1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
//! A private parser implementation of IPv4, IPv6, and socket addresses.
//!
//! This module is "publicly exported" through the `FromStr` implementations
//! below.
use crate::convert::TryInto;
use crate::error::Error;
use crate::fmt;
use crate::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr, SocketAddrV4, SocketAddrV6};
use crate::str::FromStr;
trait ReadNumberHelper: Sized {
const ZERO: Self;
fn checked_mul(&self, other: u32) -> Option<Self>;
fn checked_add(&self, other: u32) -> Option<Self>;
}
macro_rules! impl_helper {
($($t:ty)*) => ($(impl ReadNumberHelper for $t {
const ZERO: Self = 0;
#[inline]
fn checked_mul(&self, other: u32) -> Option<Self> {
Self::checked_mul(*self, other.try_into().ok()?)
}
#[inline]
fn checked_add(&self, other: u32) -> Option<Self> {
Self::checked_add(*self, other.try_into().ok()?)
}
})*)
}
impl_helper! { u8 u16 u32 }
struct Parser<'a> {
// Parsing as ASCII, so can use byte array.
state: &'a [u8],
}
impl<'a> Parser<'a> {
fn new(input: &'a [u8]) -> Parser<'a> {
Parser { state: input }
}
/// Run a parser, and restore the pre-parse state if it fails.
fn read_atomically<T, F>(&mut self, inner: F) -> Option<T>
where
F: FnOnce(&mut Parser<'_>) -> Option<T>,
{
let state = self.state;
let result = inner(self);
if result.is_none() {
self.state = state;
}
result
}
/// Run a parser, but fail if the entire input wasn't consumed.
/// Doesn't run atomically.
fn parse_with<T, F>(&mut self, inner: F, kind: AddrKind) -> Result<T, AddrParseError>
where
F: FnOnce(&mut Parser<'_>) -> Option<T>,
{
let result = inner(self);
if self.state.is_empty() { result } else { None }.ok_or(AddrParseError(kind))
}
/// Peek the next character from the input
fn peek_char(&self) -> Option<char> {
self.state.first().map(|&b| char::from(b))
}
/// Read the next character from the input
fn read_char(&mut self) -> Option<char> {
self.state.split_first().map(|(&b, tail)| {
self.state = tail;
char::from(b)
})
}
#[must_use]
/// Read the next character from the input if it matches the target.
fn read_given_char(&mut self, target: char) -> Option<()> {
self.read_atomically(|p| {
p.read_char().and_then(|c| if c == target { Some(()) } else { None })
})
}
/// Helper for reading separators in an indexed loop. Reads the separator
/// character iff index > 0, then runs the parser. When used in a loop,
/// the separator character will only be read on index > 0 (see
/// read_ipv4_addr for an example)
fn read_separator<T, F>(&mut self, sep: char, index: usize, inner: F) -> Option<T>
where
F: FnOnce(&mut Parser<'_>) -> Option<T>,
{
self.read_atomically(move |p| {
if index > 0 {
p.read_given_char(sep)?;
}
inner(p)
})
}
// Read a number off the front of the input in the given radix, stopping
// at the first non-digit character or eof. Fails if the number has more
// digits than max_digits or if there is no number.
fn read_number<T: ReadNumberHelper>(
&mut self,
radix: u32,
max_digits: Option<usize>,
allow_zero_prefix: bool,
) -> Option<T> {
self.read_atomically(move |p| {
let mut result = T::ZERO;
let mut digit_count = 0;
let has_leading_zero = p.peek_char() == Some('0');
while let Some(digit) = p.read_atomically(|p| p.read_char()?.to_digit(radix)) {
result = result.checked_mul(radix)?;
result = result.checked_add(digit)?;
digit_count += 1;
if let Some(max_digits) = max_digits {
if digit_count > max_digits {
return None;
}
}
}
if digit_count == 0 {
None
} else if !allow_zero_prefix && has_leading_zero && digit_count > 1 {
None
} else {
Some(result)
}
})
}
/// Read an IPv4 address.
fn read_ipv4_addr(&mut self) -> Option<Ipv4Addr> {
self.read_atomically(|p| {
let mut groups = [0; 4];
for (i, slot) in groups.iter_mut().enumerate() {
*slot = p.read_separator('.', i, |p| {
// Disallow octal number in IP string.
// https://tools.ietf.org/html/rfc6943#section-3.1.1
p.read_number(10, Some(3), false)
})?;
}
Some(groups.into())
})
}
/// Read an IPv6 Address.
fn read_ipv6_addr(&mut self) -> Option<Ipv6Addr> {
/// Read a chunk of an IPv6 address into `groups`. Returns the number
/// of groups read, along with a bool indicating if an embedded
/// trailing IPv4 address was read. Specifically, read a series of
/// colon-separated IPv6 groups (0x0000 - 0xFFFF), with an optional
/// trailing embedded IPv4 address.
fn read_groups(p: &mut Parser<'_>, groups: &mut [u16]) -> (usize, bool) {
let limit = groups.len();
for (i, slot) in groups.iter_mut().enumerate() {
// Try to read a trailing embedded IPv4 address. There must be
// at least two groups left.
if i < limit - 1 {
let ipv4 = p.read_separator(':', i, |p| p.read_ipv4_addr());
if let Some(v4_addr) = ipv4 {
let [one, two, three, four] = v4_addr.octets();
groups[i + 0] = u16::from_be_bytes([one, two]);
groups[i + 1] = u16::from_be_bytes([three, four]);
return (i + 2, true);
}
}
let group = p.read_separator(':', i, |p| p.read_number(16, Some(4), true));
match group {
Some(g) => *slot = g,
None => return (i, false),
}
}
(groups.len(), false)
}
self.read_atomically(|p| {
// Read the front part of the address; either the whole thing, or up
// to the first ::
let mut head = [0; 8];
let (head_size, head_ipv4) = read_groups(p, &mut head);
if head_size == 8 {
return Some(head.into());
}
// IPv4 part is not allowed before `::`
if head_ipv4 {
return None;
}
// Read `::` if previous code parsed less than 8 groups.
// `::` indicates one or more groups of 16 bits of zeros.
p.read_given_char(':')?;
p.read_given_char(':')?;
// Read the back part of the address. The :: must contain at least one
// set of zeroes, so our max length is 7.
let mut tail = [0; 7];
let limit = 8 - (head_size + 1);
let (tail_size, _) = read_groups(p, &mut tail[..limit]);
// Concat the head and tail of the IP address
head[(8 - tail_size)..8].copy_from_slice(&tail[..tail_size]);
Some(head.into())
})
}
/// Read an IP Address, either IPv4 or IPv6.
fn read_ip_addr(&mut self) -> Option<IpAddr> {
self.read_ipv4_addr().map(IpAddr::V4).or_else(move || self.read_ipv6_addr().map(IpAddr::V6))
}
/// Read a `:` followed by a port in base 10.
fn read_port(&mut self) -> Option<u16> {
self.read_atomically(|p| {
p.read_given_char(':')?;
p.read_number(10, None, true)
})
}
/// Read a `%` followed by a scope ID in base 10.
fn read_scope_id(&mut self) -> Option<u32> {
self.read_atomically(|p| {
p.read_given_char('%')?;
p.read_number(10, None, true)
})
}
/// Read an IPv4 address with a port.
fn read_socket_addr_v4(&mut self) -> Option<SocketAddrV4> {
self.read_atomically(|p| {
let ip = p.read_ipv4_addr()?;
let port = p.read_port()?;
Some(SocketAddrV4::new(ip, port))
})
}
/// Read an IPv6 address with a port.
fn read_socket_addr_v6(&mut self) -> Option<SocketAddrV6> {
self.read_atomically(|p| {
p.read_given_char('[')?;
let ip = p.read_ipv6_addr()?;
let scope_id = p.read_scope_id().unwrap_or(0);
p.read_given_char(']')?;
let port = p.read_port()?;
Some(SocketAddrV6::new(ip, port, 0, scope_id))
})
}
/// Read an IP address with a port
fn read_socket_addr(&mut self) -> Option<SocketAddr> {
self.read_socket_addr_v4()
.map(SocketAddr::V4)
.or_else(|| self.read_socket_addr_v6().map(SocketAddr::V6))
}
}
impl IpAddr {
/// Parse an IP address from a slice of bytes.
///
/// ```
/// #![feature(addr_parse_ascii)]
///
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1));
/// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
///
/// assert_eq!(IpAddr::parse_ascii(b"127.0.0.1"), Ok(localhost_v4));
/// assert_eq!(IpAddr::parse_ascii(b"::1"), Ok(localhost_v6));
/// ```
#[unstable(feature = "addr_parse_ascii", issue = "101035")]
pub fn parse_ascii(b: &[u8]) -> Result<Self, AddrParseError> {
Parser::new(b).parse_with(|p| p.read_ip_addr(), AddrKind::Ip)
}
}
#[stable(feature = "ip_addr", since = "1.7.0")]
impl FromStr for IpAddr {
type Err = AddrParseError;
fn from_str(s: &str) -> Result<IpAddr, AddrParseError> {
Self::parse_ascii(s.as_bytes())
}
}
impl Ipv4Addr {
/// Parse an IPv4 address from a slice of bytes.
///
/// ```
/// #![feature(addr_parse_ascii)]
///
/// use std::net::Ipv4Addr;
///
/// let localhost = Ipv4Addr::new(127, 0, 0, 1);
///
/// assert_eq!(Ipv4Addr::parse_ascii(b"127.0.0.1"), Ok(localhost));
/// ```
#[unstable(feature = "addr_parse_ascii", issue = "101035")]
pub fn parse_ascii(b: &[u8]) -> Result<Self, AddrParseError> {
// don't try to parse if too long
if b.len() > 15 {
Err(AddrParseError(AddrKind::Ipv4))
} else {
Parser::new(b).parse_with(|p| p.read_ipv4_addr(), AddrKind::Ipv4)
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl FromStr for Ipv4Addr {
type Err = AddrParseError;
fn from_str(s: &str) -> Result<Ipv4Addr, AddrParseError> {
Self::parse_ascii(s.as_bytes())
}
}
impl Ipv6Addr {
/// Parse an IPv6 address from a slice of bytes.
///
/// ```
/// #![feature(addr_parse_ascii)]
///
/// use std::net::Ipv6Addr;
///
/// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
///
/// assert_eq!(Ipv6Addr::parse_ascii(b"::1"), Ok(localhost));
/// ```
#[unstable(feature = "addr_parse_ascii", issue = "101035")]
pub fn parse_ascii(b: &[u8]) -> Result<Self, AddrParseError> {
Parser::new(b).parse_with(|p| p.read_ipv6_addr(), AddrKind::Ipv6)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl FromStr for Ipv6Addr {
type Err = AddrParseError;
fn from_str(s: &str) -> Result<Ipv6Addr, AddrParseError> {
Self::parse_ascii(s.as_bytes())
}
}
impl SocketAddrV4 {
/// Parse an IPv4 socket address from a slice of bytes.
///
/// ```
/// #![feature(addr_parse_ascii)]
///
/// use std::net::{Ipv4Addr, SocketAddrV4};
///
/// let socket = SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), 8080);
///
/// assert_eq!(SocketAddrV4::parse_ascii(b"127.0.0.1:8080"), Ok(socket));
/// ```
#[unstable(feature = "addr_parse_ascii", issue = "101035")]
pub fn parse_ascii(b: &[u8]) -> Result<Self, AddrParseError> {
Parser::new(b).parse_with(|p| p.read_socket_addr_v4(), AddrKind::SocketV4)
}
}
#[stable(feature = "socket_addr_from_str", since = "1.5.0")]
impl FromStr for SocketAddrV4 {
type Err = AddrParseError;
fn from_str(s: &str) -> Result<SocketAddrV4, AddrParseError> {
Self::parse_ascii(s.as_bytes())
}
}
impl SocketAddrV6 {
/// Parse an IPv6 socket address from a slice of bytes.
///
/// ```
/// #![feature(addr_parse_ascii)]
///
/// use std::net::{Ipv6Addr, SocketAddrV6};
///
/// let socket = SocketAddrV6::new(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 1), 8080, 0, 0);
///
/// assert_eq!(SocketAddrV6::parse_ascii(b"[2001:db8::1]:8080"), Ok(socket));
/// ```
#[unstable(feature = "addr_parse_ascii", issue = "101035")]
pub fn parse_ascii(b: &[u8]) -> Result<Self, AddrParseError> {
Parser::new(b).parse_with(|p| p.read_socket_addr_v6(), AddrKind::SocketV6)
}
}
#[stable(feature = "socket_addr_from_str", since = "1.5.0")]
impl FromStr for SocketAddrV6 {
type Err = AddrParseError;
fn from_str(s: &str) -> Result<SocketAddrV6, AddrParseError> {
Self::parse_ascii(s.as_bytes())
}
}
impl SocketAddr {
/// Parse a socket address from a slice of bytes.
///
/// ```
/// #![feature(addr_parse_ascii)]
///
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr};
///
/// let socket_v4 = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 8080);
/// let socket_v6 = SocketAddr::new(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)), 8080);
///
/// assert_eq!(SocketAddr::parse_ascii(b"127.0.0.1:8080"), Ok(socket_v4));
/// assert_eq!(SocketAddr::parse_ascii(b"[::1]:8080"), Ok(socket_v6));
/// ```
#[unstable(feature = "addr_parse_ascii", issue = "101035")]
pub fn parse_ascii(b: &[u8]) -> Result<Self, AddrParseError> {
Parser::new(b).parse_with(|p| p.read_socket_addr(), AddrKind::Socket)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl FromStr for SocketAddr {
type Err = AddrParseError;
fn from_str(s: &str) -> Result<SocketAddr, AddrParseError> {
Self::parse_ascii(s.as_bytes())
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
enum AddrKind {
Ip,
Ipv4,
Ipv6,
Socket,
SocketV4,
SocketV6,
}
/// An error which can be returned when parsing an IP address or a socket address.
///
/// This error is used as the error type for the [`FromStr`] implementation for
/// [`IpAddr`], [`Ipv4Addr`], [`Ipv6Addr`], [`SocketAddr`], [`SocketAddrV4`], and
/// [`SocketAddrV6`].
///
/// # Potential causes
///
/// `AddrParseError` may be thrown because the provided string does not parse as the given type,
/// often because it includes information only handled by a different address type.
///
/// ```should_panic
/// use std::net::IpAddr;
/// let _foo: IpAddr = "127.0.0.1:8080".parse().expect("Cannot handle the socket port");
/// ```
///
/// [`IpAddr`] doesn't handle the port. Use [`SocketAddr`] instead.
///
/// ```
/// use std::net::SocketAddr;
///
/// // No problem, the `panic!` message has disappeared.
/// let _foo: SocketAddr = "127.0.0.1:8080".parse().expect("unreachable panic");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct AddrParseError(AddrKind);
#[stable(feature = "addr_parse_error_error", since = "1.4.0")]
impl fmt::Display for AddrParseError {
#[allow(deprecated, deprecated_in_future)]
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.write_str(self.description())
}
}
#[stable(feature = "addr_parse_error_error", since = "1.4.0")]
impl Error for AddrParseError {
#[allow(deprecated)]
fn description(&self) -> &str {
match self.0 {
AddrKind::Ip => "invalid IP address syntax",
AddrKind::Ipv4 => "invalid IPv4 address syntax",
AddrKind::Ipv6 => "invalid IPv6 address syntax",
AddrKind::Socket => "invalid socket address syntax",
AddrKind::SocketV4 => "invalid IPv4 socket address syntax",
AddrKind::SocketV6 => "invalid IPv6 socket address syntax",
}
}
}