1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
//! A hash set implemented using `IndexMap`
mod iter;
mod slice;
#[cfg(test)]
mod tests;
pub use self::iter::{Difference, Drain, Intersection, IntoIter, Iter, SymmetricDifference, Union};
pub use self::slice::Slice;
#[cfg(feature = "rayon")]
pub use crate::rayon::set as rayon;
use crate::TryReserveError;
#[cfg(feature = "std")]
use std::collections::hash_map::RandomState;
use crate::util::try_simplify_range;
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::fmt;
use core::hash::{BuildHasher, Hash};
use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub};
use super::{Entries, Equivalent, IndexMap};
type Bucket<T> = super::Bucket<T, ()>;
/// A hash set where the iteration order of the values is independent of their
/// hash values.
///
/// The interface is closely compatible with the standard `HashSet`, but also
/// has additional features.
///
/// # Order
///
/// The values have a consistent order that is determined by the sequence of
/// insertion and removal calls on the set. The order does not depend on the
/// values or the hash function at all. Note that insertion order and value
/// are not affected if a re-insertion is attempted once an element is
/// already present.
///
/// All iterators traverse the set *in order*. Set operation iterators like
/// `union` produce a concatenated order, as do their matching "bitwise"
/// operators. See their documentation for specifics.
///
/// The insertion order is preserved, with **notable exceptions** like the
/// `.remove()` or `.swap_remove()` methods. Methods such as `.sort_by()` of
/// course result in a new order, depending on the sorting order.
///
/// # Indices
///
/// The values are indexed in a compact range without holes in the range
/// `0..self.len()`. For example, the method `.get_full` looks up the index for
/// a value, and the method `.get_index` looks up the value by index.
///
/// # Examples
///
/// ```
/// use indexmap::IndexSet;
///
/// // Collects which letters appear in a sentence.
/// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect();
///
/// assert!(letters.contains(&'s'));
/// assert!(letters.contains(&'t'));
/// assert!(letters.contains(&'u'));
/// assert!(!letters.contains(&'y'));
/// ```
#[cfg(feature = "std")]
pub struct IndexSet<T, S = RandomState> {
pub(crate) map: IndexMap<T, (), S>,
}
#[cfg(not(feature = "std"))]
pub struct IndexSet<T, S> {
pub(crate) map: IndexMap<T, (), S>,
}
impl<T, S> Clone for IndexSet<T, S>
where
T: Clone,
S: Clone,
{
fn clone(&self) -> Self {
IndexSet {
map: self.map.clone(),
}
}
fn clone_from(&mut self, other: &Self) {
self.map.clone_from(&other.map);
}
}
impl<T, S> Entries for IndexSet<T, S> {
type Entry = Bucket<T>;
#[inline]
fn into_entries(self) -> Vec<Self::Entry> {
self.map.into_entries()
}
#[inline]
fn as_entries(&self) -> &[Self::Entry] {
self.map.as_entries()
}
#[inline]
fn as_entries_mut(&mut self) -> &mut [Self::Entry] {
self.map.as_entries_mut()
}
fn with_entries<F>(&mut self, f: F)
where
F: FnOnce(&mut [Self::Entry]),
{
self.map.with_entries(f);
}
}
impl<T, S> fmt::Debug for IndexSet<T, S>
where
T: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if cfg!(not(feature = "test_debug")) {
f.debug_set().entries(self.iter()).finish()
} else {
// Let the inner `IndexMap` print all of its details
f.debug_struct("IndexSet").field("map", &self.map).finish()
}
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl<T> IndexSet<T> {
/// Create a new set. (Does not allocate.)
pub fn new() -> Self {
IndexSet {
map: IndexMap::new(),
}
}
/// Create a new set with capacity for `n` elements.
/// (Does not allocate if `n` is zero.)
///
/// Computes in **O(n)** time.
pub fn with_capacity(n: usize) -> Self {
IndexSet {
map: IndexMap::with_capacity(n),
}
}
}
impl<T, S> IndexSet<T, S> {
/// Create a new set with capacity for `n` elements.
/// (Does not allocate if `n` is zero.)
///
/// Computes in **O(n)** time.
pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
IndexSet {
map: IndexMap::with_capacity_and_hasher(n, hash_builder),
}
}
/// Create a new set with `hash_builder`.
///
/// This function is `const`, so it
/// can be called in `static` contexts.
pub const fn with_hasher(hash_builder: S) -> Self {
IndexSet {
map: IndexMap::with_hasher(hash_builder),
}
}
/// Return the number of elements the set can hold without reallocating.
///
/// This number is a lower bound; the set might be able to hold more,
/// but is guaranteed to be able to hold at least this many.
///
/// Computes in **O(1)** time.
pub fn capacity(&self) -> usize {
self.map.capacity()
}
/// Return a reference to the set's `BuildHasher`.
pub fn hasher(&self) -> &S {
self.map.hasher()
}
/// Return the number of elements in the set.
///
/// Computes in **O(1)** time.
pub fn len(&self) -> usize {
self.map.len()
}
/// Returns true if the set contains no elements.
///
/// Computes in **O(1)** time.
pub fn is_empty(&self) -> bool {
self.map.is_empty()
}
/// Return an iterator over the values of the set, in their order
pub fn iter(&self) -> Iter<'_, T> {
Iter::new(self.as_entries())
}
/// Remove all elements in the set, while preserving its capacity.
///
/// Computes in **O(n)** time.
pub fn clear(&mut self) {
self.map.clear();
}
/// Shortens the set, keeping the first `len` elements and dropping the rest.
///
/// If `len` is greater than the set's current length, this has no effect.
pub fn truncate(&mut self, len: usize) {
self.map.truncate(len);
}
/// Clears the `IndexSet` in the given index range, returning those values
/// as a drain iterator.
///
/// The range may be any type that implements `RangeBounds<usize>`,
/// including all of the `std::ops::Range*` types, or even a tuple pair of
/// `Bound` start and end values. To drain the set entirely, use `RangeFull`
/// like `set.drain(..)`.
///
/// This shifts down all entries following the drained range to fill the
/// gap, and keeps the allocated memory for reuse.
///
/// ***Panics*** if the starting point is greater than the end point or if
/// the end point is greater than the length of the set.
pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
where
R: RangeBounds<usize>,
{
Drain::new(self.map.core.drain(range))
}
/// Splits the collection into two at the given index.
///
/// Returns a newly allocated set containing the elements in the range
/// `[at, len)`. After the call, the original set will be left containing
/// the elements `[0, at)` with its previous capacity unchanged.
///
/// ***Panics*** if `at > len`.
pub fn split_off(&mut self, at: usize) -> Self
where
S: Clone,
{
Self {
map: self.map.split_off(at),
}
}
}
impl<T, S> IndexSet<T, S>
where
T: Hash + Eq,
S: BuildHasher,
{
/// Reserve capacity for `additional` more values.
///
/// Computes in **O(n)** time.
pub fn reserve(&mut self, additional: usize) {
self.map.reserve(additional);
}
/// Reserve capacity for `additional` more values, without over-allocating.
///
/// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
/// frequent re-allocations. However, the underlying data structures may still have internal
/// capacity requirements, and the allocator itself may give more space than requested, so this
/// cannot be relied upon to be precisely minimal.
///
/// Computes in **O(n)** time.
pub fn reserve_exact(&mut self, additional: usize) {
self.map.reserve_exact(additional);
}
/// Try to reserve capacity for `additional` more values.
///
/// Computes in **O(n)** time.
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.map.try_reserve(additional)
}
/// Try to reserve capacity for `additional` more values, without over-allocating.
///
/// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
/// frequent re-allocations. However, the underlying data structures may still have internal
/// capacity requirements, and the allocator itself may give more space than requested, so this
/// cannot be relied upon to be precisely minimal.
///
/// Computes in **O(n)** time.
pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.map.try_reserve_exact(additional)
}
/// Shrink the capacity of the set as much as possible.
///
/// Computes in **O(n)** time.
pub fn shrink_to_fit(&mut self) {
self.map.shrink_to_fit();
}
/// Shrink the capacity of the set with a lower limit.
///
/// Computes in **O(n)** time.
pub fn shrink_to(&mut self, min_capacity: usize) {
self.map.shrink_to(min_capacity);
}
/// Insert the value into the set.
///
/// If an equivalent item already exists in the set, it returns
/// `false` leaving the original value in the set and without
/// altering its insertion order. Otherwise, it inserts the new
/// item and returns `true`.
///
/// Computes in **O(1)** time (amortized average).
pub fn insert(&mut self, value: T) -> bool {
self.map.insert(value, ()).is_none()
}
/// Insert the value into the set, and get its index.
///
/// If an equivalent item already exists in the set, it returns
/// the index of the existing item and `false`, leaving the
/// original value in the set and without altering its insertion
/// order. Otherwise, it inserts the new item and returns the index
/// of the inserted item and `true`.
///
/// Computes in **O(1)** time (amortized average).
pub fn insert_full(&mut self, value: T) -> (usize, bool) {
let (index, existing) = self.map.insert_full(value, ());
(index, existing.is_none())
}
/// Return an iterator over the values that are in `self` but not `other`.
///
/// Values are produced in the same order that they appear in `self`.
pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2>
where
S2: BuildHasher,
{
Difference::new(self, other)
}
/// Return an iterator over the values that are in `self` or `other`,
/// but not in both.
///
/// Values from `self` are produced in their original order, followed by
/// values from `other` in their original order.
pub fn symmetric_difference<'a, S2>(
&'a self,
other: &'a IndexSet<T, S2>,
) -> SymmetricDifference<'a, T, S, S2>
where
S2: BuildHasher,
{
SymmetricDifference::new(self, other)
}
/// Return an iterator over the values that are in both `self` and `other`.
///
/// Values are produced in the same order that they appear in `self`.
pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2>
where
S2: BuildHasher,
{
Intersection::new(self, other)
}
/// Return an iterator over all values that are in `self` or `other`.
///
/// Values from `self` are produced in their original order, followed by
/// values that are unique to `other` in their original order.
pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S>
where
S2: BuildHasher,
{
Union::new(self, other)
}
/// Return `true` if an equivalent to `value` exists in the set.
///
/// Computes in **O(1)** time (average).
pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool
where
Q: Hash + Equivalent<T>,
{
self.map.contains_key(value)
}
/// Return a reference to the value stored in the set, if it is present,
/// else `None`.
///
/// Computes in **O(1)** time (average).
pub fn get<Q: ?Sized>(&self, value: &Q) -> Option<&T>
where
Q: Hash + Equivalent<T>,
{
self.map.get_key_value(value).map(|(x, &())| x)
}
/// Return item index and value
pub fn get_full<Q: ?Sized>(&self, value: &Q) -> Option<(usize, &T)>
where
Q: Hash + Equivalent<T>,
{
self.map.get_full(value).map(|(i, x, &())| (i, x))
}
/// Return item index, if it exists in the set
pub fn get_index_of<Q: ?Sized>(&self, value: &Q) -> Option<usize>
where
Q: Hash + Equivalent<T>,
{
self.map.get_index_of(value)
}
/// Adds a value to the set, replacing the existing value, if any, that is
/// equal to the given one, without altering its insertion order. Returns
/// the replaced value.
///
/// Computes in **O(1)** time (average).
pub fn replace(&mut self, value: T) -> Option<T> {
self.replace_full(value).1
}
/// Adds a value to the set, replacing the existing value, if any, that is
/// equal to the given one, without altering its insertion order. Returns
/// the index of the item and its replaced value.
///
/// Computes in **O(1)** time (average).
pub fn replace_full(&mut self, value: T) -> (usize, Option<T>) {
use super::map::Entry::*;
match self.map.entry(value) {
Vacant(e) => {
let index = e.index();
e.insert(());
(index, None)
}
Occupied(e) => (e.index(), Some(e.replace_key())),
}
}
/// Remove the value from the set, and return `true` if it was present.
///
/// **NOTE:** This is equivalent to `.swap_remove(value)`, if you want
/// to preserve the order of the values in the set, use `.shift_remove(value)`.
///
/// Computes in **O(1)** time (average).
pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool
where
Q: Hash + Equivalent<T>,
{
self.swap_remove(value)
}
/// Remove the value from the set, and return `true` if it was present.
///
/// Like `Vec::swap_remove`, the value is removed by swapping it with the
/// last element of the set and popping it off. **This perturbs
/// the position of what used to be the last element!**
///
/// Return `false` if `value` was not in the set.
///
/// Computes in **O(1)** time (average).
pub fn swap_remove<Q: ?Sized>(&mut self, value: &Q) -> bool
where
Q: Hash + Equivalent<T>,
{
self.map.swap_remove(value).is_some()
}
/// Remove the value from the set, and return `true` if it was present.
///
/// Like `Vec::remove`, the value is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Return `false` if `value` was not in the set.
///
/// Computes in **O(n)** time (average).
pub fn shift_remove<Q: ?Sized>(&mut self, value: &Q) -> bool
where
Q: Hash + Equivalent<T>,
{
self.map.shift_remove(value).is_some()
}
/// Removes and returns the value in the set, if any, that is equal to the
/// given one.
///
/// **NOTE:** This is equivalent to `.swap_take(value)`, if you need to
/// preserve the order of the values in the set, use `.shift_take(value)`
/// instead.
///
/// Computes in **O(1)** time (average).
pub fn take<Q: ?Sized>(&mut self, value: &Q) -> Option<T>
where
Q: Hash + Equivalent<T>,
{
self.swap_take(value)
}
/// Removes and returns the value in the set, if any, that is equal to the
/// given one.
///
/// Like `Vec::swap_remove`, the value is removed by swapping it with the
/// last element of the set and popping it off. **This perturbs
/// the position of what used to be the last element!**
///
/// Return `None` if `value` was not in the set.
///
/// Computes in **O(1)** time (average).
pub fn swap_take<Q: ?Sized>(&mut self, value: &Q) -> Option<T>
where
Q: Hash + Equivalent<T>,
{
self.map.swap_remove_entry(value).map(|(x, ())| x)
}
/// Removes and returns the value in the set, if any, that is equal to the
/// given one.
///
/// Like `Vec::remove`, the value is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Return `None` if `value` was not in the set.
///
/// Computes in **O(n)** time (average).
pub fn shift_take<Q: ?Sized>(&mut self, value: &Q) -> Option<T>
where
Q: Hash + Equivalent<T>,
{
self.map.shift_remove_entry(value).map(|(x, ())| x)
}
/// Remove the value from the set return it and the index it had.
///
/// Like `Vec::swap_remove`, the value is removed by swapping it with the
/// last element of the set and popping it off. **This perturbs
/// the position of what used to be the last element!**
///
/// Return `None` if `value` was not in the set.
pub fn swap_remove_full<Q: ?Sized>(&mut self, value: &Q) -> Option<(usize, T)>
where
Q: Hash + Equivalent<T>,
{
self.map.swap_remove_full(value).map(|(i, x, ())| (i, x))
}
/// Remove the value from the set return it and the index it had.
///
/// Like `Vec::remove`, the value is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Return `None` if `value` was not in the set.
pub fn shift_remove_full<Q: ?Sized>(&mut self, value: &Q) -> Option<(usize, T)>
where
Q: Hash + Equivalent<T>,
{
self.map.shift_remove_full(value).map(|(i, x, ())| (i, x))
}
/// Remove the last value
///
/// This preserves the order of the remaining elements.
///
/// Computes in **O(1)** time (average).
pub fn pop(&mut self) -> Option<T> {
self.map.pop().map(|(x, ())| x)
}
/// Scan through each value in the set and keep those where the
/// closure `keep` returns `true`.
///
/// The elements are visited in order, and remaining elements keep their
/// order.
///
/// Computes in **O(n)** time (average).
pub fn retain<F>(&mut self, mut keep: F)
where
F: FnMut(&T) -> bool,
{
self.map.retain(move |x, &mut ()| keep(x))
}
/// Sort the set’s values by their default ordering.
///
/// See [`sort_by`](Self::sort_by) for details.
pub fn sort(&mut self)
where
T: Ord,
{
self.map.sort_keys()
}
/// Sort the set’s values in place using the comparison function `cmp`.
///
/// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
pub fn sort_by<F>(&mut self, mut cmp: F)
where
F: FnMut(&T, &T) -> Ordering,
{
self.map.sort_by(move |a, _, b, _| cmp(a, b));
}
/// Sort the values of the set and return a by-value iterator of
/// the values with the result.
///
/// The sort is stable.
pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T>
where
F: FnMut(&T, &T) -> Ordering,
{
let mut entries = self.into_entries();
entries.sort_by(move |a, b| cmp(&a.key, &b.key));
IntoIter::new(entries)
}
/// Sort the set's values by their default ordering.
///
/// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
pub fn sort_unstable(&mut self)
where
T: Ord,
{
self.map.sort_unstable_keys()
}
/// Sort the set's values in place using the comparison function `cmp`.
///
/// Computes in **O(n log n)** time. The sort is unstable.
pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
where
F: FnMut(&T, &T) -> Ordering,
{
self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b))
}
/// Sort the values of the set and return a by-value iterator of
/// the values with the result.
pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<T>
where
F: FnMut(&T, &T) -> Ordering,
{
let mut entries = self.into_entries();
entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key));
IntoIter::new(entries)
}
/// Sort the set’s values in place using a key extraction function.
///
/// During sorting, the function is called at most once per entry, by using temporary storage
/// to remember the results of its evaluation. The order of calls to the function is
/// unspecified and may change between versions of `indexmap` or the standard library.
///
/// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
/// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
pub fn sort_by_cached_key<K, F>(&mut self, mut sort_key: F)
where
K: Ord,
F: FnMut(&T) -> K,
{
self.with_entries(move |entries| {
entries.sort_by_cached_key(move |a| sort_key(&a.key));
});
}
/// Reverses the order of the set’s values in place.
///
/// Computes in **O(n)** time and **O(1)** space.
pub fn reverse(&mut self) {
self.map.reverse()
}
}
impl<T, S> IndexSet<T, S> {
/// Returns a slice of all the values in the set.
///
/// Computes in **O(1)** time.
pub fn as_slice(&self) -> &Slice<T> {
Slice::from_slice(self.as_entries())
}
/// Converts into a boxed slice of all the values in the set.
///
/// Note that this will drop the inner hash table and any excess capacity.
pub fn into_boxed_slice(self) -> Box<Slice<T>> {
Slice::from_boxed(self.into_entries().into_boxed_slice())
}
/// Get a value by index
///
/// Valid indices are *0 <= index < self.len()*
///
/// Computes in **O(1)** time.
pub fn get_index(&self, index: usize) -> Option<&T> {
self.as_entries().get(index).map(Bucket::key_ref)
}
/// Returns a slice of values in the given range of indices.
///
/// Valid indices are *0 <= index < self.len()*
///
/// Computes in **O(1)** time.
pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<T>> {
let entries = self.as_entries();
let range = try_simplify_range(range, entries.len())?;
entries.get(range).map(Slice::from_slice)
}
/// Get the first value
///
/// Computes in **O(1)** time.
pub fn first(&self) -> Option<&T> {
self.as_entries().first().map(Bucket::key_ref)
}
/// Get the last value
///
/// Computes in **O(1)** time.
pub fn last(&self) -> Option<&T> {
self.as_entries().last().map(Bucket::key_ref)
}
/// Remove the value by index
///
/// Valid indices are *0 <= index < self.len()*
///
/// Like `Vec::swap_remove`, the value is removed by swapping it with the
/// last element of the set and popping it off. **This perturbs
/// the position of what used to be the last element!**
///
/// Computes in **O(1)** time (average).
pub fn swap_remove_index(&mut self, index: usize) -> Option<T> {
self.map.swap_remove_index(index).map(|(x, ())| x)
}
/// Remove the value by index
///
/// Valid indices are *0 <= index < self.len()*
///
/// Like `Vec::remove`, the value is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Computes in **O(n)** time (average).
pub fn shift_remove_index(&mut self, index: usize) -> Option<T> {
self.map.shift_remove_index(index).map(|(x, ())| x)
}
/// Moves the position of a value from one index to another
/// by shifting all other values in-between.
///
/// * If `from < to`, the other values will shift down while the targeted value moves up.
/// * If `from > to`, the other values will shift up while the targeted value moves down.
///
/// ***Panics*** if `from` or `to` are out of bounds.
///
/// Computes in **O(n)** time (average).
pub fn move_index(&mut self, from: usize, to: usize) {
self.map.move_index(from, to)
}
/// Swaps the position of two values in the set.
///
/// ***Panics*** if `a` or `b` are out of bounds.
pub fn swap_indices(&mut self, a: usize, b: usize) {
self.map.swap_indices(a, b)
}
}
/// Access `IndexSet` values at indexed positions.
///
/// # Examples
///
/// ```
/// use indexmap::IndexSet;
///
/// let mut set = IndexSet::new();
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
/// set.insert(word.to_string());
/// }
/// assert_eq!(set[0], "Lorem");
/// assert_eq!(set[1], "ipsum");
/// set.reverse();
/// assert_eq!(set[0], "amet");
/// assert_eq!(set[1], "sit");
/// set.sort();
/// assert_eq!(set[0], "Lorem");
/// assert_eq!(set[1], "amet");
/// ```
///
/// ```should_panic
/// use indexmap::IndexSet;
///
/// let mut set = IndexSet::new();
/// set.insert("foo");
/// println!("{:?}", set[10]); // panics!
/// ```
impl<T, S> Index<usize> for IndexSet<T, S> {
type Output = T;
/// Returns a reference to the value at the supplied `index`.
///
/// ***Panics*** if `index` is out of bounds.
fn index(&self, index: usize) -> &T {
self.get_index(index)
.expect("IndexSet: index out of bounds")
}
}
impl<T, S> FromIterator<T> for IndexSet<T, S>
where
T: Hash + Eq,
S: BuildHasher + Default,
{
fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self {
let iter = iterable.into_iter().map(|x| (x, ()));
IndexSet {
map: IndexMap::from_iter(iter),
}
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl<T, const N: usize> From<[T; N]> for IndexSet<T, RandomState>
where
T: Eq + Hash,
{
/// # Examples
///
/// ```
/// use indexmap::IndexSet;
///
/// let set1 = IndexSet::from([1, 2, 3, 4]);
/// let set2: IndexSet<_> = [1, 2, 3, 4].into();
/// assert_eq!(set1, set2);
/// ```
fn from(arr: [T; N]) -> Self {
Self::from_iter(arr)
}
}
impl<T, S> Extend<T> for IndexSet<T, S>
where
T: Hash + Eq,
S: BuildHasher,
{
fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) {
let iter = iterable.into_iter().map(|x| (x, ()));
self.map.extend(iter);
}
}
impl<'a, T, S> Extend<&'a T> for IndexSet<T, S>
where
T: Hash + Eq + Copy + 'a,
S: BuildHasher,
{
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) {
let iter = iterable.into_iter().copied();
self.extend(iter);
}
}
impl<T, S> Default for IndexSet<T, S>
where
S: Default,
{
/// Return an empty `IndexSet`
fn default() -> Self {
IndexSet {
map: IndexMap::default(),
}
}
}
impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1>
where
T: Hash + Eq,
S1: BuildHasher,
S2: BuildHasher,
{
fn eq(&self, other: &IndexSet<T, S2>) -> bool {
self.len() == other.len() && self.is_subset(other)
}
}
impl<T, S> Eq for IndexSet<T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
}
impl<T, S> IndexSet<T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
/// Returns `true` if `self` has no elements in common with `other`.
pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool
where
S2: BuildHasher,
{
if self.len() <= other.len() {
self.iter().all(move |value| !other.contains(value))
} else {
other.iter().all(move |value| !self.contains(value))
}
}
/// Returns `true` if all elements of `self` are contained in `other`.
pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool
where
S2: BuildHasher,
{
self.len() <= other.len() && self.iter().all(move |value| other.contains(value))
}
/// Returns `true` if all elements of `other` are contained in `self`.
pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool
where
S2: BuildHasher,
{
other.is_subset(self)
}
}
impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1>
where
T: Eq + Hash + Clone,
S1: BuildHasher + Default,
S2: BuildHasher,
{
type Output = IndexSet<T, S1>;
/// Returns the set intersection, cloned into a new set.
///
/// Values are collected in the same order that they appear in `self`.
fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output {
self.intersection(other).cloned().collect()
}
}
impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1>
where
T: Eq + Hash + Clone,
S1: BuildHasher + Default,
S2: BuildHasher,
{
type Output = IndexSet<T, S1>;
/// Returns the set union, cloned into a new set.
///
/// Values from `self` are collected in their original order, followed by
/// values that are unique to `other` in their original order.
fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output {
self.union(other).cloned().collect()
}
}
impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1>
where
T: Eq + Hash + Clone,
S1: BuildHasher + Default,
S2: BuildHasher,
{
type Output = IndexSet<T, S1>;
/// Returns the set symmetric-difference, cloned into a new set.
///
/// Values from `self` are collected in their original order, followed by
/// values from `other` in their original order.
fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output {
self.symmetric_difference(other).cloned().collect()
}
}
impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1>
where
T: Eq + Hash + Clone,
S1: BuildHasher + Default,
S2: BuildHasher,
{
type Output = IndexSet<T, S1>;
/// Returns the set difference, cloned into a new set.
///
/// Values are collected in the same order that they appear in `self`.
fn sub(self, other: &IndexSet<T, S2>) -> Self::Output {
self.difference(other).cloned().collect()
}
}