1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
use crate::stable_hasher::{Hash64, StableHasher, StableHasherResult};
use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
use std::hash::{Hash, Hasher};

#[cfg(test)]
mod tests;

#[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Clone, Copy)]
#[repr(C)]
pub struct Fingerprint(u64, u64);

pub trait FingerprintComponent {
    fn as_u64(&self) -> u64;
}

impl FingerprintComponent for Hash64 {
    #[inline]
    fn as_u64(&self) -> u64 {
        Hash64::as_u64(*self)
    }
}

impl FingerprintComponent for u64 {
    #[inline]
    fn as_u64(&self) -> u64 {
        *self
    }
}

impl Fingerprint {
    pub const ZERO: Fingerprint = Fingerprint(0, 0);

    #[inline]
    pub fn new<A, B>(_0: A, _1: B) -> Fingerprint
    where
        A: FingerprintComponent,
        B: FingerprintComponent,
    {
        Fingerprint(_0.as_u64(), _1.as_u64())
    }

    #[inline]
    pub fn to_smaller_hash(&self) -> Hash64 {
        // Even though both halves of the fingerprint are expected to be good
        // quality hash values, let's still combine the two values because the
        // Fingerprints in DefPathHash have the StableCrateId portion which is
        // the same for all DefPathHashes from the same crate. Combining the
        // two halves makes sure we get a good quality hash in such cases too.
        Hash64::new(self.0.wrapping_mul(3).wrapping_add(self.1))
    }

    #[inline]
    pub fn split(&self) -> (Hash64, Hash64) {
        (Hash64::new(self.0), Hash64::new(self.1))
    }

    #[inline]
    pub fn combine(self, other: Fingerprint) -> Fingerprint {
        // See https://stackoverflow.com/a/27952689 on why this function is
        // implemented this way.
        Fingerprint(
            self.0.wrapping_mul(3).wrapping_add(other.0),
            self.1.wrapping_mul(3).wrapping_add(other.1),
        )
    }

    #[inline]
    pub(crate) fn as_u128(self) -> u128 {
        u128::from(self.1) << 64 | u128::from(self.0)
    }

    // Combines two hashes in an order independent way. Make sure this is what
    // you want.
    #[inline]
    pub fn combine_commutative(self, other: Fingerprint) -> Fingerprint {
        let a = u128::from(self.1) << 64 | u128::from(self.0);
        let b = u128::from(other.1) << 64 | u128::from(other.0);

        let c = a.wrapping_add(b);

        Fingerprint(c as u64, (c >> 64) as u64)
    }

    pub fn to_hex(&self) -> String {
        format!("{:x}{:x}", self.0, self.1)
    }

    #[inline]
    pub fn to_le_bytes(&self) -> [u8; 16] {
        // This seems to optimize to the same machine code as
        // `unsafe { mem::transmute(*k) }`. Well done, LLVM! :)
        let mut result = [0u8; 16];

        let first_half: &mut [u8; 8] = (&mut result[0..8]).try_into().unwrap();
        *first_half = self.0.to_le_bytes();

        let second_half: &mut [u8; 8] = (&mut result[8..16]).try_into().unwrap();
        *second_half = self.1.to_le_bytes();

        result
    }

    #[inline]
    pub fn from_le_bytes(bytes: [u8; 16]) -> Fingerprint {
        Fingerprint(
            u64::from_le_bytes(bytes[0..8].try_into().unwrap()),
            u64::from_le_bytes(bytes[8..16].try_into().unwrap()),
        )
    }
}

impl std::fmt::Display for Fingerprint {
    fn fmt(&self, formatter: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(formatter, "{:x}-{:x}", self.0, self.1)
    }
}

impl Hash for Fingerprint {
    #[inline]
    fn hash<H: Hasher>(&self, state: &mut H) {
        state.write_fingerprint(self);
    }
}

trait FingerprintHasher {
    fn write_fingerprint(&mut self, fingerprint: &Fingerprint);
}

impl<H: Hasher> FingerprintHasher for H {
    #[inline]
    default fn write_fingerprint(&mut self, fingerprint: &Fingerprint) {
        self.write_u64(fingerprint.0);
        self.write_u64(fingerprint.1);
    }
}

impl FingerprintHasher for crate::unhash::Unhasher {
    #[inline]
    fn write_fingerprint(&mut self, fingerprint: &Fingerprint) {
        // Even though both halves of the fingerprint are expected to be good
        // quality hash values, let's still combine the two values because the
        // Fingerprints in DefPathHash have the StableCrateId portion which is
        // the same for all DefPathHashes from the same crate. Combining the
        // two halves makes sure we get a good quality hash in such cases too.
        //
        // Since `Unhasher` is used only in the context of HashMaps, it is OK
        // to combine the two components in an order-independent way (which is
        // cheaper than the more robust Fingerprint::to_smaller_hash()). For
        // HashMaps we don't really care if Fingerprint(x,y) and
        // Fingerprint(y, x) result in the same hash value. Collision
        // probability will still be much better than with FxHash.
        self.write_u64(fingerprint.0.wrapping_add(fingerprint.1));
    }
}

impl StableHasherResult for Fingerprint {
    #[inline]
    fn finish(hasher: StableHasher) -> Self {
        let (_0, _1) = hasher.finalize();
        Fingerprint(_0, _1)
    }
}

impl_stable_traits_for_trivial_type!(Fingerprint);

impl<E: Encoder> Encodable<E> for Fingerprint {
    #[inline]
    fn encode(&self, s: &mut E) {
        s.emit_raw_bytes(&self.to_le_bytes());
    }
}

impl<D: Decoder> Decodable<D> for Fingerprint {
    #[inline]
    fn decode(d: &mut D) -> Self {
        Fingerprint::from_le_bytes(d.read_raw_bytes(16).try_into().unwrap())
    }
}

// `PackedFingerprint` wraps a `Fingerprint`. Its purpose is to, on certain
// architectures, behave like a `Fingerprint` without alignment requirements.
// This behavior is only enabled on x86 and x86_64, where the impact of
// unaligned accesses is tolerable in small doses.
//
// This may be preferable to use in large collections of structs containing
// fingerprints, as it can reduce memory consumption by preventing the padding
// that the more strictly-aligned `Fingerprint` can introduce. An application of
// this is in the query dependency graph, which contains a large collection of
// `DepNode`s. As of this writing, the size of a `DepNode` decreases by ~30%
// (from 24 bytes to 17) by using the packed representation here, which
// noticeably decreases total memory usage when compiling large crates.
//
// The wrapped `Fingerprint` is private to reduce the chance of a client
// invoking undefined behavior by taking a reference to the packed field.
#[cfg_attr(any(target_arch = "x86", target_arch = "x86_64"), repr(packed))]
#[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Clone, Copy, Hash)]
pub struct PackedFingerprint(Fingerprint);

impl std::fmt::Display for PackedFingerprint {
    #[inline]
    fn fmt(&self, formatter: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // Copy to avoid taking reference to packed field.
        let copy = self.0;
        copy.fmt(formatter)
    }
}

impl<E: Encoder> Encodable<E> for PackedFingerprint {
    #[inline]
    fn encode(&self, s: &mut E) {
        // Copy to avoid taking reference to packed field.
        let copy = self.0;
        copy.encode(s);
    }
}

impl<D: Decoder> Decodable<D> for PackedFingerprint {
    #[inline]
    fn decode(d: &mut D) -> Self {
        Self(Fingerprint::decode(d))
    }
}

impl From<Fingerprint> for PackedFingerprint {
    #[inline]
    fn from(f: Fingerprint) -> PackedFingerprint {
        PackedFingerprint(f)
    }
}

impl From<PackedFingerprint> for Fingerprint {
    #[inline]
    fn from(f: PackedFingerprint) -> Fingerprint {
        f.0
    }
}