1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
use std::convert::TryFrom;

const SIGNING_KEY_LEN: usize = 32;
const ENCRYPTION_KEY_LEN: usize = 32;
const COMBINED_KEY_LENGTH: usize = SIGNING_KEY_LEN + ENCRYPTION_KEY_LEN;

// Statically ensure the numbers above are in-sync.
#[cfg(feature = "signed")]
const_assert!(crate::secure::signed::KEY_LEN == SIGNING_KEY_LEN);
#[cfg(feature = "private")]
const_assert!(crate::secure::private::KEY_LEN == ENCRYPTION_KEY_LEN);

/// A cryptographic master key for use with `Signed` and/or `Private` jars.
///
/// This structure encapsulates secure, cryptographic keys for use with both
/// [`PrivateJar`](crate::PrivateJar) and [`SignedJar`](crate::SignedJar). A
/// single instance of a `Key` can be used for both a `PrivateJar` and a
/// `SignedJar` simultaneously with no notable security implications.
#[cfg_attr(all(nightly, doc), doc(cfg(any(feature = "private", feature = "signed"))))]
#[derive(Clone)]
pub struct Key([u8; COMBINED_KEY_LENGTH /* SIGNING | ENCRYPTION */]);

impl PartialEq for Key {
    fn eq(&self, other: &Self) -> bool {
        use subtle::ConstantTimeEq;

        self.0.ct_eq(&other.0).into()
    }
}

impl Key {
    // An empty key structure, to be filled.
    const fn zero() -> Self {
        Key([0; COMBINED_KEY_LENGTH])
    }

    /// Creates a new `Key` from a 512-bit cryptographically random string.
    ///
    /// The supplied key must be at least 512-bits (64 bytes). For security, the
    /// master key _must_ be cryptographically random.
    ///
    /// # Panics
    ///
    /// Panics if `key` is less than 64 bytes in length.
    ///
    /// For a non-panicking version, use [`Key::try_from()`] or generate a key with
    /// [`Key::generate()`] or [`Key::try_generate()`].
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// # /*
    /// let key = { /* a cryptographically random key >= 64 bytes */ };
    /// # */
    /// # let key: &Vec<u8> = &(0..64).collect();
    ///
    /// let key = Key::from(key);
    /// ```
    #[inline]
    pub fn from(key: &[u8]) -> Key {
        Key::try_from(key).unwrap()
    }

    /// Derives new signing/encryption keys from a master key.
    ///
    /// The master key must be at least 256-bits (32 bytes). For security, the
    /// master key _must_ be cryptographically random. The keys are derived
    /// deterministically from the master key.
    ///
    /// # Panics
    ///
    /// Panics if `key` is less than 32 bytes in length.
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// # /*
    /// let master_key = { /* a cryptographically random key >= 32 bytes */ };
    /// # */
    /// # let master_key: &Vec<u8> = &(0..32).collect();
    ///
    /// let key = Key::derive_from(master_key);
    /// ```
    #[cfg(feature = "key-expansion")]
    #[cfg_attr(all(nightly, doc), doc(cfg(feature = "key-expansion")))]
    pub fn derive_from(master_key: &[u8]) -> Self {
        if master_key.len() < 32 {
            panic!("bad master key length: expected >= 32 bytes, found {}", master_key.len());
        }

        // Expand the master key into two HKDF generated keys.
        const KEYS_INFO: &[u8] = b"COOKIE;SIGNED:HMAC-SHA256;PRIVATE:AEAD-AES-256-GCM";
        let mut both_keys = [0; COMBINED_KEY_LENGTH];
        let hk = hkdf::Hkdf::<sha2::Sha256>::from_prk(master_key).expect("key length prechecked");
        hk.expand(KEYS_INFO, &mut both_keys).expect("expand into keys");
        Key::from(&both_keys)
    }

    /// Generates signing/encryption keys from a secure, random source. Keys are
    /// generated nondeterministically.
    ///
    /// # Panics
    ///
    /// Panics if randomness cannot be retrieved from the operating system. See
    /// [`Key::try_generate()`] for a non-panicking version.
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// let key = Key::generate();
    /// ```
    pub fn generate() -> Key {
        Self::try_generate().expect("failed to generate `Key` from randomness")
    }

    /// Attempts to generate signing/encryption keys from a secure, random
    /// source. Keys are generated nondeterministically. If randomness cannot be
    /// retrieved from the underlying operating system, returns `None`.
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// let key = Key::try_generate();
    /// ```
    pub fn try_generate() -> Option<Key> {
        use crate::secure::rand::RngCore;

        let mut rng = crate::secure::rand::thread_rng();
        let mut key = Key::zero();
        rng.try_fill_bytes(&mut key.0).ok()?;
        Some(key)
    }

    /// Returns the raw bytes of a key suitable for signing cookies. Guaranteed
    /// to be at least 32 bytes.
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// let key = Key::generate();
    /// let signing_key = key.signing();
    /// ```
    pub fn signing(&self) -> &[u8] {
        &self.0[..SIGNING_KEY_LEN]
    }

    /// Returns the raw bytes of a key suitable for encrypting cookies.
    /// Guaranteed to be at least 32 bytes.
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// let key = Key::generate();
    /// let encryption_key = key.encryption();
    /// ```
    pub fn encryption(&self) -> &[u8] {
        &self.0[SIGNING_KEY_LEN..]
    }

    /// Returns the raw bytes of the master key. Guaranteed to be at least 64
    /// bytes.
    ///
    /// # Example
    ///
    /// ```rust
    /// use cookie::Key;
    ///
    /// let key = Key::generate();
    /// let master_key = key.master();
    /// ```
    pub fn master(&self) -> &[u8] {
        &self.0
    }
}

/// An error indicating an issue with generating or constructing a key.
#[cfg_attr(all(nightly, doc), doc(cfg(any(feature = "private", feature = "signed"))))]
#[derive(Debug)]
#[non_exhaustive]
pub enum KeyError {
    /// Too few bytes (`.0`) were provided to generate a key.
    ///
    /// See [`Key::from()`] for minimum requirements.
    TooShort(usize),
}

impl std::error::Error for KeyError { }

impl std::fmt::Display for KeyError {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            KeyError::TooShort(n) => {
                write!(f, "key material is too short: expected >= {} bytes, got {} bytes",
                       COMBINED_KEY_LENGTH, n)
            }
        }
    }
}

impl TryFrom<&[u8]> for Key {
    type Error = KeyError;

    /// A fallible version of [`Key::from()`].
    ///
    /// Succeeds when [`Key::from()`] succeds and returns an error where
    /// [`Key::from()`] panics, namely, if `key` is too short.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use std::convert::TryFrom;
    /// use cookie::Key;
    ///
    /// # /*
    /// let key = { /* a cryptographically random key >= 64 bytes */ };
    /// # */
    /// # let key: &Vec<u8> = &(0..64).collect();
    /// # let key: &[u8] = &key[..];
    /// assert!(Key::try_from(key).is_ok());
    ///
    /// // A key that's far too short to use.
    /// let key = &[1, 2, 3, 4][..];
    /// assert!(Key::try_from(key).is_err());
    /// ```
    fn try_from(key: &[u8]) -> Result<Self, Self::Error> {
        if key.len() < COMBINED_KEY_LENGTH {
            Err(KeyError::TooShort(key.len()))
        } else {
            let mut output = Key::zero();
            output.0.copy_from_slice(&key[..COMBINED_KEY_LENGTH]);
            Ok(output)
        }
    }
}

#[cfg(test)]
mod test {
    use super::Key;

    #[test]
    fn from_works() {
        let key = Key::from(&(0..64).collect::<Vec<_>>());

        let signing: Vec<u8> = (0..32).collect();
        assert_eq!(key.signing(), &*signing);

        let encryption: Vec<u8> = (32..64).collect();
        assert_eq!(key.encryption(), &*encryption);
    }

    #[test]
    fn try_from_works() {
        use core::convert::TryInto;
        let data = (0..64).collect::<Vec<_>>();
        let key_res: Result<Key, _> = data[0..63].try_into();
        assert!(key_res.is_err());

        let key_res: Result<Key, _> = data.as_slice().try_into();
        assert!(key_res.is_ok());
    }

    #[test]
    #[cfg(feature = "key-expansion")]
    fn deterministic_derive() {
        let master_key: Vec<u8> = (0..32).collect();

        let key_a = Key::derive_from(&master_key);
        let key_b = Key::derive_from(&master_key);

        assert_eq!(key_a.signing(), key_b.signing());
        assert_eq!(key_a.encryption(), key_b.encryption());
        assert_ne!(key_a.encryption(), key_a.signing());

        let master_key_2: Vec<u8> = (32..64).collect();
        let key_2 = Key::derive_from(&master_key_2);

        assert_ne!(key_2.signing(), key_a.signing());
        assert_ne!(key_2.encryption(), key_a.encryption());
    }

    #[test]
    fn non_deterministic_generate() {
        let key_a = Key::generate();
        let key_b = Key::generate();

        assert_ne!(key_a.signing(), key_b.signing());
        assert_ne!(key_a.encryption(), key_b.encryption());
    }
}