1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
//! Image representations for ffi.
//!
//! # Usage
//!
//! Imagine you want to offer a very simple ffi interface: The caller provides an image buffer and
//! your program creates a thumbnail from it and dumps that image as `png`. This module is designed
//! to help you transition from raw memory data to Rust representation.
//!
//! ```no_run
//! use std::ptr;
//! use std::slice;
//! use image::Rgb;
//! use image::flat::{FlatSamples, SampleLayout};
//! use image::imageops::thumbnail;
//!
//! #[no_mangle]
//! pub extern "C" fn store_rgb8_compressed(
//! data: *const u8, len: usize,
//! layout: *const SampleLayout
//! )
//! -> bool
//! {
//! let samples = unsafe { slice::from_raw_parts(data, len) };
//! let layout = unsafe { ptr::read(layout) };
//!
//! let buffer = FlatSamples {
//! samples,
//! layout,
//! color_hint: None,
//! };
//!
//! let view = match buffer.as_view::<Rgb<u8>>() {
//! Err(_) => return false, // Invalid layout.
//! Ok(view) => view,
//! };
//!
//! thumbnail(&view, 64, 64)
//! .save("output.png")
//! .map(|_| true)
//! .unwrap_or_else(|_| false)
//! }
//! ```
//!
use std::marker::PhantomData;
use std::ops::{Deref, Index, IndexMut};
use std::{cmp, error, fmt};
use num_traits::Zero;
use crate::color::ColorType;
use crate::error::{
DecodingError, ImageError, ImageFormatHint, ParameterError, ParameterErrorKind,
UnsupportedError, UnsupportedErrorKind,
};
use crate::image::{GenericImage, GenericImageView};
use crate::traits::Pixel;
use crate::ImageBuffer;
/// A flat buffer over a (multi channel) image.
///
/// In contrast to `ImageBuffer`, this representation of a sample collection is much more lenient
/// in the layout thereof. It also allows grouping by color planes instead of by pixel as long as
/// the strides of each extent are constant. This struct itself has no invariants on the strides
/// but not every possible configuration can be interpreted as a [`GenericImageView`] or
/// [`GenericImage`]. The methods [`as_view`] and [`as_view_mut`] construct the actual implementors
/// of these traits and perform necessary checks. To manually perform this and other layout checks
/// use [`is_normal`] or [`has_aliased_samples`].
///
/// Instances can be constructed not only by hand. The buffer instances returned by library
/// functions such as [`ImageBuffer::as_flat_samples`] guarantee that the conversion to a generic
/// image or generic view succeeds. A very different constructor is [`with_monocolor`]. It uses a
/// single pixel as the backing storage for an arbitrarily sized read-only raster by mapping each
/// pixel to the same samples by setting some strides to `0`.
///
/// [`GenericImage`]: ../trait.GenericImage.html
/// [`GenericImageView`]: ../trait.GenericImageView.html
/// [`ImageBuffer::as_flat_samples`]: ../struct.ImageBuffer.html#method.as_flat_samples
/// [`is_normal`]: #method.is_normal
/// [`has_aliased_samples`]: #method.has_aliased_samples
/// [`as_view`]: #method.as_view
/// [`as_view_mut`]: #method.as_view_mut
/// [`with_monocolor`]: #method.with_monocolor
#[derive(Clone, Debug)]
pub struct FlatSamples<Buffer> {
/// Underlying linear container holding sample values.
pub samples: Buffer,
/// A `repr(C)` description of the layout of buffer samples.
pub layout: SampleLayout,
/// Supplementary color information.
///
/// You may keep this as `None` in most cases. This is NOT checked in `View` or other
/// converters. It is intended mainly as a way for types that convert to this buffer type to
/// attach their otherwise static color information. A dynamic image representation could
/// however use this to resolve representational ambiguities such as the order of RGB channels.
pub color_hint: Option<ColorType>,
}
/// A ffi compatible description of a sample buffer.
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct SampleLayout {
/// The number of channels in the color representation of the image.
pub channels: u8,
/// Add this to an index to get to the sample in the next channel.
pub channel_stride: usize,
/// The width of the represented image.
pub width: u32,
/// Add this to an index to get to the next sample in x-direction.
pub width_stride: usize,
/// The height of the represented image.
pub height: u32,
/// Add this to an index to get to the next sample in y-direction.
pub height_stride: usize,
}
/// Helper struct for an unnamed (stride, length) pair.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
struct Dim(usize, usize);
impl SampleLayout {
/// Describe a row-major image packed in all directions.
///
/// The resulting will surely be `NormalForm::RowMajorPacked`. It can therefore be converted to
/// safely to an `ImageBuffer` with a large enough underlying buffer.
///
/// ```
/// # use image::flat::{NormalForm, SampleLayout};
/// let layout = SampleLayout::row_major_packed(3, 640, 480);
/// assert!(layout.is_normal(NormalForm::RowMajorPacked));
/// ```
///
/// # Panics
///
/// On platforms where `usize` has the same size as `u32` this panics when the resulting stride
/// in the `height` direction would be larger than `usize::max_value()`. On other platforms
/// where it can surely accommodate `u8::max_value() * u32::max_value(), this can never happen.
pub fn row_major_packed(channels: u8, width: u32, height: u32) -> Self {
let height_stride = (channels as usize).checked_mul(width as usize).expect(
"Row major packed image can not be described because it does not fit into memory",
);
SampleLayout {
channels,
channel_stride: 1,
width,
width_stride: channels as usize,
height,
height_stride,
}
}
/// Describe a column-major image packed in all directions.
///
/// The resulting will surely be `NormalForm::ColumnMajorPacked`. This is not particularly
/// useful for conversion but can be used to describe such a buffer without pitfalls.
///
/// ```
/// # use image::flat::{NormalForm, SampleLayout};
/// let layout = SampleLayout::column_major_packed(3, 640, 480);
/// assert!(layout.is_normal(NormalForm::ColumnMajorPacked));
/// ```
///
/// # Panics
///
/// On platforms where `usize` has the same size as `u32` this panics when the resulting stride
/// in the `width` direction would be larger than `usize::max_value()`. On other platforms
/// where it can surely accommodate `u8::max_value() * u32::max_value(), this can never happen.
pub fn column_major_packed(channels: u8, width: u32, height: u32) -> Self {
let width_stride = (channels as usize).checked_mul(height as usize).expect(
"Column major packed image can not be described because it does not fit into memory",
);
SampleLayout {
channels,
channel_stride: 1,
height,
height_stride: channels as usize,
width,
width_stride,
}
}
/// Get the strides for indexing matrix-like `[(c, w, h)]`.
///
/// For a row-major layout with grouped samples, this tuple is strictly
/// increasing.
pub fn strides_cwh(&self) -> (usize, usize, usize) {
(self.channel_stride, self.width_stride, self.height_stride)
}
/// Get the dimensions `(channels, width, height)`.
///
/// The interface is optimized for use with `strides_cwh` instead. The channel extent will be
/// before width and height.
pub fn extents(&self) -> (usize, usize, usize) {
(
self.channels as usize,
self.width as usize,
self.height as usize,
)
}
/// Tuple of bounds in the order of coordinate inputs.
///
/// This function should be used whenever working with image coordinates opposed to buffer
/// coordinates. The only difference compared to `extents` is the output type.
pub fn bounds(&self) -> (u8, u32, u32) {
(self.channels, self.width, self.height)
}
/// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
///
/// This method will allow zero strides, allowing compact representations of monochrome images.
/// To check that no aliasing occurs, try `check_alias_invariants`. For compact images (no
/// aliasing and no unindexed samples) this is `width*height*channels`. But for both of the
/// other cases, the reasoning is slightly more involved.
///
/// # Explanation
///
/// Note that there is a difference between `min_length` and the index of the sample
/// 'one-past-the-end`. This is due to strides that may be larger than the dimension below.
///
/// ## Example with holes
///
/// Let's look at an example of a grayscale image with
/// * `width_stride = 1`
/// * `width = 2`
/// * `height_stride = 3`
/// * `height = 2`
///
/// ```text
/// | x x | x x m | $
/// min_length m ^
/// ^ one-past-the-end $
/// ```
///
/// The difference is also extreme for empty images with large strides. The one-past-the-end
/// sample index is still as large as the largest of these strides while `min_length = 0`.
///
/// ## Example with aliasing
///
/// The concept gets even more important when you allow samples to alias each other. Here we
/// have the buffer of a small grayscale image where this is the case, this time we will first
/// show the buffer and then the individual rows below.
///
/// * `width_stride = 1`
/// * `width = 3`
/// * `height_stride = 2`
/// * `height = 2`
///
/// ```text
/// 1 2 3 4 5 m
/// |1 2 3| row one
/// |3 4 5| row two
/// ^ m min_length
/// ^ ??? one-past-the-end
/// ```
///
/// This time 'one-past-the-end' is not even simply the largest stride times the extent of its
/// dimension. That still points inside the image because `height*height_stride = 4` but also
/// `index_of(1, 2) = 4`.
pub fn min_length(&self) -> Option<usize> {
if self.width == 0 || self.height == 0 || self.channels == 0 {
return Some(0);
}
self.index(self.channels - 1, self.width - 1, self.height - 1)
.and_then(|idx| idx.checked_add(1))
}
/// Check if a buffer of length `len` is large enough.
pub fn fits(&self, len: usize) -> bool {
self.min_length().map(|min| len >= min).unwrap_or(false)
}
/// The extents of this array, in order of increasing strides.
fn increasing_stride_dims(&self) -> [Dim; 3] {
// Order extents by strides, then check that each is less equal than the next stride.
let mut grouped: [Dim; 3] = [
Dim(self.channel_stride, self.channels as usize),
Dim(self.width_stride, self.width as usize),
Dim(self.height_stride, self.height as usize),
];
grouped.sort();
let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]);
assert!(min_dim.stride() <= mid_dim.stride() && mid_dim.stride() <= max_dim.stride());
grouped
}
/// If there are any samples aliasing each other.
///
/// If this is not the case, it would always be safe to allow mutable access to two different
/// samples at the same time. Otherwise, this operation would need additional checks. When one
/// dimension overflows `usize` with its stride we also consider this aliasing.
pub fn has_aliased_samples(&self) -> bool {
let grouped = self.increasing_stride_dims();
let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]);
let min_size = match min_dim.checked_len() {
None => return true,
Some(size) => size,
};
let mid_size = match mid_dim.checked_len() {
None => return true,
Some(size) => size,
};
match max_dim.checked_len() {
None => return true,
Some(_) => (), // Only want to know this didn't overflow.
};
// Each higher dimension must walk over all of one lower dimension.
min_size > mid_dim.stride() || mid_size > max_dim.stride()
}
/// Check if a buffer fulfills the requirements of a normal form.
///
/// Certain conversions have preconditions on the structure of the sample buffer that are not
/// captured (by design) by the type system. These are then checked before the conversion. Such
/// checks can all be done in constant time and will not inspect the buffer content. You can
/// perform these checks yourself when the conversion is not required at this moment but maybe
/// still performed later.
pub fn is_normal(&self, form: NormalForm) -> bool {
if self.has_aliased_samples() {
return false;
}
if form >= NormalForm::PixelPacked && self.channel_stride != 1 {
return false;
}
if form >= NormalForm::ImagePacked {
// has aliased already checked for overflows.
let grouped = self.increasing_stride_dims();
let (min_dim, mid_dim, max_dim) = (grouped[0], grouped[1], grouped[2]);
if 1 != min_dim.stride() {
return false;
}
if min_dim.len() != mid_dim.stride() {
return false;
}
if mid_dim.len() != max_dim.stride() {
return false;
}
}
if form >= NormalForm::RowMajorPacked {
if self.width_stride != self.channels as usize {
return false;
}
if self.width as usize * self.width_stride != self.height_stride {
return false;
}
}
if form >= NormalForm::ColumnMajorPacked {
if self.height_stride != self.channels as usize {
return false;
}
if self.height as usize * self.height_stride != self.width_stride {
return false;
}
}
true
}
/// Check that the pixel and the channel index are in bounds.
///
/// An in-bound coordinate does not yet guarantee that the corresponding calculation of a
/// buffer index does not overflow. However, if such a buffer large enough to hold all samples
/// actually exists in memory, this property of course follows.
pub fn in_bounds(&self, channel: u8, x: u32, y: u32) -> bool {
channel < self.channels && x < self.width && y < self.height
}
/// Resolve the index of a particular sample.
///
/// `None` if the index is outside the bounds or does not fit into a `usize`.
pub fn index(&self, channel: u8, x: u32, y: u32) -> Option<usize> {
if !self.in_bounds(channel, x, y) {
return None;
}
self.index_ignoring_bounds(channel as usize, x as usize, y as usize)
}
/// Get the theoretical position of sample (channel, x, y).
///
/// The 'check' is for overflow during index calculation, not that it is contained in the
/// image. Two samples may return the same index, even when one of them is out of bounds. This
/// happens when all strides are `0`, i.e. the image is an arbitrarily large monochrome image.
pub fn index_ignoring_bounds(&self, channel: usize, x: usize, y: usize) -> Option<usize> {
let idx_c = channel.checked_mul(self.channel_stride);
let idx_x = x.checked_mul(self.width_stride);
let idx_y = y.checked_mul(self.height_stride);
let (idx_c, idx_x, idx_y) = match (idx_c, idx_x, idx_y) {
(Some(idx_c), Some(idx_x), Some(idx_y)) => (idx_c, idx_x, idx_y),
_ => return None,
};
Some(0usize)
.and_then(|b| b.checked_add(idx_c))
.and_then(|b| b.checked_add(idx_x))
.and_then(|b| b.checked_add(idx_y))
}
/// Get an index provided it is inbouds.
///
/// Assumes that the image is backed by some sufficiently large buffer. Then computation can
/// not overflow as we could represent the maximum coordinate. Since overflow is defined either
/// way, this method can not be unsafe.
pub fn in_bounds_index(&self, c: u8, x: u32, y: u32) -> usize {
let (c_stride, x_stride, y_stride) = self.strides_cwh();
(y as usize * y_stride) + (x as usize * x_stride) + (c as usize * c_stride)
}
/// Shrink the image to the minimum of current and given extents.
///
/// This does not modify the strides, so that the resulting sample buffer may have holes
/// created by the shrinking operation. Shrinking could also lead to an non-aliasing image when
/// samples had aliased each other before.
pub fn shrink_to(&mut self, channels: u8, width: u32, height: u32) {
self.channels = self.channels.min(channels);
self.width = self.width.min(width);
self.height = self.height.min(height);
}
}
impl Dim {
fn stride(self) -> usize {
self.0
}
/// Length of this dimension in memory.
fn checked_len(self) -> Option<usize> {
self.0.checked_mul(self.1)
}
fn len(self) -> usize {
self.0 * self.1
}
}
impl<Buffer> FlatSamples<Buffer> {
/// Get the strides for indexing matrix-like `[(c, w, h)]`.
///
/// For a row-major layout with grouped samples, this tuple is strictly
/// increasing.
pub fn strides_cwh(&self) -> (usize, usize, usize) {
self.layout.strides_cwh()
}
/// Get the dimensions `(channels, width, height)`.
///
/// The interface is optimized for use with `strides_cwh` instead. The channel extent will be
/// before width and height.
pub fn extents(&self) -> (usize, usize, usize) {
self.layout.extents()
}
/// Tuple of bounds in the order of coordinate inputs.
///
/// This function should be used whenever working with image coordinates opposed to buffer
/// coordinates. The only difference compared to `extents` is the output type.
pub fn bounds(&self) -> (u8, u32, u32) {
self.layout.bounds()
}
/// Get a reference based version.
pub fn as_ref<T>(&self) -> FlatSamples<&[T]>
where
Buffer: AsRef<[T]>,
{
FlatSamples {
samples: self.samples.as_ref(),
layout: self.layout,
color_hint: self.color_hint,
}
}
/// Get a mutable reference based version.
pub fn as_mut<T>(&mut self) -> FlatSamples<&mut [T]>
where
Buffer: AsMut<[T]>,
{
FlatSamples {
samples: self.samples.as_mut(),
layout: self.layout,
color_hint: self.color_hint,
}
}
/// Copy the data into an owned vector.
pub fn to_vec<T>(&self) -> FlatSamples<Vec<T>>
where
T: Clone,
Buffer: AsRef<[T]>,
{
FlatSamples {
samples: self.samples.as_ref().to_vec(),
layout: self.layout,
color_hint: self.color_hint,
}
}
/// Get a reference to a single sample.
///
/// This more restrictive than the method based on `std::ops::Index` but guarantees to properly
/// check all bounds and not panic as long as `Buffer::as_ref` does not do so.
///
/// ```
/// # use image::{RgbImage};
/// let flat = RgbImage::new(480, 640).into_flat_samples();
///
/// // Get the blue channel at (10, 10).
/// assert!(flat.get_sample(1, 10, 10).is_some());
///
/// // There is no alpha channel.
/// assert!(flat.get_sample(3, 10, 10).is_none());
/// ```
///
/// For cases where a special buffer does not provide `AsRef<[T]>`, consider encapsulating
/// bounds checks with `min_length` in a type similar to `View`. Then you may use
/// `in_bounds_index` as a small speedup over the index calculation of this method which relies
/// on `index_ignoring_bounds` since it can not have a-priori knowledge that the sample
/// coordinate is in fact backed by any memory buffer.
pub fn get_sample<T>(&self, channel: u8, x: u32, y: u32) -> Option<&T>
where
Buffer: AsRef<[T]>,
{
self.index(channel, x, y)
.and_then(|idx| self.samples.as_ref().get(idx))
}
/// Get a mutable reference to a single sample.
///
/// This more restrictive than the method based on `std::ops::IndexMut` but guarantees to
/// properly check all bounds and not panic as long as `Buffer::as_ref` does not do so.
/// Contrary to conversion to `ViewMut`, this does not require that samples are packed since it
/// does not need to convert samples to a color representation.
///
/// **WARNING**: Note that of course samples may alias, so that the mutable reference returned
/// here can in fact modify more than the coordinate in the argument.
///
/// ```
/// # use image::{RgbImage};
/// let mut flat = RgbImage::new(480, 640).into_flat_samples();
///
/// // Assign some new color to the blue channel at (10, 10).
/// *flat.get_mut_sample(1, 10, 10).unwrap() = 255;
///
/// // There is no alpha channel.
/// assert!(flat.get_mut_sample(3, 10, 10).is_none());
/// ```
///
/// For cases where a special buffer does not provide `AsRef<[T]>`, consider encapsulating
/// bounds checks with `min_length` in a type similar to `View`. Then you may use
/// `in_bounds_index` as a small speedup over the index calculation of this method which relies
/// on `index_ignoring_bounds` since it can not have a-priori knowledge that the sample
/// coordinate is in fact backed by any memory buffer.
pub fn get_mut_sample<T>(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut T>
where
Buffer: AsMut<[T]>,
{
match self.index(channel, x, y) {
None => None,
Some(idx) => self.samples.as_mut().get_mut(idx),
}
}
/// View this buffer as an image over some type of pixel.
///
/// This first ensures that all in-bounds coordinates refer to valid indices in the sample
/// buffer. It also checks that the specified pixel format expects the same number of channels
/// that are present in this buffer. Neither are larger nor a smaller number will be accepted.
/// There is no automatic conversion.
pub fn as_view<P>(&self) -> Result<View<&[P::Subpixel], P>, Error>
where
P: Pixel,
Buffer: AsRef<[P::Subpixel]>,
{
if self.layout.channels != P::CHANNEL_COUNT {
return Err(Error::ChannelCountMismatch(
self.layout.channels,
P::CHANNEL_COUNT,
));
}
let as_ref = self.samples.as_ref();
if !self.layout.fits(as_ref.len()) {
return Err(Error::TooLarge);
}
Ok(View {
inner: FlatSamples {
samples: as_ref,
layout: self.layout,
color_hint: self.color_hint,
},
phantom: PhantomData,
})
}
/// View this buffer but keep mutability at a sample level.
///
/// This is similar to `as_view` but subtly different from `as_view_mut`. The resulting type
/// can be used as a `GenericImage` with the same prior invariants needed as for `as_view`.
/// It can not be used as a mutable `GenericImage` but does not need channels to be packed in
/// their pixel representation.
///
/// This first ensures that all in-bounds coordinates refer to valid indices in the sample
/// buffer. It also checks that the specified pixel format expects the same number of channels
/// that are present in this buffer. Neither are larger nor a smaller number will be accepted.
/// There is no automatic conversion.
///
/// **WARNING**: Note that of course samples may alias, so that the mutable reference returned
/// for one sample can in fact modify other samples as well. Sometimes exactly this is
/// intended.
pub fn as_view_with_mut_samples<P>(&mut self) -> Result<View<&mut [P::Subpixel], P>, Error>
where
P: Pixel,
Buffer: AsMut<[P::Subpixel]>,
{
if self.layout.channels != P::CHANNEL_COUNT {
return Err(Error::ChannelCountMismatch(
self.layout.channels,
P::CHANNEL_COUNT,
));
}
let as_mut = self.samples.as_mut();
if !self.layout.fits(as_mut.len()) {
return Err(Error::TooLarge);
}
Ok(View {
inner: FlatSamples {
samples: as_mut,
layout: self.layout,
color_hint: self.color_hint,
},
phantom: PhantomData,
})
}
/// Interpret this buffer as a mutable image.
///
/// To succeed, the pixels in this buffer may not alias each other and the samples of each
/// pixel must be packed (i.e. `channel_stride` is `1`). The number of channels must be
/// consistent with the channel count expected by the pixel format.
///
/// This is similar to an `ImageBuffer` except it is a temporary view that is not normalized as
/// strongly. To get an owning version, consider copying the data into an `ImageBuffer`. This
/// provides many more operations, is possibly faster (if not you may want to open an issue) is
/// generally polished. You can also try to convert this buffer inline, see
/// `ImageBuffer::from_raw`.
pub fn as_view_mut<P>(&mut self) -> Result<ViewMut<&mut [P::Subpixel], P>, Error>
where
P: Pixel,
Buffer: AsMut<[P::Subpixel]>,
{
if !self.layout.is_normal(NormalForm::PixelPacked) {
return Err(Error::NormalFormRequired(NormalForm::PixelPacked));
}
if self.layout.channels != P::CHANNEL_COUNT {
return Err(Error::ChannelCountMismatch(
self.layout.channels,
P::CHANNEL_COUNT,
));
}
let as_mut = self.samples.as_mut();
if !self.layout.fits(as_mut.len()) {
return Err(Error::TooLarge);
}
Ok(ViewMut {
inner: FlatSamples {
samples: as_mut,
layout: self.layout,
color_hint: self.color_hint,
},
phantom: PhantomData,
})
}
/// View the samples as a slice.
///
/// The slice is not limited to the region of the image and not all sample indices are valid
/// indices into this buffer. See `image_mut_slice` as an alternative.
pub fn as_slice<T>(&self) -> &[T]
where
Buffer: AsRef<[T]>,
{
self.samples.as_ref()
}
/// View the samples as a slice.
///
/// The slice is not limited to the region of the image and not all sample indices are valid
/// indices into this buffer. See `image_mut_slice` as an alternative.
pub fn as_mut_slice<T>(&mut self) -> &mut [T]
where
Buffer: AsMut<[T]>,
{
self.samples.as_mut()
}
/// Return the portion of the buffer that holds sample values.
///
/// This may fail when the coordinates in this image are either out-of-bounds of the underlying
/// buffer or can not be represented. Note that the slice may have holes that do not correspond
/// to any sample in the image represented by it.
pub fn image_slice<T>(&self) -> Option<&[T]>
where
Buffer: AsRef<[T]>,
{
let min_length = match self.min_length() {
None => return None,
Some(index) => index,
};
let slice = self.samples.as_ref();
if slice.len() < min_length {
return None;
}
Some(&slice[..min_length])
}
/// Mutable portion of the buffer that holds sample values.
pub fn image_mut_slice<T>(&mut self) -> Option<&mut [T]>
where
Buffer: AsMut<[T]>,
{
let min_length = match self.min_length() {
None => return None,
Some(index) => index,
};
let slice = self.samples.as_mut();
if slice.len() < min_length {
return None;
}
Some(&mut slice[..min_length])
}
/// Move the data into an image buffer.
///
/// This does **not** convert the sample layout. The buffer needs to be in packed row-major form
/// before calling this function. In case of an error, returns the buffer again so that it does
/// not release any allocation.
pub fn try_into_buffer<P>(self) -> Result<ImageBuffer<P, Buffer>, (Error, Self)>
where
P: Pixel + 'static,
P::Subpixel: 'static,
Buffer: Deref<Target = [P::Subpixel]>,
{
if !self.is_normal(NormalForm::RowMajorPacked) {
return Err((Error::NormalFormRequired(NormalForm::RowMajorPacked), self));
}
if self.layout.channels != P::CHANNEL_COUNT {
return Err((
Error::ChannelCountMismatch(self.layout.channels, P::CHANNEL_COUNT),
self,
));
}
if !self.fits(self.samples.deref().len()) {
return Err((Error::TooLarge, self));
}
Ok(
ImageBuffer::from_raw(self.layout.width, self.layout.height, self.samples)
.unwrap_or_else(|| {
panic!("Preconditions should have been ensured before conversion")
}),
)
}
/// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
///
/// This method will allow zero strides, allowing compact representations of monochrome images.
/// To check that no aliasing occurs, try `check_alias_invariants`. For compact images (no
/// aliasing and no unindexed samples) this is `width*height*channels`. But for both of the
/// other cases, the reasoning is slightly more involved.
///
/// # Explanation
///
/// Note that there is a difference between `min_length` and the index of the sample
/// 'one-past-the-end`. This is due to strides that may be larger than the dimension below.
///
/// ## Example with holes
///
/// Let's look at an example of a grayscale image with
/// * `width_stride = 1`
/// * `width = 2`
/// * `height_stride = 3`
/// * `height = 2`
///
/// ```text
/// | x x | x x m | $
/// min_length m ^
/// ^ one-past-the-end $
/// ```
///
/// The difference is also extreme for empty images with large strides. The one-past-the-end
/// sample index is still as large as the largest of these strides while `min_length = 0`.
///
/// ## Example with aliasing
///
/// The concept gets even more important when you allow samples to alias each other. Here we
/// have the buffer of a small grayscale image where this is the case, this time we will first
/// show the buffer and then the individual rows below.
///
/// * `width_stride = 1`
/// * `width = 3`
/// * `height_stride = 2`
/// * `height = 2`
///
/// ```text
/// 1 2 3 4 5 m
/// |1 2 3| row one
/// |3 4 5| row two
/// ^ m min_length
/// ^ ??? one-past-the-end
/// ```
///
/// This time 'one-past-the-end' is not even simply the largest stride times the extent of its
/// dimension. That still points inside the image because `height*height_stride = 4` but also
/// `index_of(1, 2) = 4`.
pub fn min_length(&self) -> Option<usize> {
self.layout.min_length()
}
/// Check if a buffer of length `len` is large enough.
pub fn fits(&self, len: usize) -> bool {
self.layout.fits(len)
}
/// If there are any samples aliasing each other.
///
/// If this is not the case, it would always be safe to allow mutable access to two different
/// samples at the same time. Otherwise, this operation would need additional checks. When one
/// dimension overflows `usize` with its stride we also consider this aliasing.
pub fn has_aliased_samples(&self) -> bool {
self.layout.has_aliased_samples()
}
/// Check if a buffer fulfills the requirements of a normal form.
///
/// Certain conversions have preconditions on the structure of the sample buffer that are not
/// captured (by design) by the type system. These are then checked before the conversion. Such
/// checks can all be done in constant time and will not inspect the buffer content. You can
/// perform these checks yourself when the conversion is not required at this moment but maybe
/// still performed later.
pub fn is_normal(&self, form: NormalForm) -> bool {
self.layout.is_normal(form)
}
/// Check that the pixel and the channel index are in bounds.
///
/// An in-bound coordinate does not yet guarantee that the corresponding calculation of a
/// buffer index does not overflow. However, if such a buffer large enough to hold all samples
/// actually exists in memory, this property of course follows.
pub fn in_bounds(&self, channel: u8, x: u32, y: u32) -> bool {
self.layout.in_bounds(channel, x, y)
}
/// Resolve the index of a particular sample.
///
/// `None` if the index is outside the bounds or does not fit into a `usize`.
pub fn index(&self, channel: u8, x: u32, y: u32) -> Option<usize> {
self.layout.index(channel, x, y)
}
/// Get the theoretical position of sample (x, y, channel).
///
/// The 'check' is for overflow during index calculation, not that it is contained in the
/// image. Two samples may return the same index, even when one of them is out of bounds. This
/// happens when all strides are `0`, i.e. the image is an arbitrarily large monochrome image.
pub fn index_ignoring_bounds(&self, channel: usize, x: usize, y: usize) -> Option<usize> {
self.layout.index_ignoring_bounds(channel, x, y)
}
/// Get an index provided it is inbouds.
///
/// Assumes that the image is backed by some sufficiently large buffer. Then computation can
/// not overflow as we could represent the maximum coordinate. Since overflow is defined either
/// way, this method can not be unsafe.
pub fn in_bounds_index(&self, channel: u8, x: u32, y: u32) -> usize {
self.layout.in_bounds_index(channel, x, y)
}
/// Shrink the image to the minimum of current and given extents.
///
/// This does not modify the strides, so that the resulting sample buffer may have holes
/// created by the shrinking operation. Shrinking could also lead to an non-aliasing image when
/// samples had aliased each other before.
pub fn shrink_to(&mut self, channels: u8, width: u32, height: u32) {
self.layout.shrink_to(channels, width, height)
}
}
impl<'buf, Subpixel> FlatSamples<&'buf [Subpixel]> {
/// Create a monocolor image from a single pixel.
///
/// This can be used as a very cheap source of a `GenericImageView` with an arbitrary number of
/// pixels of a single color, without any dynamic allocation.
///
/// ## Examples
///
/// ```
/// # fn paint_something<T>(_: T) {}
/// use image::{flat::FlatSamples, GenericImage, RgbImage, Rgb};
///
/// let background = Rgb([20, 20, 20]);
/// let bg = FlatSamples::with_monocolor(&background, 200, 200);;
///
/// let mut image = RgbImage::new(200, 200);
/// paint_something(&mut image);
///
/// // Reset the canvas
/// image.copy_from(&bg.as_view().unwrap(), 0, 0);
/// ```
pub fn with_monocolor<P>(pixel: &'buf P, width: u32, height: u32) -> Self
where
P: Pixel<Subpixel = Subpixel>,
Subpixel: crate::Primitive,
{
FlatSamples {
samples: pixel.channels(),
layout: SampleLayout {
channels: P::CHANNEL_COUNT,
channel_stride: 1,
width,
width_stride: 0,
height,
height_stride: 0,
},
// TODO this value is never set. It should be set in all places where the Pixel type implements PixelWithColorType
color_hint: None,
}
}
}
/// A flat buffer that can be used as an image view.
///
/// This is a nearly trivial wrapper around a buffer but at least sanitizes by checking the buffer
/// length first and constraining the pixel type.
///
/// Note that this does not eliminate panics as the `AsRef<[T]>` implementation of `Buffer` may be
/// unreliable, i.e. return different buffers at different times. This of course is a non-issue for
/// all common collections where the bounds check once must be enough.
///
/// # Inner invariants
///
/// * For all indices inside bounds, the corresponding index is valid in the buffer
/// * `P::channel_count()` agrees with `self.inner.layout.channels`
///
#[derive(Clone, Debug)]
pub struct View<Buffer, P: Pixel>
where
Buffer: AsRef<[P::Subpixel]>,
{
inner: FlatSamples<Buffer>,
phantom: PhantomData<P>,
}
/// A mutable owning version of a flat buffer.
///
/// While this wraps a buffer similar to `ImageBuffer`, this is mostly intended as a utility. The
/// library endorsed normalized representation is still `ImageBuffer`. Also, the implementation of
/// `AsMut<[P::Subpixel]>` must always yield the same buffer. Therefore there is no public way to
/// construct this with an owning buffer.
///
/// # Inner invariants
///
/// * For all indices inside bounds, the corresponding index is valid in the buffer
/// * There is no aliasing of samples
/// * The samples are packed, i.e. `self.inner.layout.sample_stride == 1`
/// * `P::channel_count()` agrees with `self.inner.layout.channels`
///
#[derive(Clone, Debug)]
pub struct ViewMut<Buffer, P: Pixel>
where
Buffer: AsMut<[P::Subpixel]>,
{
inner: FlatSamples<Buffer>,
phantom: PhantomData<P>,
}
/// Denotes invalid flat sample buffers when trying to convert to stricter types.
///
/// The biggest use case being `ImageBuffer` which expects closely packed
/// samples in a row major matrix representation. But this error type may be
/// resused for other import functions. A more versatile user may also try to
/// correct the underlying representation depending on the error variant.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Error {
/// The represented image was too large.
///
/// The optional value denotes a possibly accepted maximal bound.
TooLarge,
/// The represented image can not use this representation.
///
/// Has an additional value of the normalized form that would be accepted.
NormalFormRequired(NormalForm),
/// The color format did not match the channel count.
///
/// In some cases you might be able to fix this by lowering the reported pixel count of the
/// buffer without touching the strides.
///
/// In very special circumstances you *may* do the opposite. This is **VERY** dangerous but not
/// directly memory unsafe although that will likely alias pixels. One scenario is when you
/// want to construct an `Rgba` image but have only 3 bytes per pixel and for some reason don't
/// care about the value of the alpha channel even though you need `Rgba`.
ChannelCountMismatch(u8, u8),
/// Deprecated - ChannelCountMismatch is used instead
WrongColor(ColorType),
}
/// Different normal forms of buffers.
///
/// A normal form is an unaliased buffer with some additional constraints. The `ÌmageBuffer` uses
/// row major form with packed samples.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum NormalForm {
/// No pixel aliases another.
///
/// Unaliased also guarantees that all index calculations in the image bounds using
/// `dim_index*dim_stride` (such as `x*width_stride + y*height_stride`) do not overflow.
Unaliased,
/// At least pixels are packed.
///
/// Images of these types can wrap `[T]`-slices into the standard color types. This is a
/// precondition for `GenericImage` which requires by-reference access to pixels.
PixelPacked,
/// All samples are packed.
///
/// This is orthogonal to `PixelPacked`. It requires that there are no holes in the image but
/// it is not necessary that the pixel samples themselves are adjacent. An example of this
/// behaviour is a planar image layout.
ImagePacked,
/// The samples are in row-major form and all samples are packed.
///
/// In addition to `PixelPacked` and `ImagePacked` this also asserts that the pixel matrix is
/// in row-major form.
RowMajorPacked,
/// The samples are in column-major form and all samples are packed.
///
/// In addition to `PixelPacked` and `ImagePacked` this also asserts that the pixel matrix is
/// in column-major form.
ColumnMajorPacked,
}
impl<Buffer, P: Pixel> View<Buffer, P>
where
Buffer: AsRef<[P::Subpixel]>,
{
/// Take out the sample buffer.
///
/// Gives up the normalization invariants on the buffer format.
pub fn into_inner(self) -> FlatSamples<Buffer> {
self.inner
}
/// Get a reference on the inner sample descriptor.
///
/// There is no mutable counterpart as modifying the buffer format, including strides and
/// lengths, could invalidate the accessibility invariants of the `View`. It is not specified
/// if the inner buffer is the same as the buffer of the image from which this view was
/// created. It might have been truncated as an optimization.
pub fn flat(&self) -> &FlatSamples<Buffer> {
&self.inner
}
/// Get a reference on the inner buffer.
///
/// There is no mutable counter part since it is not intended to allow you to reassign the
/// buffer or otherwise change its size or properties.
pub fn samples(&self) -> &Buffer {
&self.inner.samples
}
/// Get a reference to a selected subpixel if it is in-bounds.
///
/// This method will return `None` when the sample is out-of-bounds. All errors that could
/// occur due to overflow have been eliminated while construction the `View`.
pub fn get_sample(&self, channel: u8, x: u32, y: u32) -> Option<&P::Subpixel> {
if !self.inner.in_bounds(channel, x, y) {
return None;
}
let index = self.inner.in_bounds_index(channel, x, y);
// Should always be `Some(_)` but checking is more costly.
self.samples().as_ref().get(index)
}
/// Get a mutable reference to a selected subpixel if it is in-bounds.
///
/// This is relevant only when constructed with `FlatSamples::as_view_with_mut_samples`. This
/// method will return `None` when the sample is out-of-bounds. All errors that could occur due
/// to overflow have been eliminated while construction the `View`.
///
/// **WARNING**: Note that of course samples may alias, so that the mutable reference returned
/// here can in fact modify more than the coordinate in the argument.
pub fn get_mut_sample(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut P::Subpixel>
where
Buffer: AsMut<[P::Subpixel]>,
{
if !self.inner.in_bounds(channel, x, y) {
return None;
}
let index = self.inner.in_bounds_index(channel, x, y);
// Should always be `Some(_)` but checking is more costly.
self.inner.samples.as_mut().get_mut(index)
}
/// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
///
/// See `FlatSamples::min_length`. This method will always succeed.
pub fn min_length(&self) -> usize {
self.inner.min_length().unwrap()
}
/// Return the portion of the buffer that holds sample values.
///
/// While this can not fail–the validity of all coordinates has been validated during the
/// conversion from `FlatSamples`–the resulting slice may still contain holes.
pub fn image_slice(&self) -> &[P::Subpixel] {
&self.samples().as_ref()[..self.min_length()]
}
/// Return the mutable portion of the buffer that holds sample values.
///
/// This is relevant only when constructed with `FlatSamples::as_view_with_mut_samples`. While
/// this can not fail–the validity of all coordinates has been validated during the conversion
/// from `FlatSamples`–the resulting slice may still contain holes.
pub fn image_mut_slice(&mut self) -> &mut [P::Subpixel]
where
Buffer: AsMut<[P::Subpixel]>,
{
let min_length = self.min_length();
&mut self.inner.samples.as_mut()[..min_length]
}
/// Shrink the inner image.
///
/// The new dimensions will be the minimum of the previous dimensions. Since the set of
/// in-bounds pixels afterwards is a subset of the current ones, this is allowed on a `View`.
/// Note that you can not change the number of channels as an intrinsic property of `P`.
pub fn shrink_to(&mut self, width: u32, height: u32) {
let channels = self.inner.layout.channels;
self.inner.shrink_to(channels, width, height)
}
/// Try to convert this into an image with mutable pixels.
///
/// The resulting image implements `GenericImage` in addition to `GenericImageView`. While this
/// has mutable samples, it does not enforce that pixel can not alias and that samples are
/// packed enough for a mutable pixel reference. This is slightly cheaper than the chain
/// `self.into_inner().as_view_mut()` and keeps the `View` alive on failure.
///
/// ```
/// # use image::RgbImage;
/// # use image::Rgb;
/// let mut buffer = RgbImage::new(480, 640).into_flat_samples();
/// let view = buffer.as_view_with_mut_samples::<Rgb<u8>>().unwrap();
///
/// // Inspect some pixels, …
///
/// // Doesn't fail because it was originally an `RgbImage`.
/// let view_mut = view.try_upgrade().unwrap();
/// ```
pub fn try_upgrade(self) -> Result<ViewMut<Buffer, P>, (Error, Self)>
where
Buffer: AsMut<[P::Subpixel]>,
{
if !self.inner.is_normal(NormalForm::PixelPacked) {
return Err((Error::NormalFormRequired(NormalForm::PixelPacked), self));
}
// No length check or channel count check required, all the same.
Ok(ViewMut {
inner: self.inner,
phantom: PhantomData,
})
}
}
impl<Buffer, P: Pixel> ViewMut<Buffer, P>
where
Buffer: AsMut<[P::Subpixel]>,
{
/// Take out the sample buffer.
///
/// Gives up the normalization invariants on the buffer format.
pub fn into_inner(self) -> FlatSamples<Buffer> {
self.inner
}
/// Get a reference on the sample buffer descriptor.
///
/// There is no mutable counterpart as modifying the buffer format, including strides and
/// lengths, could invalidate the accessibility invariants of the `View`. It is not specified
/// if the inner buffer is the same as the buffer of the image from which this view was
/// created. It might have been truncated as an optimization.
pub fn flat(&self) -> &FlatSamples<Buffer> {
&self.inner
}
/// Get a reference on the inner buffer.
///
/// There is no mutable counter part since it is not intended to allow you to reassign the
/// buffer or otherwise change its size or properties. However, its contents can be accessed
/// mutable through a slice with `image_mut_slice`.
pub fn samples(&self) -> &Buffer {
&self.inner.samples
}
/// Get the minimum length of a buffer such that all in-bounds samples have valid indices.
///
/// See `FlatSamples::min_length`. This method will always succeed.
pub fn min_length(&self) -> usize {
self.inner.min_length().unwrap()
}
/// Get a reference to a selected subpixel.
///
/// This method will return `None` when the sample is out-of-bounds. All errors that could
/// occur due to overflow have been eliminated while construction the `View`.
pub fn get_sample(&self, channel: u8, x: u32, y: u32) -> Option<&P::Subpixel>
where
Buffer: AsRef<[P::Subpixel]>,
{
if !self.inner.in_bounds(channel, x, y) {
return None;
}
let index = self.inner.in_bounds_index(channel, x, y);
// Should always be `Some(_)` but checking is more costly.
self.samples().as_ref().get(index)
}
/// Get a mutable reference to a selected sample.
///
/// This method will return `None` when the sample is out-of-bounds. All errors that could
/// occur due to overflow have been eliminated while construction the `View`.
pub fn get_mut_sample(&mut self, channel: u8, x: u32, y: u32) -> Option<&mut P::Subpixel> {
if !self.inner.in_bounds(channel, x, y) {
return None;
}
let index = self.inner.in_bounds_index(channel, x, y);
// Should always be `Some(_)` but checking is more costly.
self.inner.samples.as_mut().get_mut(index)
}
/// Return the portion of the buffer that holds sample values.
///
/// While this can not fail–the validity of all coordinates has been validated during the
/// conversion from `FlatSamples`–the resulting slice may still contain holes.
pub fn image_slice(&self) -> &[P::Subpixel]
where
Buffer: AsRef<[P::Subpixel]>,
{
&self.inner.samples.as_ref()[..self.min_length()]
}
/// Return the mutable buffer that holds sample values.
pub fn image_mut_slice(&mut self) -> &mut [P::Subpixel] {
let length = self.min_length();
&mut self.inner.samples.as_mut()[..length]
}
/// Shrink the inner image.
///
/// The new dimensions will be the minimum of the previous dimensions. Since the set of
/// in-bounds pixels afterwards is a subset of the current ones, this is allowed on a `View`.
/// Note that you can not change the number of channels as an intrinsic property of `P`.
pub fn shrink_to(&mut self, width: u32, height: u32) {
let channels = self.inner.layout.channels;
self.inner.shrink_to(channels, width, height)
}
}
// The out-of-bounds panic for single sample access similar to `slice::index`.
#[inline(never)]
#[cold]
fn panic_cwh_out_of_bounds(
(c, x, y): (u8, u32, u32),
bounds: (u8, u32, u32),
strides: (usize, usize, usize),
) -> ! {
panic!(
"Sample coordinates {:?} out of sample matrix bounds {:?} with strides {:?}",
(c, x, y),
bounds,
strides
)
}
// The out-of-bounds panic for pixel access similar to `slice::index`.
#[inline(never)]
#[cold]
fn panic_pixel_out_of_bounds((x, y): (u32, u32), bounds: (u32, u32)) -> ! {
panic!("Image index {:?} out of bounds {:?}", (x, y), bounds)
}
impl<Buffer> Index<(u8, u32, u32)> for FlatSamples<Buffer>
where
Buffer: Index<usize>,
{
type Output = Buffer::Output;
/// Return a reference to a single sample at specified coordinates.
///
/// # Panics
///
/// When the coordinates are out of bounds or the index calculation fails.
fn index(&self, (c, x, y): (u8, u32, u32)) -> &Self::Output {
let bounds = self.bounds();
let strides = self.strides_cwh();
let index = self
.index(c, x, y)
.unwrap_or_else(|| panic_cwh_out_of_bounds((c, x, y), bounds, strides));
&self.samples[index]
}
}
impl<Buffer> IndexMut<(u8, u32, u32)> for FlatSamples<Buffer>
where
Buffer: IndexMut<usize>,
{
/// Return a mutable reference to a single sample at specified coordinates.
///
/// # Panics
///
/// When the coordinates are out of bounds or the index calculation fails.
fn index_mut(&mut self, (c, x, y): (u8, u32, u32)) -> &mut Self::Output {
let bounds = self.bounds();
let strides = self.strides_cwh();
let index = self
.index(c, x, y)
.unwrap_or_else(|| panic_cwh_out_of_bounds((c, x, y), bounds, strides));
&mut self.samples[index]
}
}
impl<Buffer, P: Pixel> GenericImageView for View<Buffer, P>
where
Buffer: AsRef<[P::Subpixel]>,
{
type Pixel = P;
fn dimensions(&self) -> (u32, u32) {
(self.inner.layout.width, self.inner.layout.height)
}
fn bounds(&self) -> (u32, u32, u32, u32) {
let (w, h) = self.dimensions();
(0, w, 0, h)
}
fn in_bounds(&self, x: u32, y: u32) -> bool {
let (w, h) = self.dimensions();
x < w && y < h
}
fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel {
if !self.inner.in_bounds(0, x, y) {
panic_pixel_out_of_bounds((x, y), self.dimensions())
}
let image = self.inner.samples.as_ref();
let base_index = self.inner.in_bounds_index(0, x, y);
let channels = P::CHANNEL_COUNT as usize;
let mut buffer = [Zero::zero(); 256];
buffer
.iter_mut()
.enumerate()
.take(channels)
.for_each(|(c, to)| {
let index = base_index + c * self.inner.layout.channel_stride;
*to = image[index];
});
*P::from_slice(&buffer[..channels])
}
}
impl<Buffer, P: Pixel> GenericImageView for ViewMut<Buffer, P>
where
Buffer: AsMut<[P::Subpixel]> + AsRef<[P::Subpixel]>,
{
type Pixel = P;
fn dimensions(&self) -> (u32, u32) {
(self.inner.layout.width, self.inner.layout.height)
}
fn bounds(&self) -> (u32, u32, u32, u32) {
let (w, h) = self.dimensions();
(0, w, 0, h)
}
fn in_bounds(&self, x: u32, y: u32) -> bool {
let (w, h) = self.dimensions();
x < w && y < h
}
fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel {
if !self.inner.in_bounds(0, x, y) {
panic_pixel_out_of_bounds((x, y), self.dimensions())
}
let image = self.inner.samples.as_ref();
let base_index = self.inner.in_bounds_index(0, x, y);
let channels = P::CHANNEL_COUNT as usize;
let mut buffer = [Zero::zero(); 256];
buffer
.iter_mut()
.enumerate()
.take(channels)
.for_each(|(c, to)| {
let index = base_index + c * self.inner.layout.channel_stride;
*to = image[index];
});
*P::from_slice(&buffer[..channels])
}
}
impl<Buffer, P: Pixel> GenericImage for ViewMut<Buffer, P>
where
Buffer: AsMut<[P::Subpixel]> + AsRef<[P::Subpixel]>,
{
fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut Self::Pixel {
if !self.inner.in_bounds(0, x, y) {
panic_pixel_out_of_bounds((x, y), self.dimensions())
}
let base_index = self.inner.in_bounds_index(0, x, y);
let channel_count = <P as Pixel>::CHANNEL_COUNT as usize;
let pixel_range = base_index..base_index + channel_count;
P::from_slice_mut(&mut self.inner.samples.as_mut()[pixel_range])
}
#[allow(deprecated)]
fn put_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
*self.get_pixel_mut(x, y) = pixel;
}
#[allow(deprecated)]
fn blend_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
self.get_pixel_mut(x, y).blend(&pixel);
}
}
impl From<Error> for ImageError {
fn from(error: Error) -> ImageError {
#[derive(Debug)]
struct NormalFormRequiredError(NormalForm);
impl fmt::Display for NormalFormRequiredError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Required sample buffer in normal form {:?}", self.0)
}
}
impl error::Error for NormalFormRequiredError {}
match error {
Error::TooLarge => ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::DimensionMismatch,
)),
Error::NormalFormRequired(form) => ImageError::Decoding(DecodingError::new(
ImageFormatHint::Unknown,
NormalFormRequiredError(form),
)),
Error::ChannelCountMismatch(_lc, _pc) => ImageError::Parameter(
ParameterError::from_kind(ParameterErrorKind::DimensionMismatch),
),
Error::WrongColor(color) => {
ImageError::Unsupported(UnsupportedError::from_format_and_kind(
ImageFormatHint::Unknown,
UnsupportedErrorKind::Color(color.into()),
))
}
}
}
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Error::TooLarge => write!(f, "The layout is too large"),
Error::NormalFormRequired(form) => write!(
f,
"The layout needs to {}",
match form {
NormalForm::ColumnMajorPacked => "be packed and in column major form",
NormalForm::ImagePacked => "be fully packed",
NormalForm::PixelPacked => "have packed pixels",
NormalForm::RowMajorPacked => "be packed and in row major form",
NormalForm::Unaliased => "not have any aliasing channels",
}
),
Error::ChannelCountMismatch(layout_channels, pixel_channels) => write!(
f,
"The channel count of the chosen pixel (={}) does agree with the layout (={})",
pixel_channels, layout_channels
),
Error::WrongColor(color) => write!(
f,
"The chosen color type does not match the hint {:?}",
color
),
}
}
}
impl error::Error for Error {}
impl PartialOrd for NormalForm {
/// Compares the logical preconditions.
///
/// `a < b` if the normal form `a` has less preconditions than `b`.
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
match (*self, *other) {
(NormalForm::Unaliased, NormalForm::Unaliased) => Some(cmp::Ordering::Equal),
(NormalForm::PixelPacked, NormalForm::PixelPacked) => Some(cmp::Ordering::Equal),
(NormalForm::ImagePacked, NormalForm::ImagePacked) => Some(cmp::Ordering::Equal),
(NormalForm::RowMajorPacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Equal),
(NormalForm::ColumnMajorPacked, NormalForm::ColumnMajorPacked) => {
Some(cmp::Ordering::Equal)
}
(NormalForm::Unaliased, _) => Some(cmp::Ordering::Less),
(_, NormalForm::Unaliased) => Some(cmp::Ordering::Greater),
(NormalForm::PixelPacked, NormalForm::ColumnMajorPacked) => Some(cmp::Ordering::Less),
(NormalForm::PixelPacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Less),
(NormalForm::RowMajorPacked, NormalForm::PixelPacked) => Some(cmp::Ordering::Greater),
(NormalForm::ColumnMajorPacked, NormalForm::PixelPacked) => {
Some(cmp::Ordering::Greater)
}
(NormalForm::ImagePacked, NormalForm::ColumnMajorPacked) => Some(cmp::Ordering::Less),
(NormalForm::ImagePacked, NormalForm::RowMajorPacked) => Some(cmp::Ordering::Less),
(NormalForm::RowMajorPacked, NormalForm::ImagePacked) => Some(cmp::Ordering::Greater),
(NormalForm::ColumnMajorPacked, NormalForm::ImagePacked) => {
Some(cmp::Ordering::Greater)
}
(NormalForm::ImagePacked, NormalForm::PixelPacked) => None,
(NormalForm::PixelPacked, NormalForm::ImagePacked) => None,
(NormalForm::RowMajorPacked, NormalForm::ColumnMajorPacked) => None,
(NormalForm::ColumnMajorPacked, NormalForm::RowMajorPacked) => None,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::buffer_::GrayAlphaImage;
use crate::color::{LumaA, Rgb};
#[test]
fn aliasing_view() {
let buffer = FlatSamples {
samples: &[42],
layout: SampleLayout {
channels: 3,
channel_stride: 0,
width: 100,
width_stride: 0,
height: 100,
height_stride: 0,
},
color_hint: None,
};
let view = buffer.as_view::<Rgb<u8>>().expect("This is a valid view");
let pixel_count = view
.pixels()
.inspect(|pixel| assert!(pixel.2 == Rgb([42, 42, 42])))
.count();
assert_eq!(pixel_count, 100 * 100);
}
#[test]
fn mutable_view() {
let mut buffer = FlatSamples {
samples: [0; 18],
layout: SampleLayout {
channels: 2,
channel_stride: 1,
width: 3,
width_stride: 2,
height: 3,
height_stride: 6,
},
color_hint: None,
};
{
let mut view = buffer
.as_view_mut::<LumaA<u16>>()
.expect("This should be a valid mutable buffer");
assert_eq!(view.dimensions(), (3, 3));
#[allow(deprecated)]
for i in 0..9 {
*view.get_pixel_mut(i % 3, i / 3) = LumaA([2 * i as u16, 2 * i as u16 + 1]);
}
}
buffer
.samples
.iter()
.enumerate()
.for_each(|(idx, sample)| assert_eq!(idx, *sample as usize));
}
#[test]
fn normal_forms() {
assert!(FlatSamples {
samples: [0u8; 0],
layout: SampleLayout {
channels: 2,
channel_stride: 1,
width: 3,
width_stride: 9,
height: 3,
height_stride: 28,
},
color_hint: None,
}
.is_normal(NormalForm::PixelPacked));
assert!(FlatSamples {
samples: [0u8; 0],
layout: SampleLayout {
channels: 2,
channel_stride: 8,
width: 4,
width_stride: 1,
height: 2,
height_stride: 4,
},
color_hint: None,
}
.is_normal(NormalForm::ImagePacked));
assert!(FlatSamples {
samples: [0u8; 0],
layout: SampleLayout {
channels: 2,
channel_stride: 1,
width: 4,
width_stride: 2,
height: 2,
height_stride: 8,
},
color_hint: None,
}
.is_normal(NormalForm::RowMajorPacked));
assert!(FlatSamples {
samples: [0u8; 0],
layout: SampleLayout {
channels: 2,
channel_stride: 1,
width: 4,
width_stride: 4,
height: 2,
height_stride: 2,
},
color_hint: None,
}
.is_normal(NormalForm::ColumnMajorPacked));
}
#[test]
fn image_buffer_conversion() {
let expected_layout = SampleLayout {
channels: 2,
channel_stride: 1,
width: 4,
width_stride: 2,
height: 2,
height_stride: 8,
};
let initial = GrayAlphaImage::new(expected_layout.width, expected_layout.height);
let buffer = initial.into_flat_samples();
assert_eq!(buffer.layout, expected_layout);
let _: GrayAlphaImage = buffer.try_into_buffer().unwrap_or_else(|(error, _)| {
panic!("Expected buffer to be convertible but {:?}", error)
});
}
}