards negative infinity and that no overflow will ever occur.
§Examples
#![feature(num_midpoint)]
let one = NonZeroU128::new(1)?;
let two = NonZeroU128::new(2)?;
let four = NonZeroU128::new(4)?;
assert_eq!(one.midpoint(four), two);
assert_eq!(four.midpoint(one), two);
Run1.59.0 (const: 1.59.0) · sourcepub const fn is_power_of_two(self) -> bool
pub const fn is_power_of_two(self) -> bool
Returns true
if and only if self == (1 << k)
for some k
.
On many architectures, this function can perform better than is_power_of_two()
on the underlying integer type, as special handling of zero can be avoided.
§Examples
Basic usage:
let eight = std::num::NonZeroU128::new(8).unwrap();
assert!(eight.is_power_of_two());
let ten = std::num::NonZeroU128::new(10).unwrap();
assert!(!ten.is_power_of_two());
Run1.64.0 (const: 1.64.0) · sourcepub const fn checked_mul(self, other: Self) -> Option<Self>
pub const fn checked_mul(self, other: Self) -> Option<Self>
Multiplies two non-zero integers together.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let two = NonZeroU128::new(2)?;
let four = NonZeroU128::new(4)?;
let max = NonZeroU128::new(u128::MAX)?;
assert_eq!(Some(four), two.checked_mul(two));
assert_eq!(None, max.checked_mul(two));
Run1.64.0 (const: 1.64.0) · sourcepub const fn saturating_mul(self, other: Self) -> Self
pub const fn saturating_mul(self, other: Self) -> Self
Multiplies two non-zero integers together.
Return NonZeroU128::MAX
on overflow.
§Examples
let two = NonZeroU128::new(2)?;
let four = NonZeroU128::new(4)?;
let max = NonZeroU128::new(u128::MAX)?;
assert_eq!(four, two.saturating_mul(two));
assert_eq!(max, four.saturating_mul(max));
Runsourcepub const unsafe fn unchecked_mul(self, other: Self) -> Self
🔬This is a nightly-only experimental API. (nonzero_ops
#84186)
pub const unsafe fn unchecked_mul(self, other: Self) -> Self
nonzero_ops
#84186)Multiplies two non-zero integers together,
assuming overflow cannot occur.
Overflow is unchecked, and it is undefined behaviour to overflow
even if the result would wrap to a non-zero value.
The behaviour is undefined as soon as
self * rhs > u128::MAX
.
§Examples
#![feature(nonzero_ops)]
let two = NonZeroU128::new(2)?;
let four = NonZeroU128::new(4)?;
assert_eq!(four, unsafe { two.unchecked_mul(two) });
Run1.64.0 (const: 1.64.0) · sourcepub const fn checked_pow(self, other: u32) -> Option<Self>
pub const fn checked_pow(self, other: u32) -> Option<Self>
Raises non-zero value to an integer power.
Checks for overflow and returns None
on overflow.
As a consequence, the result cannot wrap to zero.
§Examples
let three = NonZeroU128::new(3)?;
let twenty_seven = NonZeroU128::new(27)?;
let half_max = NonZeroU128::new(u128::MAX / 2)?;
assert_eq!(Some(twenty_seven), three.checked_pow(3));
assert_eq!(None, half_max.checked_pow(3));
Run1.64.0 (const: 1.64.0) · sourcepub const fn saturating_pow(self, other: u32) -> Self
pub const fn saturating_pow(self, other: u32) -> Self
Raise non-zero value to an integer power.
Return NonZeroU128::MAX
on overflow.
§Examples
let three = NonZeroU128::new(3)?;
let twenty_seven = NonZeroU128::new(27)?;
let max = NonZeroU128::new(u128::MAX)?;
assert_eq!(twenty_seven, three.saturating_pow(3));
assert_eq!(max, max.saturating_pow(3));
Run