1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
#[cfg(not(no_global_oom_handling))]
use super::AsVecIntoIter;
use crate::alloc::{Allocator, Global};
#[cfg(not(no_global_oom_handling))]
use crate::collections::VecDeque;
use crate::raw_vec::RawVec;
use core::array;
use core::fmt;
use core::iter::{
FusedIterator, InPlaceIterable, SourceIter, TrustedLen, TrustedRandomAccessNoCoerce,
};
use core::marker::PhantomData;
use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
use core::num::NonZeroUsize;
#[cfg(not(no_global_oom_handling))]
use core::ops::Deref;
use core::ptr::{self, NonNull};
use core::slice::{self};
/// An iterator that moves out of a vector.
///
/// This `struct` is created by the `into_iter` method on [`Vec`](super::Vec)
/// (provided by the [`IntoIterator`] trait).
///
/// # Example
///
/// ```
/// let v = vec![0, 1, 2];
/// let iter: std::vec::IntoIter<_> = v.into_iter();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_insignificant_dtor]
pub struct IntoIter<
T,
#[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
> {
pub(super) buf: NonNull<T>,
pub(super) phantom: PhantomData<T>,
pub(super) cap: usize,
// the drop impl reconstructs a RawVec from buf, cap and alloc
// to avoid dropping the allocator twice we need to wrap it into ManuallyDrop
pub(super) alloc: ManuallyDrop<A>,
pub(super) ptr: *const T,
pub(super) end: *const T, // If T is a ZST, this is actually ptr+len. This encoding is picked so that
// ptr == end is a quick test for the Iterator being empty, that works
// for both ZST and non-ZST.
}
#[stable(feature = "vec_intoiter_debug", since = "1.13.0")]
impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("IntoIter").field(&self.as_slice()).finish()
}
}
impl<T, A: Allocator> IntoIter<T, A> {
/// Returns the remaining items of this iterator as a slice.
///
/// # Examples
///
/// ```
/// let vec = vec!['a', 'b', 'c'];
/// let mut into_iter = vec.into_iter();
/// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
/// let _ = into_iter.next().unwrap();
/// assert_eq!(into_iter.as_slice(), &['b', 'c']);
/// ```
#[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
pub fn as_slice(&self) -> &[T] {
unsafe { slice::from_raw_parts(self.ptr, self.len()) }
}
/// Returns the remaining items of this iterator as a mutable slice.
///
/// # Examples
///
/// ```
/// let vec = vec!['a', 'b', 'c'];
/// let mut into_iter = vec.into_iter();
/// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
/// into_iter.as_mut_slice()[2] = 'z';
/// assert_eq!(into_iter.next().unwrap(), 'a');
/// assert_eq!(into_iter.next().unwrap(), 'b');
/// assert_eq!(into_iter.next().unwrap(), 'z');
/// ```
#[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
pub fn as_mut_slice(&mut self) -> &mut [T] {
unsafe { &mut *self.as_raw_mut_slice() }
}
/// Returns a reference to the underlying allocator.
#[unstable(feature = "allocator_api", issue = "32838")]
#[inline]
pub fn allocator(&self) -> &A {
&self.alloc
}
fn as_raw_mut_slice(&mut self) -> *mut [T] {
ptr::slice_from_raw_parts_mut(self.ptr as *mut T, self.len())
}
/// Drops remaining elements and relinquishes the backing allocation.
/// This method guarantees it won't panic before relinquishing
/// the backing allocation.
///
/// This is roughly equivalent to the following, but more efficient
///
/// ```
/// # let mut into_iter = Vec::<u8>::with_capacity(10).into_iter();
/// let mut into_iter = std::mem::replace(&mut into_iter, Vec::new().into_iter());
/// (&mut into_iter).for_each(drop);
/// std::mem::forget(into_iter);
/// ```
///
/// This method is used by in-place iteration, refer to the vec::in_place_collect
/// documentation for an overview.
#[cfg(not(no_global_oom_handling))]
pub(super) fn forget_allocation_drop_remaining(&mut self) {
let remaining = self.as_raw_mut_slice();
// overwrite the individual fields instead of creating a new
// struct and then overwriting &mut self.
// this creates less assembly
self.cap = 0;
self.buf = unsafe { NonNull::new_unchecked(RawVec::NEW.ptr()) };
self.ptr = self.buf.as_ptr();
self.end = self.buf.as_ptr();
// Dropping the remaining elements can panic, so this needs to be
// done only after updating the other fields.
unsafe {
ptr::drop_in_place(remaining);
}
}
/// Forgets to Drop the remaining elements while still allowing the backing allocation to be freed.
pub(crate) fn forget_remaining_elements(&mut self) {
// For th ZST case, it is crucial that we mutate `end` here, not `ptr`.
// `ptr` must stay aligned, while `end` may be unaligned.
self.end = self.ptr;
}
#[cfg(not(no_global_oom_handling))]
#[inline]
pub(crate) fn into_vecdeque(self) -> VecDeque<T, A> {
// Keep our `Drop` impl from dropping the elements and the allocator
let mut this = ManuallyDrop::new(self);
// SAFETY: This allocation originally came from a `Vec`, so it passes
// all those checks. We have `this.buf` ≤ `this.ptr` ≤ `this.end`,
// so the `sub_ptr`s below cannot wrap, and will produce a well-formed
// range. `end` ≤ `buf + cap`, so the range will be in-bounds.
// Taking `alloc` is ok because nothing else is going to look at it,
// since our `Drop` impl isn't going to run so there's no more code.
unsafe {
let buf = this.buf.as_ptr();
let initialized = if T::IS_ZST {
// All the pointers are the same for ZSTs, so it's fine to
// say that they're all at the beginning of the "allocation".
0..this.len()
} else {
this.ptr.sub_ptr(buf)..this.end.sub_ptr(buf)
};
let cap = this.cap;
let alloc = ManuallyDrop::take(&mut this.alloc);
VecDeque::from_contiguous_raw_parts_in(buf, initialized, cap, alloc)
}
}
}
#[stable(feature = "vec_intoiter_as_ref", since = "1.46.0")]
impl<T, A: Allocator> AsRef<[T]> for IntoIter<T, A> {
fn as_ref(&self) -> &[T] {
self.as_slice()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send, A: Allocator + Send> Send for IntoIter<T, A> {}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Sync, A: Allocator + Sync> Sync for IntoIter<T, A> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> Iterator for IntoIter<T, A> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> {
if self.ptr == self.end {
None
} else if T::IS_ZST {
// `ptr` has to stay where it is to remain aligned, so we reduce the length by 1 by
// reducing the `end`.
self.end = self.end.wrapping_byte_sub(1);
// Make up a value of this ZST.
Some(unsafe { mem::zeroed() })
} else {
let old = self.ptr;
self.ptr = unsafe { self.ptr.add(1) };
Some(unsafe { ptr::read(old) })
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let exact = if T::IS_ZST {
self.end.addr().wrapping_sub(self.ptr.addr())
} else {
unsafe { self.end.sub_ptr(self.ptr) }
};
(exact, Some(exact))
}
#[inline]
fn advance_by(&mut self, n: usize) -> Result<(), NonZeroUsize> {
let step_size = self.len().min(n);
let to_drop = ptr::slice_from_raw_parts_mut(self.ptr as *mut T, step_size);
if T::IS_ZST {
// See `next` for why we sub `end` here.
self.end = self.end.wrapping_byte_sub(step_size);
} else {
// SAFETY: the min() above ensures that step_size is in bounds
self.ptr = unsafe { self.ptr.add(step_size) };
}
// SAFETY: the min() above ensures that step_size is in bounds
unsafe {
ptr::drop_in_place(to_drop);
}
NonZeroUsize::new(n - step_size).map_or(Ok(()), Err)
}
#[inline]
fn count(self) -> usize {
self.len()
}
#[inline]
fn next_chunk<const N: usize>(&mut self) -> Result<[T; N], core::array::IntoIter<T, N>> {
let mut raw_ary = MaybeUninit::uninit_array();
let len = self.len();
if T::IS_ZST {
if len < N {
self.forget_remaining_elements();
// Safety: ZSTs can be conjured ex nihilo, only the amount has to be correct
return Err(unsafe { array::IntoIter::new_unchecked(raw_ary, 0..len) });
}
self.end = self.end.wrapping_byte_sub(N);
// Safety: ditto
return Ok(unsafe { raw_ary.transpose().assume_init() });
}
if len < N {
// Safety: `len` indicates that this many elements are available and we just checked that
// it fits into the array.
unsafe {
ptr::copy_nonoverlapping(self.ptr, raw_ary.as_mut_ptr() as *mut T, len);
self.forget_remaining_elements();
return Err(array::IntoIter::new_unchecked(raw_ary, 0..len));
}
}
// Safety: `len` is larger than the array size. Copy a fixed amount here to fully initialize
// the array.
return unsafe {
ptr::copy_nonoverlapping(self.ptr, raw_ary.as_mut_ptr() as *mut T, N);
self.ptr = self.ptr.add(N);
Ok(raw_ary.transpose().assume_init())
};
}
unsafe fn __iterator_get_unchecked(&mut self, i: usize) -> Self::Item
where
Self: TrustedRandomAccessNoCoerce,
{
// SAFETY: the caller must guarantee that `i` is in bounds of the
// `Vec<T>`, so `i` cannot overflow an `isize`, and the `self.ptr.add(i)`
// is guaranteed to pointer to an element of the `Vec<T>` and
// thus guaranteed to be valid to dereference.
//
// Also note the implementation of `Self: TrustedRandomAccess` requires
// that `T: Copy` so reading elements from the buffer doesn't invalidate
// them for `Drop`.
unsafe { if T::IS_ZST { mem::zeroed() } else { ptr::read(self.ptr.add(i)) } }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> {
#[inline]
fn next_back(&mut self) -> Option<T> {
if self.end == self.ptr {
None
} else if T::IS_ZST {
// See above for why 'ptr.offset' isn't used
self.end = self.end.wrapping_byte_sub(1);
// Make up a value of this ZST.
Some(unsafe { mem::zeroed() })
} else {
self.end = unsafe { self.end.sub(1) };
Some(unsafe { ptr::read(self.end) })
}
}
#[inline]
fn advance_back_by(&mut self, n: usize) -> Result<(), NonZeroUsize> {
let step_size = self.len().min(n);
if T::IS_ZST {
// SAFETY: same as for advance_by()
self.end = self.end.wrapping_byte_sub(step_size);
} else {
// SAFETY: same as for advance_by()
self.end = unsafe { self.end.sub(step_size) };
}
let to_drop = ptr::slice_from_raw_parts_mut(self.end as *mut T, step_size);
// SAFETY: same as for advance_by()
unsafe {
ptr::drop_in_place(to_drop);
}
NonZeroUsize::new(n - step_size).map_or(Ok(()), Err)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> {
fn is_empty(&self) -> bool {
self.ptr == self.end
}
}
#[stable(feature = "fused", since = "1.26.0")]
impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {}
#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<T, A: Allocator> TrustedLen for IntoIter<T, A> {}
#[stable(feature = "default_iters", since = "1.70.0")]
impl<T, A> Default for IntoIter<T, A>
where
A: Allocator + Default,
{
/// Creates an empty `vec::IntoIter`.
///
/// ```
/// # use std::vec;
/// let iter: vec::IntoIter<u8> = Default::default();
/// assert_eq!(iter.len(), 0);
/// assert_eq!(iter.as_slice(), &[]);
/// ```
fn default() -> Self {
super::Vec::new_in(Default::default()).into_iter()
}
}
#[doc(hidden)]
#[unstable(issue = "none", feature = "std_internals")]
#[rustc_unsafe_specialization_marker]
pub trait NonDrop {}
// T: Copy as approximation for !Drop since get_unchecked does not advance self.ptr
// and thus we can't implement drop-handling
#[unstable(issue = "none", feature = "std_internals")]
impl<T: Copy> NonDrop for T {}
#[doc(hidden)]
#[unstable(issue = "none", feature = "std_internals")]
// TrustedRandomAccess (without NoCoerce) must not be implemented because
// subtypes/supertypes of `T` might not be `NonDrop`
unsafe impl<T, A: Allocator> TrustedRandomAccessNoCoerce for IntoIter<T, A>
where
T: NonDrop,
{
const MAY_HAVE_SIDE_EFFECT: bool = false;
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_into_iter_clone", since = "1.8.0")]
impl<T: Clone, A: Allocator + Clone> Clone for IntoIter<T, A> {
#[cfg(not(test))]
fn clone(&self) -> Self {
self.as_slice().to_vec_in(self.alloc.deref().clone()).into_iter()
}
#[cfg(test)]
fn clone(&self) -> Self {
crate::slice::to_vec(self.as_slice(), self.alloc.deref().clone()).into_iter()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<#[may_dangle] T, A: Allocator> Drop for IntoIter<T, A> {
fn drop(&mut self) {
struct DropGuard<'a, T, A: Allocator>(&'a mut IntoIter<T, A>);
impl<T, A: Allocator> Drop for DropGuard<'_, T, A> {
fn drop(&mut self) {
unsafe {
// `IntoIter::alloc` is not used anymore after this and will be dropped by RawVec
let alloc = ManuallyDrop::take(&mut self.0.alloc);
// RawVec handles deallocation
let _ = RawVec::from_raw_parts_in(self.0.buf.as_ptr(), self.0.cap, alloc);
}
}
}
let guard = DropGuard(self);
// destroy the remaining elements
unsafe {
ptr::drop_in_place(guard.0.as_raw_mut_slice());
}
// now `guard` will be dropped and do the rest
}
}
// In addition to the SAFETY invariants of the following three unsafe traits
// also refer to the vec::in_place_collect module documentation to get an overview
#[unstable(issue = "none", feature = "inplace_iteration")]
#[doc(hidden)]
unsafe impl<T, A: Allocator> InPlaceIterable for IntoIter<T, A> {}
#[unstable(issue = "none", feature = "inplace_iteration")]
#[doc(hidden)]
unsafe impl<T, A: Allocator> SourceIter for IntoIter<T, A> {
type Source = Self;
#[inline]
unsafe fn as_inner(&mut self) -> &mut Self::Source {
self
}
}
#[cfg(not(no_global_oom_handling))]
unsafe impl<T> AsVecIntoIter for IntoIter<T> {
type Item = T;
fn as_into_iter(&mut self) -> &mut IntoIter<Self::Item> {
self
}
}