1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
//! Multi-producer multi-consumer channels.

// This module is not currently exposed publicly, but is used
// as the implementation for the channels in `sync::mpsc`. The
// implementation comes from the crossbeam-channel crate:
//
// Copyright (c) 2019 The Crossbeam Project Developers
//
// Permission is hereby granted, free of charge, to any
// person obtaining a copy of this software and associated
// documentation files (the "Software"), to deal in the
// Software without restriction, including without
// limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice
// shall be included in all copies or substantial portions
// of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
// ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
// TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
// SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

mod array;
mod context;
mod counter;
mod error;
mod list;
mod select;
mod utils;
mod waker;
mod zero;

use crate::fmt;
use crate::panic::{RefUnwindSafe, UnwindSafe};
use crate::time::{Duration, Instant};
pub use error::*;

/// Creates a channel of unbounded capacity.
///
/// This channel has a growable buffer that can hold any number of messages at a time.
pub fn channel<T>() -> (Sender<T>, Receiver<T>) {
    let (s, r) = counter::new(list::Channel::new());
    let s = Sender { flavor: SenderFlavor::List(s) };
    let r = Receiver { flavor: ReceiverFlavor::List(r) };
    (s, r)
}

/// Creates a channel of bounded capacity.
///
/// This channel has a buffer that can hold at most `cap` messages at a time.
///
/// A special case is zero-capacity channel, which cannot hold any messages. Instead, send and
/// receive operations must appear at the same time in order to pair up and pass the message over.
pub fn sync_channel<T>(cap: usize) -> (Sender<T>, Receiver<T>) {
    if cap == 0 {
        let (s, r) = counter::new(zero::Channel::new());
        let s = Sender { flavor: SenderFlavor::Zero(s) };
        let r = Receiver { flavor: ReceiverFlavor::Zero(r) };
        (s, r)
    } else {
        let (s, r) = counter::new(array::Channel::with_capacity(cap));
        let s = Sender { flavor: SenderFlavor::Array(s) };
        let r = Receiver { flavor: ReceiverFlavor::Array(r) };
        (s, r)
    }
}

/// The sending side of a channel.
pub struct Sender<T> {
    flavor: SenderFlavor<T>,
}

/// Sender flavors.
enum SenderFlavor<T> {
    /// Bounded channel based on a preallocated array.
    Array(counter::Sender<array::Channel<T>>),

    /// Unbounded channel implemented as a linked list.
    List(counter::Sender<list::Channel<T>>),

    /// Zero-capacity channel.
    Zero(counter::Sender<zero::Channel<T>>),
}

unsafe impl<T: Send> Send for Sender<T> {}
unsafe impl<T: Send> Sync for Sender<T> {}

impl<T> UnwindSafe for Sender<T> {}
impl<T> RefUnwindSafe for Sender<T> {}

impl<T> Sender<T> {
    /// Attempts to send a message into the channel without blocking.
    ///
    /// This method will either send a message into the channel immediately or return an error if
    /// the channel is full or disconnected. The returned error contains the original message.
    ///
    /// If called on a zero-capacity channel, this method will send the message only if there
    /// happens to be a receive operation on the other side of the channel at the same time.
    pub fn try_send(&self, msg: T) -> Result<(), TrySendError<T>> {
        match &self.flavor {
            SenderFlavor::Array(chan) => chan.try_send(msg),
            SenderFlavor::List(chan) => chan.try_send(msg),
            SenderFlavor::Zero(chan) => chan.try_send(msg),
        }
    }

    /// Blocks the current thread until a message is sent or the channel is disconnected.
    ///
    /// If the channel is full and not disconnected, this call will block until the send operation
    /// can proceed. If the channel becomes disconnected, this call will wake up and return an
    /// error. The returned error contains the original message.
    ///
    /// If called on a zero-capacity channel, this method will wait for a receive operation to
    /// appear on the other side of the channel.
    pub fn send(&self, msg: T) -> Result<(), SendError<T>> {
        match &self.flavor {
            SenderFlavor::Array(chan) => chan.send(msg, None),
            SenderFlavor::List(chan) => chan.send(msg, None),
            SenderFlavor::Zero(chan) => chan.send(msg, None),
        }
        .map_err(|err| match err {
            SendTimeoutError::Disconnected(msg) => SendError(msg),
            SendTimeoutError::Timeout(_) => unreachable!(),
        })
    }
}

// The methods below are not used by `sync::mpsc`, but
// are useful and we'll likely want to expose them
// eventually
#[allow(unused)]
impl<T> Sender<T> {
    /// Waits for a message to be sent into the channel, but only for a limited time.
    ///
    /// If the channel is full and not disconnected, this call will block until the send operation
    /// can proceed or the operation times out. If the channel becomes disconnected, this call will
    /// wake up and return an error. The returned error contains the original message.
    ///
    /// If called on a zero-capacity channel, this method will wait for a receive operation to
    /// appear on the other side of the channel.
    pub fn send_timeout(&self, msg: T, timeout: Duration) -> Result<(), SendTimeoutError<T>> {
        match Instant::now().checked_add(timeout) {
            Some(deadline) => self.send_deadline(msg, deadline),
            // So far in the future that it's practically the same as waiting indefinitely.
            None => self.send(msg).map_err(SendTimeoutError::from),
        }
    }

    /// Waits for a message to be sent into the channel, but only until a given deadline.
    ///
    /// If the channel is full and not disconnected, this call will block until the send operation
    /// can proceed or the operation times out. If the channel becomes disconnected, this call will
    /// wake up and return an error. The returned error contains the original message.
    ///
    /// If called on a zero-capacity channel, this method will wait for a receive operation to
    /// appear on the other side of the channel.
    pub fn send_deadline(&self, msg: T, deadline: Instant) -> Result<(), SendTimeoutError<T>> {
        match &self.flavor {
            SenderFlavor::Array(chan) => chan.send(msg, Some(deadline)),
            SenderFlavor::List(chan) => chan.send(msg, Some(deadline)),
            SenderFlavor::Zero(chan) => chan.send(msg, Some(deadline)),
        }
    }

    /// Returns `true` if the channel is empty.
    ///
    /// Note: Zero-capacity channels are always empty.
    pub fn is_empty(&self) -> bool {
        match &self.flavor {
            SenderFlavor::Array(chan) => chan.is_empty(),
            SenderFlavor::List(chan) => chan.is_empty(),
            SenderFlavor::Zero(chan) => chan.is_empty(),
        }
    }

    /// Returns `true` if the channel is full.
    ///
    /// Note: Zero-capacity channels are always full.
    pub fn is_full(&self) -> bool {
        match &self.flavor {
            SenderFlavor::Array(chan) => chan.is_full(),
            SenderFlavor::List(chan) => chan.is_full(),
            SenderFlavor::Zero(chan) => chan.is_full(),
        }
    }

    /// Returns the number of messages in the channel.
    pub fn len(&self) -> usize {
        match &self.flavor {
            SenderFlavor::Array(chan) => chan.len(),
            SenderFlavor::List(chan) => chan.len(),
            SenderFlavor::Zero(chan) => chan.len(),
        }
    }

    /// If the channel is bounded, returns its capacity.
    pub fn capacity(&self) -> Option<usize> {
        match &self.flavor {
            SenderFlavor::Array(chan) => chan.capacity(),
            SenderFlavor::List(chan) => chan.capacity(),
            SenderFlavor::Zero(chan) => chan.capacity(),
        }
    }

    /// Returns `true` if senders belong to the same channel.
    pub fn same_channel(&self, other: &Sender<T>) -> bool {
        match (&self.flavor, &other.flavor) {
            (SenderFlavor::Array(ref a), SenderFlavor::Array(ref b)) => a == b,
            (SenderFlavor::List(ref a), SenderFlavor::List(ref b)) => a == b,
            (SenderFlavor::Zero(ref a), SenderFlavor::Zero(ref b)) => a == b,
            _ => false,
        }
    }
}

impl<T> Drop for Sender<T> {
    fn drop(&mut self) {
        unsafe {
            match &self.flavor {
                SenderFlavor::Array(chan) => chan.release(|c| c.disconnect()),
                SenderFlavor::List(chan) => chan.release(|c| c.disconnect_senders()),
                SenderFlavor::Zero(chan) => chan.release(|c| c.disconnect()),
            }
        }
    }
}

impl<T> Clone for Sender<T> {
    fn clone(&self) -> Self {
        let flavor = match &self.flavor {
            SenderFlavor::Array(chan) => SenderFlavor::Array(chan.acquire()),
            SenderFlavor::List(chan) => SenderFlavor::List(chan.acquire()),
            SenderFlavor::Zero(chan) => SenderFlavor::Zero(chan.acquire()),
        };

        Sender { flavor }
    }
}

impl<T> fmt::Debug for Sender<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("Sender { .. }")
    }
}

/// The receiving side of a channel.
pub struct Receiver<T> {
    flavor: ReceiverFlavor<T>,
}

/// Receiver flavors.
enum ReceiverFlavor<T> {
    /// Bounded channel based on a preallocated array.
    Array(counter::Receiver<array::Channel<T>>),

    /// Unbounded channel implemented as a linked list.
    List(counter::Receiver<list::Channel<T>>),

    /// Zero-capacity channel.
    Zero(counter::Receiver<zero::Channel<T>>),
}

unsafe impl<T: Send> Send for Receiver<T> {}
unsafe impl<T: Send> Sync for Receiver<T> {}

impl<T> UnwindSafe for Receiver<T> {}
impl<T> RefUnwindSafe for Receiver<T> {}

impl<T> Receiver<T> {
    /// Attempts to receive a message from the channel without blocking.
    ///
    /// This method will either receive a message from the channel immediately or return an error
    /// if the channel is empty.
    ///
    /// If called on a zero-capacity channel, this method will receive a message only if there
    /// happens to be a send operation on the other side of the channel at the same time.
    pub fn try_recv(&self) -> Result<T, TryRecvError> {
        match &self.flavor {
            ReceiverFlavor::Array(chan) => chan.try_recv(),
            ReceiverFlavor::List(chan) => chan.try_recv(),
            ReceiverFlavor::Zero(chan) => chan.try_recv(),
        }
    }

    /// Blocks the current thread until a message is received or the channel is empty and
    /// disconnected.
    ///
    /// If the channel is empty and not disconnected, this call will block until the receive
    /// operation can proceed. If the channel is empty and becomes disconnected, this call will
    /// wake up and return an error.
    ///
    /// If called on a zero-capacity channel, this method will wait for a send operation to appear
    /// on the other side of the channel.
    pub fn recv(&self) -> Result<T, RecvError> {
        match &self.flavor {
            ReceiverFlavor::Array(chan) => chan.recv(None),
            ReceiverFlavor::List(chan) => chan.recv(None),
            ReceiverFlavor::Zero(chan) => chan.recv(None),
        }
        .map_err(|_| RecvError)
    }

    /// Waits for a message to be received from the channel, but only for a limited time.
    ///
    /// If the channel is empty and not disconnected, this call will block until the receive
    /// operation can proceed or the operation times out. If the channel is empty and becomes
    /// disconnected, this call will wake up and return an error.
    ///
    /// If called on a zero-capacity channel, this method will wait for a send operation to appear
    /// on the other side of the channel.
    pub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError> {
        match Instant::now().checked_add(timeout) {
            Some(deadline) => self.recv_deadline(deadline),
            // So far in the future that it's practically the same as waiting indefinitely.
            None => self.recv().map_err(RecvTimeoutError::from),
        }
    }

    /// Waits for a message to be received from the channel, but only for a limited time.
    ///
    /// If the channel is empty and not disconnected, this call will block until the receive
    /// operation can proceed or the operation times out. If the channel is empty and becomes
    /// disconnected, this call will wake up and return an error.
    ///
    /// If called on a zero-capacity channel, this method will wait for a send operation to appear
    /// on the other side of the channel.
    pub fn recv_deadline(&self, deadline: Instant) -> Result<T, RecvTimeoutError> {
        match &self.flavor {
            ReceiverFlavor::Array(chan) => chan.recv(Some(deadline)),
            ReceiverFlavor::List(chan) => chan.recv(Some(deadline)),
            ReceiverFlavor::Zero(chan) => chan.recv(Some(deadline)),
        }
    }
}

// The methods below are not used by `sync::mpsc`, but
// are useful and we'll likely want to expose them
// eventually
#[allow(unused)]
impl<T> Receiver<T> {
    /// Returns `true` if the channel is empty.
    ///
    /// Note: Zero-capacity channels are always empty.
    pub fn is_empty(&self) -> bool {
        match &self.flavor {
            ReceiverFlavor::Array(chan) => chan.is_empty(),
            ReceiverFlavor::List(chan) => chan.is_empty(),
            ReceiverFlavor::Zero(chan) => chan.is_empty(),
        }
    }

    /// Returns `true` if the channel is full.
    ///
    /// Note: Zero-capacity channels are always full.
    pub fn is_full(&self) -> bool {
        match &self.flavor {
            ReceiverFlavor::Array(chan) => chan.is_full(),
            ReceiverFlavor::List(chan) => chan.is_full(),
            ReceiverFlavor::Zero(chan) => chan.is_full(),
        }
    }

    /// Returns the number of messages in the channel.
    pub fn len(&self) -> usize {
        match &self.flavor {
            ReceiverFlavor::Array(chan) => chan.len(),
            ReceiverFlavor::List(chan) => chan.len(),
            ReceiverFlavor::Zero(chan) => chan.len(),
        }
    }

    /// If the channel is bounded, returns its capacity.
    pub fn capacity(&self) -> Option<usize> {
        match &self.flavor {
            ReceiverFlavor::Array(chan) => chan.capacity(),
            ReceiverFlavor::List(chan) => chan.capacity(),
            ReceiverFlavor::Zero(chan) => chan.capacity(),
        }
    }

    /// Returns `true` if receivers belong to the same channel.
    pub fn same_channel(&self, other: &Receiver<T>) -> bool {
        match (&self.flavor, &other.flavor) {
            (ReceiverFlavor::Array(a), ReceiverFlavor::Array(b)) => a == b,
            (ReceiverFlavor::List(a), ReceiverFlavor::List(b)) => a == b,
            (ReceiverFlavor::Zero(a), ReceiverFlavor::Zero(b)) => a == b,
            _ => false,
        }
    }
}

impl<T> Drop for Receiver<T> {
    fn drop(&mut self) {
        unsafe {
            match &self.flavor {
                ReceiverFlavor::Array(chan) => chan.release(|c| c.disconnect()),
                ReceiverFlavor::List(chan) => chan.release(|c| c.disconnect_receivers()),
                ReceiverFlavor::Zero(chan) => chan.release(|c| c.disconnect()),
            }
        }
    }
}

impl<T> Clone for Receiver<T> {
    fn clone(&self) -> Self {
        let flavor = match &self.flavor {
            ReceiverFlavor::Array(chan) => ReceiverFlavor::Array(chan.acquire()),
            ReceiverFlavor::List(chan) => ReceiverFlavor::List(chan.acquire()),
            ReceiverFlavor::Zero(chan) => ReceiverFlavor::Zero(chan.acquire()),
        };

        Receiver { flavor }
    }
}

impl<T> fmt::Debug for Receiver<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("Receiver { .. }")
    }
}