1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
use crate::runtime::handle::Handle;
use crate::runtime::{blocking, driver, Callback, HistogramBuilder, Runtime};
use crate::util::rand::{RngSeed, RngSeedGenerator};

use std::fmt;
use std::io;
use std::time::Duration;

/// Builds Tokio Runtime with custom configuration values.
///
/// Methods can be chained in order to set the configuration values. The
/// Runtime is constructed by calling [`build`].
///
/// New instances of `Builder` are obtained via [`Builder::new_multi_thread`]
/// or [`Builder::new_current_thread`].
///
/// See function level documentation for details on the various configuration
/// settings.
///
/// [`build`]: method@Self::build
/// [`Builder::new_multi_thread`]: method@Self::new_multi_thread
/// [`Builder::new_current_thread`]: method@Self::new_current_thread
///
/// # Examples
///
/// ```
/// use tokio::runtime::Builder;
///
/// fn main() {
///     // build runtime
///     let runtime = Builder::new_multi_thread()
///         .worker_threads(4)
///         .thread_name("my-custom-name")
///         .thread_stack_size(3 * 1024 * 1024)
///         .build()
///         .unwrap();
///
///     // use runtime ...
/// }
/// ```
pub struct Builder {
    /// Runtime type
    kind: Kind,

    /// Whether or not to enable the I/O driver
    enable_io: bool,
    nevents: usize,

    /// Whether or not to enable the time driver
    enable_time: bool,

    /// Whether or not the clock should start paused.
    start_paused: bool,

    /// The number of worker threads, used by Runtime.
    ///
    /// Only used when not using the current-thread executor.
    worker_threads: Option<usize>,

    /// Cap on thread usage.
    max_blocking_threads: usize,

    /// Name fn used for threads spawned by the runtime.
    pub(super) thread_name: ThreadNameFn,

    /// Stack size used for threads spawned by the runtime.
    pub(super) thread_stack_size: Option<usize>,

    /// Callback to run after each thread starts.
    pub(super) after_start: Option<Callback>,

    /// To run before each worker thread stops
    pub(super) before_stop: Option<Callback>,

    /// To run before each worker thread is parked.
    pub(super) before_park: Option<Callback>,

    /// To run after each thread is unparked.
    pub(super) after_unpark: Option<Callback>,

    /// Customizable keep alive timeout for BlockingPool
    pub(super) keep_alive: Option<Duration>,

    /// How many ticks before pulling a task from the global/remote queue?
    ///
    /// When `None`, the value is unspecified and behavior details are left to
    /// the scheduler. Each scheduler flavor could choose to either pick its own
    /// default value or use some other strategy to decide when to poll from the
    /// global queue. For example, the multi-threaded scheduler uses a
    /// self-tuning strategy based on mean task poll times.
    pub(super) global_queue_interval: Option<u32>,

    /// How many ticks before yielding to the driver for timer and I/O events?
    pub(super) event_interval: u32,

    pub(super) local_queue_capacity: usize,

    /// When true, the multi-threade scheduler LIFO slot should not be used.
    ///
    /// This option should only be exposed as unstable.
    pub(super) disable_lifo_slot: bool,

    /// Specify a random number generator seed to provide deterministic results
    pub(super) seed_generator: RngSeedGenerator,

    /// When true, enables task poll count histogram instrumentation.
    pub(super) metrics_poll_count_histogram_enable: bool,

    /// Configures the task poll count histogram
    pub(super) metrics_poll_count_histogram: HistogramBuilder,

    #[cfg(tokio_unstable)]
    pub(super) unhandled_panic: UnhandledPanic,
}

cfg_unstable! {
    /// How the runtime should respond to unhandled panics.
    ///
    /// Instances of `UnhandledPanic` are passed to `Builder::unhandled_panic`
    /// to configure the runtime behavior when a spawned task panics.
    ///
    /// See [`Builder::unhandled_panic`] for more details.
    #[derive(Debug, Clone)]
    #[non_exhaustive]
    pub enum UnhandledPanic {
        /// The runtime should ignore panics on spawned tasks.
        ///
        /// The panic is forwarded to the task's [`JoinHandle`] and all spawned
        /// tasks continue running normally.
        ///
        /// This is the default behavior.
        ///
        /// # Examples
        ///
        /// ```
        /// use tokio::runtime::{self, UnhandledPanic};
        ///
        /// # pub fn main() {
        /// let rt = runtime::Builder::new_current_thread()
        ///     .unhandled_panic(UnhandledPanic::Ignore)
        ///     .build()
        ///     .unwrap();
        ///
        /// let task1 = rt.spawn(async { panic!("boom"); });
        /// let task2 = rt.spawn(async {
        ///     // This task completes normally
        ///     "done"
        /// });
        ///
        /// rt.block_on(async {
        ///     // The panic on the first task is forwarded to the `JoinHandle`
        ///     assert!(task1.await.is_err());
        ///
        ///     // The second task completes normally
        ///     assert!(task2.await.is_ok());
        /// })
        /// # }
        /// ```
        ///
        /// [`JoinHandle`]: struct@crate::task::JoinHandle
        Ignore,

        /// The runtime should immediately shutdown if a spawned task panics.
        ///
        /// The runtime will immediately shutdown even if the panicked task's
        /// [`JoinHandle`] is still available. All further spawned tasks will be
        /// immediately dropped and call to [`Runtime::block_on`] will panic.
        ///
        /// # Examples
        ///
        /// ```should_panic
        /// use tokio::runtime::{self, UnhandledPanic};
        ///
        /// # pub fn main() {
        /// let rt = runtime::Builder::new_current_thread()
        ///     .unhandled_panic(UnhandledPanic::ShutdownRuntime)
        ///     .build()
        ///     .unwrap();
        ///
        /// rt.spawn(async { panic!("boom"); });
        /// rt.spawn(async {
        ///     // This task never completes.
        /// });
        ///
        /// rt.block_on(async {
        ///     // Do some work
        /// # loop { tokio::task::yield_now().await; }
        /// })
        /// # }
        /// ```
        ///
        /// [`JoinHandle`]: struct@crate::task::JoinHandle
        ShutdownRuntime,
    }
}

pub(crate) type ThreadNameFn = std::sync::Arc<dyn Fn() -> String + Send + Sync + 'static>;

#[derive(Clone, Copy)]
pub(crate) enum Kind {
    CurrentThread,
    #[cfg(all(feature = "rt-multi-thread", not(target_os = "wasi")))]
    MultiThread,
    #[cfg(all(tokio_unstable, feature = "rt-multi-thread", not(target_os = "wasi")))]
    MultiThreadAlt,
}

impl Builder {
    /// Returns a new builder with the current thread scheduler selected.
    ///
    /// Configuration methods can be chained on the return value.
    ///
    /// To spawn non-`Send` tasks on the resulting runtime, combine it with a
    /// [`LocalSet`].
    ///
    /// [`LocalSet`]: crate::task::LocalSet
    pub fn new_current_thread() -> Builder {
        #[cfg(loom)]
        const EVENT_INTERVAL: u32 = 4;
        // The number `61` is fairly arbitrary. I believe this value was copied from golang.
        #[cfg(not(loom))]
        const EVENT_INTERVAL: u32 = 61;

        Builder::new(Kind::CurrentThread, EVENT_INTERVAL)
    }

    cfg_not_wasi! {
        /// Returns a new builder with the multi thread scheduler selected.
        ///
        /// Configuration methods can be chained on the return value.
        #[cfg(feature = "rt-multi-thread")]
        #[cfg_attr(docsrs, doc(cfg(feature = "rt-multi-thread")))]
        pub fn new_multi_thread() -> Builder {
            // The number `61` is fairly arbitrary. I believe this value was copied from golang.
            Builder::new(Kind::MultiThread, 61)
        }

        cfg_unstable! {
            /// Returns a new builder with the alternate multi thread scheduler
            /// selected.
            ///
            /// The alternate multi threaded scheduler is an in-progress
            /// candidate to replace the existing multi threaded scheduler. It
            /// currently does not scale as well to 16+ processors.
            ///
            /// This runtime flavor is currently **not considered production
            /// ready**.
            ///
            /// Configuration methods can be chained on the return value.
            #[cfg(feature = "rt-multi-thread")]
            #[cfg_attr(docsrs, doc(cfg(feature = "rt-multi-thread")))]
            pub fn new_multi_thread_alt() -> Builder {
                // The number `61` is fairly arbitrary. I believe this value was copied from golang.
                Builder::new(Kind::MultiThreadAlt, 61)
            }
        }
    }

    /// Returns a new runtime builder initialized with default configuration
    /// values.
    ///
    /// Configuration methods can be chained on the return value.
    pub(crate) fn new(kind: Kind, event_interval: u32) -> Builder {
        Builder {
            kind,

            // I/O defaults to "off"
            enable_io: false,
            nevents: 1024,

            // Time defaults to "off"
            enable_time: false,

            // The clock starts not-paused
            start_paused: false,

            // Read from environment variable first in multi-threaded mode.
            // Default to lazy auto-detection (one thread per CPU core)
            worker_threads: None,

            max_blocking_threads: 512,

            // Default thread name
            thread_name: std::sync::Arc::new(|| "tokio-runtime-worker".into()),

            // Do not set a stack size by default
            thread_stack_size: None,

            // No worker thread callbacks
            after_start: None,
            before_stop: None,
            before_park: None,
            after_unpark: None,

            keep_alive: None,

            // Defaults for these values depend on the scheduler kind, so we get them
            // as parameters.
            global_queue_interval: None,
            event_interval,

            #[cfg(not(loom))]
            local_queue_capacity: 256,

            #[cfg(loom)]
            local_queue_capacity: 4,

            seed_generator: RngSeedGenerator::new(RngSeed::new()),

            #[cfg(tokio_unstable)]
            unhandled_panic: UnhandledPanic::Ignore,

            metrics_poll_count_histogram_enable: false,

            metrics_poll_count_histogram: Default::default(),

            disable_lifo_slot: false,
        }
    }

    /// Enables both I/O and time drivers.
    ///
    /// Doing this is a shorthand for calling `enable_io` and `enable_time`
    /// individually. If additional components are added to Tokio in the future,
    /// `enable_all` will include these future components.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::runtime;
    ///
    /// let rt = runtime::Builder::new_multi_thread()
    ///     .enable_all()
    ///     .build()
    ///     .unwrap();
    /// ```
    pub fn enable_all(&mut self) -> &mut Self {
        #[cfg(any(
            feature = "net",
            all(unix, feature = "process"),
            all(unix, feature = "signal")
        ))]
        self.enable_io();
        #[cfg(feature = "time")]
        self.enable_time();

        self
    }

    /// Sets the number of worker threads the `Runtime` will use.
    ///
    /// This can be any number above 0 though it is advised to keep this value
    /// on the smaller side.
    ///
    /// This will override the value read from environment variable `TOKIO_WORKER_THREADS`.
    ///
    /// # Default
    ///
    /// The default value is the number of cores available to the system.
    ///
    /// When using the `current_thread` runtime this method has no effect.
    ///
    /// # Examples
    ///
    /// ## Multi threaded runtime with 4 threads
    ///
    /// ```
    /// use tokio::runtime;
    ///
    /// // This will spawn a work-stealing runtime with 4 worker threads.
    /// let rt = runtime::Builder::new_multi_thread()
    ///     .worker_threads(4)
    ///     .build()
    ///     .unwrap();
    ///
    /// rt.spawn(async move {});
    /// ```
    ///
    /// ## Current thread runtime (will only run on the current thread via `Runtime::block_on`)
    ///
    /// ```
    /// use tokio::runtime;
    ///
    /// // Create a runtime that _must_ be driven from a call
    /// // to `Runtime::block_on`.
    /// let rt = runtime::Builder::new_current_thread()
    ///     .build()
    ///     .unwrap();
    ///
    /// // This will run the runtime and future on the current thread
    /// rt.block_on(async move {});
    /// ```
    ///
    /// # Panics
    ///
    /// This will panic if `val` is not larger than `0`.
    #[track_caller]
    pub fn worker_threads(&mut self, val: usize) -> &mut Self {
        assert!(val > 0, "Worker threads cannot be set to 0");
        self.worker_threads = Some(val);
        self
    }

    /// Specifies the limit for additional threads spawned by the Runtime.
    ///
    /// These threads are used for blocking operations like tasks spawned
    /// through [`spawn_blocking`], this includes but is not limited to:
    /// - [`fs`] operations
    /// - dns resolution through [`ToSocketAddrs`]
    /// - writing to [`Stdout`] or [`Stderr`]
    /// - reading from [`Stdin`]
    ///
    /// Unlike the [`worker_threads`], they are not always active and will exit
    /// if left idle for too long. You can change this timeout duration with [`thread_keep_alive`].
    ///
    /// It's recommended to not set this limit too low in order to avoid hanging on operations
    /// requiring [`spawn_blocking`].
    ///
    /// The default value is 512.
    ///
    /// # Panics
    ///
    /// This will panic if `val` is not larger than `0`.
    ///
    /// # Upgrading from 0.x
    ///
    /// In old versions `max_threads` limited both blocking and worker threads, but the
    /// current `max_blocking_threads` does not include async worker threads in the count.
    ///
    /// [`spawn_blocking`]: fn@crate::task::spawn_blocking
    /// [`fs`]: mod@crate::fs
    /// [`ToSocketAddrs`]: trait@crate::net::ToSocketAddrs
    /// [`Stdout`]: struct@crate::io::Stdout
    /// [`Stdin`]: struct@crate::io::Stdin
    /// [`Stderr`]: struct@crate::io::Stderr
    /// [`worker_threads`]: Self::worker_threads
    /// [`thread_keep_alive`]: Self::thread_keep_alive
    #[track_caller]
    #[cfg_attr(docsrs, doc(alias = "max_threads"))]
    pub fn max_blocking_threads(&mut self, val: usize) -> &mut Self {
        assert!(val > 0, "Max blocking threads cannot be set to 0");
        self.max_blocking_threads = val;
        self
    }

    /// Sets name of threads spawned by the `Runtime`'s thread pool.
    ///
    /// The default name is "tokio-runtime-worker".
    ///
    /// # Examples
    ///
    /// ```
    /// # use tokio::runtime;
    ///
    /// # pub fn main() {
    /// let rt = runtime::Builder::new_multi_thread()
    ///     .thread_name("my-pool")
    ///     .build();
    /// # }
    /// ```
    pub fn thread_name(&mut self, val: impl Into<String>) -> &mut Self {
        let val = val.into();
        self.thread_name = std::sync::Arc::new(move || val.clone());
        self
    }

    /// Sets a function used to generate the name of threads spawned by the `Runtime`'s thread pool.
    ///
    /// The default name fn is `|| "tokio-runtime-worker".into()`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use tokio::runtime;
    /// # use std::sync::atomic::{AtomicUsize, Ordering};
    /// # pub fn main() {
    /// let rt = runtime::Builder::new_multi_thread()
    ///     .thread_name_fn(|| {
    ///        static ATOMIC_ID: AtomicUsize = AtomicUsize::new(0);
    ///        let id = ATOMIC_ID.fetch_add(1, Ordering::SeqCst);
    ///        format!("my-pool-{}", id)
    ///     })
    ///     .build();
    /// # }
    /// ```
    pub fn thread_name_fn<F>(&mut self, f: F) -> &mut Self
    where
        F: Fn() -> String + Send + Sync + 'static,
    {
        self.thread_name = std::sync::Arc::new(f);
        self
    }

    /// Sets the stack size (in bytes) for worker threads.
    ///
    /// The actual stack size may be greater than this value if the platform
    /// specifies minimal stack size.
    ///
    /// The default stack size for spawned threads is 2 MiB, though this
    /// particular stack size is subject to change in the future.
    ///
    /// # Examples
    ///
    /// ```
    /// # use tokio::runtime;
    ///
    /// # pub fn main() {
    /// let rt = runtime::Builder::new_multi_thread()
    ///     .thread_stack_size(32 * 1024)
    ///     .build();
    /// # }
    /// ```
    pub fn thread_stack_size(&mut self, val: usize) -> &mut Self {
        self.thread_stack_size = Some(val);
        self
    }

    /// Executes function `f` after each thread is started but before it starts
    /// doing work.
    ///
    /// This is intended for bookkeeping and monitoring use cases.
    ///
    /// # Examples
    ///
    /// ```
    /// # use tokio::runtime;
    /// # pub fn main() {
    /// let runtime = runtime::Builder::new_multi_thread()
    ///     .on_thread_start(|| {
    ///         println!("thread started");
    ///     })
    ///     .build();
    /// # }
    /// ```
    #[cfg(not(loom))]
    pub fn on_thread_start<F>(&mut self, f: F) -> &mut Self
    where
        F: Fn() + Send + Sync + 'static,
    {
        self.after_start = Some(std::sync::Arc::new(f));
        self
    }

    /// Executes function `f` before each thread stops.
    ///
    /// This is intended for bookkeeping and monitoring use cases.
    ///
    /// # Examples
    ///
    /// ```
    /// # use tokio::runtime;
    /// # pub fn main() {
    /// let runtime = runtime::Builder::new_multi_thread()
    ///     .on_thread_stop(|| {
    ///         println!("thread stopping");
    ///     })
    ///     .build();
    /// # }
    /// ```
    #[cfg(not(loom))]
    pub fn on_thread_stop<F>(&mut self, f: F) -> &mut Self
    where
        F: Fn() + Send + Sync + 'static,
    {
        self.before_stop = Some(std::sync::Arc::new(f));
        self
    }

    /// Executes function `f` just before a thread is parked (goes idle).
    /// `f` is called within the Tokio context, so functions like [`tokio::spawn`](crate::spawn)
    /// can be called, and may result in this thread being unparked immediately.
    ///
    /// This can be used to start work only when the executor is idle, or for bookkeeping
    /// and monitoring purposes.
    ///
    /// Note: There can only be one park callback for a runtime; calling this function
    /// more than once replaces the last callback defined, rather than adding to it.
    ///
    /// # Examples
    ///
    /// ## Multithreaded executor
    /// ```
    /// # use std::sync::Arc;
    /// # use std::sync::atomic::{AtomicBool, Ordering};
    /// # use tokio::runtime;
    /// # use tokio::sync::Barrier;
    /// # pub fn main() {
    /// let once = AtomicBool::new(true);
    /// let barrier = Arc::new(Barrier::new(2));
    ///
    /// let runtime = runtime::Builder::new_multi_thread()
    ///     .worker_threads(1)
    ///     .on_thread_park({
    ///         let barrier = barrier.clone();
    ///         move || {
    ///             let barrier = barrier.clone();
    ///             if once.swap(false, Ordering::Relaxed) {
    ///                 tokio::spawn(async move { barrier.wait().await; });
    ///            }
    ///         }
    ///     })
    ///     .build()
    ///     .unwrap();
    ///
    /// runtime.block_on(async {
    ///    barrier.wait().await;
    /// })
    /// # }
    /// ```
    /// ## Current thread executor
    /// ```
    /// # use std::sync::Arc;
    /// # use std::sync::atomic::{AtomicBool, Ordering};
    /// # use tokio::runtime;
    /// # use tokio::sync::Barrier;
    /// # pub fn main() {
    /// let once = AtomicBool::new(true);
    /// let barrier = Arc::new(Barrier::new(2));
    ///
    /// let runtime = runtime::Builder::new_current_thread()
    ///     .on_thread_park({
    ///         let barrier = barrier.clone();
    ///         move || {
    ///             let barrier = barrier.clone();
    ///             if once.swap(false, Ordering::Relaxed) {
    ///                 tokio::spawn(async move { barrier.wait().await; });
    ///            }
    ///         }
    ///     })
    ///     .build()
    ///     .unwrap();
    ///
    /// runtime.block_on(async {
    ///    barrier.wait().await;
    /// })
    /// # }
    /// ```
    #[cfg(not(loom))]
    pub fn on_thread_park<F>(&mut self, f: F) -> &mut Self
    where
        F: Fn() + Send + Sync + 'static,
    {
        self.before_park = Some(std::sync::Arc::new(f));
        self
    }

    /// Executes function `f` just after a thread unparks (starts executing tasks).
    ///
    /// This is intended for bookkeeping and monitoring use cases; note that work
    /// in this callback will increase latencies when the application has allowed one or
    /// more runtime threads to go idle.
    ///
    /// Note: There can only be one unpark callback for a runtime; calling this function
    /// more than once replaces the last callback defined, rather than adding to it.
    ///
    /// # Examples
    ///
    /// ```
    /// # use tokio::runtime;
    /// # pub fn main() {
    /// let runtime = runtime::Builder::new_multi_thread()
    ///     .on_thread_unpark(|| {
    ///         println!("thread unparking");
    ///     })
    ///     .build();
    ///
    /// runtime.unwrap().block_on(async {
    ///    tokio::task::yield_now().await;
    ///    println!("Hello from Tokio!");
    /// })
    /// # }
    /// ```
    #[cfg(not(loom))]
    pub fn on_thread_unpark<F>(&mut self, f: F) -> &mut Self
    where
        F: Fn() + Send + Sync + 'static,
    {
        self.after_unpark = Some(std::sync::Arc::new(f));
        self
    }

    /// Creates the configured `Runtime`.
    ///
    /// The returned `Runtime` instance is ready to spawn tasks.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::runtime::Builder;
    ///
    /// let rt  = Builder::new_multi_thread().build().unwrap();
    ///
    /// rt.block_on(async {
    ///     println!("Hello from the Tokio runtime");
    /// });
    /// ```
    pub fn build(&mut self) -> io::Result<Runtime> {
        match &self.kind {
            Kind::CurrentThread => self.build_current_thread_runtime(),
            #[cfg(all(feature = "rt-multi-thread", not(target_os = "wasi")))]
            Kind::MultiThread => self.build_threaded_runtime(),
            #[cfg(all(tokio_unstable, feature = "rt-multi-thread", not(target_os = "wasi")))]
            Kind::MultiThreadAlt => self.build_alt_threaded_runtime(),
        }
    }

    fn get_cfg(&self) -> driver::Cfg {
        driver::Cfg {
            enable_pause_time: match self.kind {
                Kind::CurrentThread => true,
                #[cfg(all(feature = "rt-multi-thread", not(target_os = "wasi")))]
                Kind::MultiThread => false,
                #[cfg(all(tokio_unstable, feature = "rt-multi-thread", not(target_os = "wasi")))]
                Kind::MultiThreadAlt => false,
            },
            enable_io: self.enable_io,
            enable_time: self.enable_time,
            start_paused: self.start_paused,
            nevents: self.nevents,
        }
    }

    /// Sets a custom timeout for a thread in the blocking pool.
    ///
    /// By default, the timeout for a thread is set to 10 seconds. This can
    /// be overridden using .thread_keep_alive().
    ///
    /// # Example
    ///
    /// ```
    /// # use tokio::runtime;
    /// # use std::time::Duration;
    /// # pub fn main() {
    /// let rt = runtime::Builder::new_multi_thread()
    ///     .thread_keep_alive(Duration::from_millis(100))
    ///     .build();
    /// # }
    /// ```
    pub fn thread_keep_alive(&mut self, duration: Duration) -> &mut Self {
        self.keep_alive = Some(duration);
        self
    }

    /// Sets the number of scheduler ticks after which the scheduler will poll the global
    /// task queue.
    ///
    /// A scheduler "tick" roughly corresponds to one `poll` invocation on a task.
    ///
    /// By default the global queue interval is:
    ///
    /// * `31` for the current-thread scheduler.
    /// * `61` for the multithreaded scheduler.
    ///
    /// Schedulers have a local queue of already-claimed tasks, and a global queue of incoming
    /// tasks. Setting the interval to a smaller value increases the fairness of the scheduler,
    /// at the cost of more synchronization overhead. That can be beneficial for prioritizing
    /// getting started on new work, especially if tasks frequently yield rather than complete
    /// or await on further I/O. Conversely, a higher value prioritizes existing work, and
    /// is a good choice when most tasks quickly complete polling.
    ///
    /// # Examples
    ///
    /// ```
    /// # use tokio::runtime;
    /// # pub fn main() {
    /// let rt = runtime::Builder::new_multi_thread()
    ///     .global_queue_interval(31)
    ///     .build();
    /// # }
    /// ```
    pub fn global_queue_interval(&mut self, val: u32) -> &mut Self {
        self.global_queue_interval = Some(val);
        self
    }

    /// Sets the number of scheduler ticks after which the scheduler will poll for
    /// external events (timers, I/O, and so on).
    ///
    /// A scheduler "tick" roughly corresponds to one `poll` invocation on a task.
    ///
    /// By default, the event interval is `61` for all scheduler types.
    ///
    /// Setting the event interval determines the effective "priority" of delivering
    /// these external events (which may wake up additional tasks), compared to
    /// executing tasks that are currently ready to run. A smaller value is useful
    /// when tasks frequently spend a long time in polling, or frequently yield,
    /// which can result in overly long delays picking up I/O events. Conversely,
    /// picking up new events requires extra synchronization and syscall overhead,
    /// so if tasks generally complete their polling quickly, a higher event interval
    /// will minimize that overhead while still keeping the scheduler responsive to
    /// events.
    ///
    /// # Examples
    ///
    /// ```
    /// # use tokio::runtime;
    /// # pub fn main() {
    /// let rt = runtime::Builder::new_multi_thread()
    ///     .event_interval(31)
    ///     .build();
    /// # }
    /// ```
    pub fn event_interval(&mut self, val: u32) -> &mut Self {
        self.event_interval = val;
        self
    }

    cfg_unstable! {
        /// Configure how the runtime responds to an unhandled panic on a
        /// spawned task.
        ///
        /// By default, an unhandled panic (i.e. a panic not caught by
        /// [`std::panic::catch_unwind`]) has no impact on the runtime's
        /// execution. The panic is error value is forwarded to the task's
        /// [`JoinHandle`] and all other spawned tasks continue running.
        ///
        /// The `unhandled_panic` option enables configuring this behavior.
        ///
        /// * `UnhandledPanic::Ignore` is the default behavior. Panics on
        ///   spawned tasks have no impact on the runtime's execution.
        /// * `UnhandledPanic::ShutdownRuntime` will force the runtime to
        ///   shutdown immediately when a spawned task panics even if that
        ///   task's `JoinHandle` has not been dropped. All other spawned tasks
        ///   will immediately terminate and further calls to
        ///   [`Runtime::block_on`] will panic.
        ///
        /// # Unstable
        ///
        /// This option is currently unstable and its implementation is
        /// incomplete. The API may change or be removed in the future. See
        /// tokio-rs/tokio#4516 for more details.
        ///
        /// # Examples
        ///
        /// The following demonstrates a runtime configured to shutdown on
        /// panic. The first spawned task panics and results in the runtime
        /// shutting down. The second spawned task never has a chance to
        /// execute. The call to `block_on` will panic due to the runtime being
        /// forcibly shutdown.
        ///
        /// ```should_panic
        /// use tokio::runtime::{self, UnhandledPanic};
        ///
        /// # pub fn main() {
        /// let rt = runtime::Builder::new_current_thread()
        ///     .unhandled_panic(UnhandledPanic::ShutdownRuntime)
        ///     .build()
        ///     .unwrap();
        ///
        /// rt.spawn(async { panic!("boom"); });
        /// rt.spawn(async {
        ///     // This task never completes.
        /// });
        ///
        /// rt.block_on(async {
        ///     // Do some work
        /// # loop { tokio::task::yield_now().await; }
        /// })
        /// # }
        /// ```
        ///
        /// [`JoinHandle`]: struct@crate::task::JoinHandle
        pub fn unhandled_panic(&mut self, behavior: UnhandledPanic) -> &mut Self {
            self.unhandled_panic = behavior;
            self
        }

        /// Disables the LIFO task scheduler heuristic.
        ///
        /// The multi-threaded scheduler includes a heuristic for optimizing
        /// message-passing patterns. This heuristic results in the **last**
        /// scheduled task being polled first.
        ///
        /// To implement this heuristic, each worker thread has a slot which
        /// holds the task that should be polled next. However, this slot cannot
        /// be stolen by other worker threads, which can result in lower total
        /// throughput when tasks tend to have longer poll times.
        ///
        /// This configuration option will disable this heuristic resulting in
        /// all scheduled tasks being pushed into the worker-local queue, which
        /// is stealable.
        ///
        /// Consider trying this option when the task "scheduled" time is high
        /// but the runtime is underutilized. Use tokio-rs/tokio-metrics to
        /// collect this data.
        ///
        /// # Unstable
        ///
        /// This configuration option is considered a workaround for the LIFO
        /// slot not being stealable. When the slot becomes stealable, we will
        /// revisit whether or not this option is necessary. See
        /// tokio-rs/tokio#4941.
        ///
        /// # Examples
        ///
        /// ```
        /// use tokio::runtime;
        ///
        /// let rt = runtime::Builder::new_multi_thread()
        ///     .disable_lifo_slot()
        ///     .build()
        ///     .unwrap();
        /// ```
        pub fn disable_lifo_slot(&mut self) -> &mut Self {
            self.disable_lifo_slot = true;
            self
        }

        /// Specifies the random number generation seed to use within all
        /// threads associated with the runtime being built.
        ///
        /// This option is intended to make certain parts of the runtime
        /// deterministic (e.g. the [`tokio::select!`] macro). In the case of
        /// [`tokio::select!`] it will ensure that the order that branches are
        /// polled is deterministic.
        ///
        /// In addition to the code specifying `rng_seed` and interacting with
        /// the runtime, the internals of Tokio and the Rust compiler may affect
        /// the sequences of random numbers. In order to ensure repeatable
        /// results, the version of Tokio, the versions of all other
        /// dependencies that interact with Tokio, and the Rust compiler version
        /// should also all remain constant.
        ///
        /// # Examples
        ///
        /// ```
        /// # use tokio::runtime::{self, RngSeed};
        /// # pub fn main() {
        /// let seed = RngSeed::from_bytes(b"place your seed here");
        /// let rt = runtime::Builder::new_current_thread()
        ///     .rng_seed(seed)
        ///     .build();
        /// # }
        /// ```
        ///
        /// [`tokio::select!`]: crate::select
        pub fn rng_seed(&mut self, seed: RngSeed) -> &mut Self {
            self.seed_generator = RngSeedGenerator::new(seed);
            self
        }
    }

    cfg_metrics! {
        /// Enables tracking the distribution of task poll times.
        ///
        /// Task poll times are not instrumented by default as doing so requires
        /// calling [`Instant::now()`] twice per task poll, which could add
        /// measurable overhead. Use the [`Handle::metrics()`] to access the
        /// metrics data.
        ///
        /// The histogram uses fixed bucket sizes. In other words, the histogram
        /// buckets are not dynamic based on input values. Use the
        /// `metrics_poll_count_histogram_` builder methods to configure the
        /// histogram details.
        ///
        /// # Examples
        ///
        /// ```
        /// use tokio::runtime;
        ///
        /// let rt = runtime::Builder::new_multi_thread()
        ///     .enable_metrics_poll_count_histogram()
        ///     .build()
        ///     .unwrap();
        /// # // Test default values here
        /// # fn us(n: u64) -> std::time::Duration { std::time::Duration::from_micros(n) }
        /// # let m = rt.handle().metrics();
        /// # assert_eq!(m.poll_count_histogram_num_buckets(), 10);
        /// # assert_eq!(m.poll_count_histogram_bucket_range(0), us(0)..us(100));
        /// # assert_eq!(m.poll_count_histogram_bucket_range(1), us(100)..us(200));
        /// ```
        ///
        /// [`Handle::metrics()`]: crate::runtime::Handle::metrics
        /// [`Instant::now()`]: std::time::Instant::now
        pub fn enable_metrics_poll_count_histogram(&mut self) -> &mut Self {
            self.metrics_poll_count_histogram_enable = true;
            self
        }

        /// Sets the histogram scale for tracking the distribution of task poll
        /// times.
        ///
        /// Tracking the distribution of task poll times can be done using a
        /// linear or log scale. When using linear scale, each histogram bucket
        /// will represent the same range of poll times. When using log scale,
        /// each histogram bucket will cover a range twice as big as the
        /// previous bucket.
        ///
        /// **Default:** linear scale.
        ///
        /// # Examples
        ///
        /// ```
        /// use tokio::runtime::{self, HistogramScale};
        ///
        /// let rt = runtime::Builder::new_multi_thread()
        ///     .enable_metrics_poll_count_histogram()
        ///     .metrics_poll_count_histogram_scale(HistogramScale::Log)
        ///     .build()
        ///     .unwrap();
        /// ```
        pub fn metrics_poll_count_histogram_scale(&mut self, histogram_scale: crate::runtime::HistogramScale) -> &mut Self {
            self.metrics_poll_count_histogram.scale = histogram_scale;
            self
        }

        /// Sets the histogram resolution for tracking the distribution of task
        /// poll times.
        ///
        /// The resolution is the histogram's first bucket's range. When using a
        /// linear histogram scale, each bucket will cover the same range. When
        /// using a log scale, each bucket will cover a range twice as big as
        /// the previous bucket. In the log case, the resolution represents the
        /// smallest bucket range.
        ///
        /// Note that, when using log scale, the resolution is rounded up to the
        /// nearest power of 2 in nanoseconds.
        ///
        /// **Default:** 100 microseconds.
        ///
        /// # Examples
        ///
        /// ```
        /// use tokio::runtime;
        /// use std::time::Duration;
        ///
        /// let rt = runtime::Builder::new_multi_thread()
        ///     .enable_metrics_poll_count_histogram()
        ///     .metrics_poll_count_histogram_resolution(Duration::from_micros(100))
        ///     .build()
        ///     .unwrap();
        /// ```
        pub fn metrics_poll_count_histogram_resolution(&mut self, resolution: Duration) -> &mut Self {
            assert!(resolution > Duration::from_secs(0));
            // Sanity check the argument and also make the cast below safe.
            assert!(resolution <= Duration::from_secs(1));

            let resolution = resolution.as_nanos() as u64;
            self.metrics_poll_count_histogram.resolution = resolution;
            self
        }

        /// Sets the number of buckets for the histogram tracking the
        /// distribution of task poll times.
        ///
        /// The last bucket tracks all greater values that fall out of other
        /// ranges. So, configuring the histogram using a linear scale,
        /// resolution of 50ms, and 10 buckets, the 10th bucket will track task
        /// polls that take more than 450ms to complete.
        ///
        /// **Default:** 10
        ///
        /// # Examples
        ///
        /// ```
        /// use tokio::runtime;
        ///
        /// let rt = runtime::Builder::new_multi_thread()
        ///     .enable_metrics_poll_count_histogram()
        ///     .metrics_poll_count_histogram_buckets(15)
        ///     .build()
        ///     .unwrap();
        /// ```
        pub fn metrics_poll_count_histogram_buckets(&mut self, buckets: usize) -> &mut Self {
            self.metrics_poll_count_histogram.num_buckets = buckets;
            self
        }
    }

    cfg_loom! {
        pub(crate) fn local_queue_capacity(&mut self, value: usize) -> &mut Self {
            assert!(value.is_power_of_two());
            self.local_queue_capacity = value;
            self
        }
    }

    fn build_current_thread_runtime(&mut self) -> io::Result<Runtime> {
        use crate::runtime::scheduler::{self, CurrentThread};
        use crate::runtime::{runtime::Scheduler, Config};

        let (driver, driver_handle) = driver::Driver::new(self.get_cfg())?;

        // Blocking pool
        let blocking_pool = blocking::create_blocking_pool(self, self.max_blocking_threads);
        let blocking_spawner = blocking_pool.spawner().clone();

        // Generate a rng seed for this runtime.
        let seed_generator_1 = self.seed_generator.next_generator();
        let seed_generator_2 = self.seed_generator.next_generator();

        // And now put a single-threaded scheduler on top of the timer. When
        // there are no futures ready to do something, it'll let the timer or
        // the reactor to generate some new stimuli for the futures to continue
        // in their life.
        let (scheduler, handle) = CurrentThread::new(
            driver,
            driver_handle,
            blocking_spawner,
            seed_generator_2,
            Config {
                before_park: self.before_park.clone(),
                after_unpark: self.after_unpark.clone(),
                global_queue_interval: self.global_queue_interval,
                event_interval: self.event_interval,
                local_queue_capacity: self.local_queue_capacity,
                #[cfg(tokio_unstable)]
                unhandled_panic: self.unhandled_panic.clone(),
                disable_lifo_slot: self.disable_lifo_slot,
                seed_generator: seed_generator_1,
                metrics_poll_count_histogram: self.metrics_poll_count_histogram_builder(),
            },
        );

        let handle = Handle {
            inner: scheduler::Handle::CurrentThread(handle),
        };

        Ok(Runtime::from_parts(
            Scheduler::CurrentThread(scheduler),
            handle,
            blocking_pool,
        ))
    }

    fn metrics_poll_count_histogram_builder(&self) -> Option<HistogramBuilder> {
        if self.metrics_poll_count_histogram_enable {
            Some(self.metrics_poll_count_histogram.clone())
        } else {
            None
        }
    }
}

cfg_io_driver! {
    impl Builder {
        /// Enables the I/O driver.
        ///
        /// Doing this enables using net, process, signal, and some I/O types on
        /// the runtime.
        ///
        /// # Examples
        ///
        /// ```
        /// use tokio::runtime;
        ///
        /// let rt = runtime::Builder::new_multi_thread()
        ///     .enable_io()
        ///     .build()
        ///     .unwrap();
        /// ```
        pub fn enable_io(&mut self) -> &mut Self {
            self.enable_io = true;
            self
        }

        /// Enables the I/O driver and configures the max number of events to be
        /// processed per tick.
        ///
        /// # Examples
        ///
        /// ```
        /// use tokio::runtime;
        ///
        /// let rt = runtime::Builder::new_current_thread()
        ///     .enable_io()
        ///     .max_io_events_per_tick(1024)
        ///     .build()
        ///     .unwrap();
        /// ```
        pub fn max_io_events_per_tick(&mut self, capacity: usize) -> &mut Self {
            self.nevents = capacity;
            self
        }
    }
}

cfg_time! {
    impl Builder {
        /// Enables the time driver.
        ///
        /// Doing this enables using `tokio::time` on the runtime.
        ///
        /// # Examples
        ///
        /// ```
        /// use tokio::runtime;
        ///
        /// let rt = runtime::Builder::new_multi_thread()
        ///     .enable_time()
        ///     .build()
        ///     .unwrap();
        /// ```
        pub fn enable_time(&mut self) -> &mut Self {
            self.enable_time = true;
            self
        }
    }
}

cfg_test_util! {
    impl Builder {
        /// Controls if the runtime's clock starts paused or advancing.
        ///
        /// Pausing time requires the current-thread runtime; construction of
        /// the runtime will panic otherwise.
        ///
        /// # Examples
        ///
        /// ```
        /// use tokio::runtime;
        ///
        /// let rt = runtime::Builder::new_current_thread()
        ///     .enable_time()
        ///     .start_paused(true)
        ///     .build()
        ///     .unwrap();
        /// ```
        pub fn start_paused(&mut self, start_paused: bool) -> &mut Self {
            self.start_paused = start_paused;
            self
        }
    }
}

cfg_rt_multi_thread! {
    impl Builder {
        fn build_threaded_runtime(&mut self) -> io::Result<Runtime> {
            use crate::loom::sys::num_cpus;
            use crate::runtime::{Config, runtime::Scheduler};
            use crate::runtime::scheduler::{self, MultiThread};

            let core_threads = self.worker_threads.unwrap_or_else(num_cpus);

            let (driver, driver_handle) = driver::Driver::new(self.get_cfg())?;

            // Create the blocking pool
            let blocking_pool =
                blocking::create_blocking_pool(self, self.max_blocking_threads + core_threads);
            let blocking_spawner = blocking_pool.spawner().clone();

            // Generate a rng seed for this runtime.
            let seed_generator_1 = self.seed_generator.next_generator();
            let seed_generator_2 = self.seed_generator.next_generator();

            let (scheduler, handle, launch) = MultiThread::new(
                core_threads,
                driver,
                driver_handle,
                blocking_spawner,
                seed_generator_2,
                Config {
                    before_park: self.before_park.clone(),
                    after_unpark: self.after_unpark.clone(),
                    global_queue_interval: self.global_queue_interval,
                    event_interval: self.event_interval,
                    local_queue_capacity: self.local_queue_capacity,
                    #[cfg(tokio_unstable)]
                    unhandled_panic: self.unhandled_panic.clone(),
                    disable_lifo_slot: self.disable_lifo_slot,
                    seed_generator: seed_generator_1,
                    metrics_poll_count_histogram: self.metrics_poll_count_histogram_builder(),
                },
            );

            let handle = Handle { inner: scheduler::Handle::MultiThread(handle) };

            // Spawn the thread pool workers
            let _enter = handle.enter();
            launch.launch();

            Ok(Runtime::from_parts(Scheduler::MultiThread(scheduler), handle, blocking_pool))
        }

        cfg_unstable! {
            fn build_alt_threaded_runtime(&mut self) -> io::Result<Runtime> {
                use crate::loom::sys::num_cpus;
                use crate::runtime::{Config, runtime::Scheduler};
                use crate::runtime::scheduler::MultiThreadAlt;

                let core_threads = self.worker_threads.unwrap_or_else(num_cpus);

                let (driver, driver_handle) = driver::Driver::new(self.get_cfg())?;

                // Create the blocking pool
                let blocking_pool =
                    blocking::create_blocking_pool(self, self.max_blocking_threads + core_threads);
                let blocking_spawner = blocking_pool.spawner().clone();

                // Generate a rng seed for this runtime.
                let seed_generator_1 = self.seed_generator.next_generator();
                let seed_generator_2 = self.seed_generator.next_generator();

                let (scheduler, handle) = MultiThreadAlt::new(
                    core_threads,
                    driver,
                    driver_handle,
                    blocking_spawner,
                    seed_generator_2,
                    Config {
                        before_park: self.before_park.clone(),
                        after_unpark: self.after_unpark.clone(),
                        global_queue_interval: self.global_queue_interval,
                        event_interval: self.event_interval,
                        local_queue_capacity: self.local_queue_capacity,
                        #[cfg(tokio_unstable)]
                        unhandled_panic: self.unhandled_panic.clone(),
                        disable_lifo_slot: self.disable_lifo_slot,
                        seed_generator: seed_generator_1,
                        metrics_poll_count_histogram: self.metrics_poll_count_histogram_builder(),
                    },
                );

                Ok(Runtime::from_parts(Scheduler::MultiThreadAlt(scheduler), handle, blocking_pool))
            }
        }
    }
}

impl fmt::Debug for Builder {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("Builder")
            .field("worker_threads", &self.worker_threads)
            .field("max_blocking_threads", &self.max_blocking_threads)
            .field(
                "thread_name",
                &"<dyn Fn() -> String + Send + Sync + 'static>",
            )
            .field("thread_stack_size", &self.thread_stack_size)
            .field("after_start", &self.after_start.as_ref().map(|_| "..."))
            .field("before_stop", &self.before_stop.as_ref().map(|_| "..."))
            .field("before_park", &self.before_park.as_ref().map(|_| "..."))
            .field("after_unpark", &self.after_unpark.as_ref().map(|_| "..."))
            .finish()
    }
}