1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
use crate::leb128;
use crate::serialize::{Decodable, Decoder, Encodable, Encoder};
use std::fs::File;
use std::io::{self, Write};
use std::marker::PhantomData;
use std::ops::Range;
use std::path::Path;

// -----------------------------------------------------------------------------
// Encoder
// -----------------------------------------------------------------------------

pub type FileEncodeResult = Result<usize, io::Error>;

/// The size of the buffer in `FileEncoder`.
const BUF_SIZE: usize = 8192;

/// `FileEncoder` encodes data to file via fixed-size buffer.
///
/// There used to be a `MemEncoder` type that encoded all the data into a
/// `Vec`. `FileEncoder` is better because its memory use is determined by the
/// size of the buffer, rather than the full length of the encoded data, and
/// because it doesn't need to reallocate memory along the way.
pub struct FileEncoder {
    // The input buffer. For adequate performance, we need to be able to write
    // directly to the unwritten region of the buffer, without calling copy_from_slice.
    // Note that our buffer is always initialized so that we can do that direct access
    // without unsafe code. Users of this type write many more than BUF_SIZE bytes, so the
    // initialization is approximately free.
    buf: Box<[u8; BUF_SIZE]>,
    buffered: usize,
    flushed: usize,
    file: File,
    // This is used to implement delayed error handling, as described in the
    // comment on `trait Encoder`.
    res: Result<(), io::Error>,
}

impl FileEncoder {
    pub fn new<P: AsRef<Path>>(path: P) -> io::Result<Self> {
        // File::create opens the file for writing only. When -Zmeta-stats is enabled, the metadata
        // encoder rewinds the file to inspect what was written. So we need to always open the file
        // for reading and writing.
        let file = File::options().read(true).write(true).create(true).truncate(true).open(path)?;

        Ok(FileEncoder {
            buf: vec![0u8; BUF_SIZE].into_boxed_slice().try_into().unwrap(),
            buffered: 0,
            flushed: 0,
            file,
            res: Ok(()),
        })
    }

    #[inline]
    pub fn position(&self) -> usize {
        // Tracking position this way instead of having a `self.position` field
        // means that we only need to update `self.buffered` on a write call,
        // as opposed to updating `self.position` and `self.buffered`.
        self.flushed + self.buffered
    }

    #[cold]
    #[inline(never)]
    pub fn flush(&mut self) {
        if self.res.is_ok() {
            self.res = self.file.write_all(&self.buf[..self.buffered]);
        }
        self.flushed += self.buffered;
        self.buffered = 0;
    }

    pub fn file(&self) -> &File {
        &self.file
    }

    #[inline]
    fn buffer_empty(&mut self) -> &mut [u8] {
        // SAFETY: self.buffered is inbounds as an invariant of the type
        unsafe { self.buf.get_unchecked_mut(self.buffered..) }
    }

    #[cold]
    #[inline(never)]
    fn write_all_cold_path(&mut self, buf: &[u8]) {
        self.flush();
        if let Some(dest) = self.buf.get_mut(..buf.len()) {
            dest.copy_from_slice(buf);
            self.buffered += buf.len();
        } else {
            if self.res.is_ok() {
                self.res = self.file.write_all(buf);
            }
            self.flushed += buf.len();
        }
    }

    #[inline]
    fn write_all(&mut self, buf: &[u8]) {
        if let Some(dest) = self.buffer_empty().get_mut(..buf.len()) {
            dest.copy_from_slice(buf);
            self.buffered += buf.len();
        } else {
            self.write_all_cold_path(buf);
        }
    }

    /// Write up to `N` bytes to this encoder.
    ///
    /// This function can be used to avoid the overhead of calling memcpy for writes that
    /// have runtime-variable length, but are small and have a small fixed upper bound.
    ///
    /// This can be used to do in-place encoding as is done for leb128 (without this function
    /// we would need to write to a temporary buffer then memcpy into the encoder), and it can
    /// also be used to implement the varint scheme we use for rmeta and dep graph encoding,
    /// where we only want to encode the first few bytes of an integer. Copying in the whole
    /// integer then only advancing the encoder state for the few bytes we care about is more
    /// efficient than calling [`FileEncoder::write_all`], because variable-size copies are
    /// always lowered to `memcpy`, which has overhead and contains a lot of logic we can bypass
    /// with this function. Note that common architectures support fixed-size writes up to 8 bytes
    /// with one instruction, so while this does in some sense do wasted work, we come out ahead.
    #[inline]
    pub fn write_with<const N: usize>(&mut self, visitor: impl FnOnce(&mut [u8; N]) -> usize) {
        let flush_threshold = const { BUF_SIZE.checked_sub(N).unwrap() };
        if std::intrinsics::unlikely(self.buffered > flush_threshold) {
            self.flush();
        }
        // SAFETY: We checked above that that N < self.buffer_empty().len(),
        // and if isn't, flush ensures that our empty buffer is now BUF_SIZE.
        // We produce a post-mono error if N > BUF_SIZE.
        let buf = unsafe { self.buffer_empty().first_chunk_mut::<N>().unwrap_unchecked() };
        let written = visitor(buf);
        // We have to ensure that an errant visitor cannot cause self.buffered to exeed BUF_SIZE.
        if written > N {
            Self::panic_invalid_write::<N>(written);
        }
        self.buffered += written;
    }

    #[cold]
    #[inline(never)]
    fn panic_invalid_write<const N: usize>(written: usize) {
        panic!("FileEncoder::write_with::<{N}> cannot be used to write {written} bytes");
    }

    /// Helper for calls where [`FileEncoder::write_with`] always writes the whole array.
    #[inline]
    pub fn write_array<const N: usize>(&mut self, buf: [u8; N]) {
        self.write_with(|dest| {
            *dest = buf;
            N
        })
    }

    pub fn finish(mut self) -> Result<usize, io::Error> {
        self.flush();
        match std::mem::replace(&mut self.res, Ok(())) {
            Ok(()) => Ok(self.position()),
            Err(e) => Err(e),
        }
    }
}

impl Drop for FileEncoder {
    fn drop(&mut self) {
        // Likely to be a no-op, because `finish` should have been called and
        // it also flushes. But do it just in case.
        self.flush();
    }
}

macro_rules! write_leb128 {
    ($this_fn:ident, $int_ty:ty, $write_leb_fn:ident) => {
        #[inline]
        fn $this_fn(&mut self, v: $int_ty) {
            self.write_with(|buf| leb128::$write_leb_fn(buf, v))
        }
    };
}

impl Encoder for FileEncoder {
    write_leb128!(emit_usize, usize, write_usize_leb128);
    write_leb128!(emit_u128, u128, write_u128_leb128);
    write_leb128!(emit_u64, u64, write_u64_leb128);
    write_leb128!(emit_u32, u32, write_u32_leb128);

    #[inline]
    fn emit_u16(&mut self, v: u16) {
        self.write_array(v.to_le_bytes());
    }

    #[inline]
    fn emit_u8(&mut self, v: u8) {
        self.write_array([v]);
    }

    write_leb128!(emit_isize, isize, write_isize_leb128);
    write_leb128!(emit_i128, i128, write_i128_leb128);
    write_leb128!(emit_i64, i64, write_i64_leb128);
    write_leb128!(emit_i32, i32, write_i32_leb128);

    #[inline]
    fn emit_i16(&mut self, v: i16) {
        self.write_array(v.to_le_bytes());
    }

    #[inline]
    fn emit_raw_bytes(&mut self, s: &[u8]) {
        self.write_all(s);
    }
}

// -----------------------------------------------------------------------------
// Decoder
// -----------------------------------------------------------------------------

// Conceptually, `MemDecoder` wraps a `&[u8]` with a cursor into it that is always valid.
// This is implemented with three pointers, two which represent the original slice and a
// third that is our cursor.
// It is an invariant of this type that start <= current <= end.
// Additionally, the implementation of this type never modifies start and end.
pub struct MemDecoder<'a> {
    start: *const u8,
    current: *const u8,
    end: *const u8,
    _marker: PhantomData<&'a u8>,
}

impl<'a> MemDecoder<'a> {
    #[inline]
    pub fn new(data: &'a [u8], position: usize) -> MemDecoder<'a> {
        let Range { start, end } = data.as_ptr_range();
        MemDecoder { start, current: data[position..].as_ptr(), end, _marker: PhantomData }
    }

    #[inline]
    pub fn data(&self) -> &'a [u8] {
        // SAFETY: This recovers the original slice, only using members we never modify.
        unsafe { std::slice::from_raw_parts(self.start, self.len()) }
    }

    #[inline]
    pub fn len(&self) -> usize {
        // SAFETY: This recovers the length of the original slice, only using members we never modify.
        unsafe { self.end.sub_ptr(self.start) }
    }

    #[inline]
    pub fn remaining(&self) -> usize {
        // SAFETY: This type guarantees current <= end.
        unsafe { self.end.sub_ptr(self.current) }
    }

    #[cold]
    #[inline(never)]
    fn decoder_exhausted() -> ! {
        panic!("MemDecoder exhausted")
    }

    #[inline]
    pub fn read_array<const N: usize>(&mut self) -> [u8; N] {
        self.read_raw_bytes(N).try_into().unwrap()
    }

    /// While we could manually expose manipulation of the decoder position,
    /// all current users of that method would need to reset the position later,
    /// incurring the bounds check of set_position twice.
    #[inline]
    pub fn with_position<F, T>(&mut self, pos: usize, func: F) -> T
    where
        F: Fn(&mut MemDecoder<'a>) -> T,
    {
        struct SetOnDrop<'a, 'guarded> {
            decoder: &'guarded mut MemDecoder<'a>,
            current: *const u8,
        }
        impl Drop for SetOnDrop<'_, '_> {
            fn drop(&mut self) {
                self.decoder.current = self.current;
            }
        }

        if pos >= self.len() {
            Self::decoder_exhausted();
        }
        let previous = self.current;
        // SAFETY: We just checked if this add is in-bounds above.
        unsafe {
            self.current = self.start.add(pos);
        }
        let guard = SetOnDrop { current: previous, decoder: self };
        func(guard.decoder)
    }
}

macro_rules! read_leb128 {
    ($this_fn:ident, $int_ty:ty, $read_leb_fn:ident) => {
        #[inline]
        fn $this_fn(&mut self) -> $int_ty {
            leb128::$read_leb_fn(self)
        }
    };
}

impl<'a> Decoder for MemDecoder<'a> {
    read_leb128!(read_usize, usize, read_usize_leb128);
    read_leb128!(read_u128, u128, read_u128_leb128);
    read_leb128!(read_u64, u64, read_u64_leb128);
    read_leb128!(read_u32, u32, read_u32_leb128);

    #[inline]
    fn read_u16(&mut self) -> u16 {
        u16::from_le_bytes(self.read_array())
    }

    #[inline]
    fn read_u8(&mut self) -> u8 {
        if self.current == self.end {
            Self::decoder_exhausted();
        }
        // SAFETY: This type guarantees current <= end, and we just checked current == end.
        unsafe {
            let byte = *self.current;
            self.current = self.current.add(1);
            byte
        }
    }

    read_leb128!(read_isize, isize, read_isize_leb128);
    read_leb128!(read_i128, i128, read_i128_leb128);
    read_leb128!(read_i64, i64, read_i64_leb128);
    read_leb128!(read_i32, i32, read_i32_leb128);

    #[inline]
    fn read_i16(&mut self) -> i16 {
        i16::from_le_bytes(self.read_array())
    }

    #[inline]
    fn read_raw_bytes(&mut self, bytes: usize) -> &'a [u8] {
        if bytes > self.remaining() {
            Self::decoder_exhausted();
        }
        // SAFETY: We just checked if this range is in-bounds above.
        unsafe {
            let slice = std::slice::from_raw_parts(self.current, bytes);
            self.current = self.current.add(bytes);
            slice
        }
    }

    #[inline]
    fn peek_byte(&self) -> u8 {
        if self.current == self.end {
            Self::decoder_exhausted();
        }
        // SAFETY: This type guarantees current is inbounds or one-past-the-end, which is end.
        // Since we just checked current == end, the current pointer must be inbounds.
        unsafe { *self.current }
    }

    #[inline]
    fn position(&self) -> usize {
        // SAFETY: This type guarantees start <= current
        unsafe { self.current.sub_ptr(self.start) }
    }
}

// Specializations for contiguous byte sequences follow. The default implementations for slices
// encode and decode each element individually. This isn't necessary for `u8` slices when using
// opaque encoders and decoders, because each `u8` is unchanged by encoding and decoding.
// Therefore, we can use more efficient implementations that process the entire sequence at once.

// Specialize encoding byte slices. This specialization also applies to encoding `Vec<u8>`s, etc.,
// since the default implementations call `encode` on their slices internally.
impl Encodable<FileEncoder> for [u8] {
    fn encode(&self, e: &mut FileEncoder) {
        Encoder::emit_usize(e, self.len());
        e.emit_raw_bytes(self);
    }
}

// Specialize decoding `Vec<u8>`. This specialization also applies to decoding `Box<[u8]>`s, etc.,
// since the default implementations call `decode` to produce a `Vec<u8>` internally.
impl<'a> Decodable<MemDecoder<'a>> for Vec<u8> {
    fn decode(d: &mut MemDecoder<'a>) -> Self {
        let len = Decoder::read_usize(d);
        d.read_raw_bytes(len).to_owned()
    }
}

/// An integer that will always encode to 8 bytes.
pub struct IntEncodedWithFixedSize(pub u64);

impl IntEncodedWithFixedSize {
    pub const ENCODED_SIZE: usize = 8;
}

impl Encodable<FileEncoder> for IntEncodedWithFixedSize {
    #[inline]
    fn encode(&self, e: &mut FileEncoder) {
        let _start_pos = e.position();
        e.write_array(self.0.to_le_bytes());
        let _end_pos = e.position();
        debug_assert_eq!((_end_pos - _start_pos), IntEncodedWithFixedSize::ENCODED_SIZE);
    }
}

impl<'a> Decodable<MemDecoder<'a>> for IntEncodedWithFixedSize {
    #[inline]
    fn decode(decoder: &mut MemDecoder<'a>) -> IntEncodedWithFixedSize {
        let bytes = decoder.read_array::<{ IntEncodedWithFixedSize::ENCODED_SIZE }>();
        IntEncodedWithFixedSize(u64::from_le_bytes(bytes))
    }
}