use crate::Primitive;
use num_traits::identities::Zero;
#[cfg(test)]
use std::borrow::Cow;
use std::convert::TryFrom;
use std::io::{self, BufRead, Cursor, Read, Seek};
use std::iter::Iterator;
use std::marker::PhantomData;
use std::num::{ParseFloatError, ParseIntError};
use std::path::Path;
use std::{error, fmt, mem};
use crate::color::{ColorType, Rgb};
use crate::error::{
DecodingError, ImageError, ImageFormatHint, ImageResult, ParameterError, ParameterErrorKind,
UnsupportedError, UnsupportedErrorKind,
};
use crate::image::{self, ImageDecoder, ImageDecoderRect, ImageFormat, Progress};
#[derive(Debug, Clone, PartialEq, Eq)]
enum DecoderError {
RadianceHdrSignatureInvalid,
TruncatedHeader,
TruncatedDimensions,
UnparsableF32(LineType, ParseFloatError),
UnparsableU32(LineType, ParseIntError),
LineTooShort(LineType),
ExtraneousColorcorrNumbers,
DimensionsLineTooShort(usize, usize),
DimensionsLineTooLong(usize),
WrongScanlineLength(usize, usize),
FirstPixelRlMarker,
}
impl fmt::Display for DecoderError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
DecoderError::RadianceHdrSignatureInvalid => {
f.write_str("Radiance HDR signature not found")
}
DecoderError::TruncatedHeader => f.write_str("EOF in header"),
DecoderError::TruncatedDimensions => f.write_str("EOF in dimensions line"),
DecoderError::UnparsableF32(line, pe) => {
f.write_fmt(format_args!("Cannot parse {} value as f32: {}", line, pe))
}
DecoderError::UnparsableU32(line, pe) => {
f.write_fmt(format_args!("Cannot parse {} value as u32: {}", line, pe))
}
DecoderError::LineTooShort(line) => {
f.write_fmt(format_args!("Not enough numbers in {}", line))
}
DecoderError::ExtraneousColorcorrNumbers => f.write_str("Extra numbers in COLORCORR"),
DecoderError::DimensionsLineTooShort(elements, expected) => f.write_fmt(format_args!(
"Dimensions line too short: have {} elements, expected {}",
elements, expected
)),
DecoderError::DimensionsLineTooLong(expected) => f.write_fmt(format_args!(
"Dimensions line too long, expected {} elements",
expected
)),
DecoderError::WrongScanlineLength(len, expected) => f.write_fmt(format_args!(
"Wrong length of decoded scanline: got {}, expected {}",
len, expected
)),
DecoderError::FirstPixelRlMarker => {
f.write_str("First pixel of a scanline shouldn't be run length marker")
}
}
}
}
impl From<DecoderError> for ImageError {
fn from(e: DecoderError) -> ImageError {
ImageError::Decoding(DecodingError::new(ImageFormat::Hdr.into(), e))
}
}
impl error::Error for DecoderError {
fn source(&self) -> Option<&(dyn error::Error + 'static)> {
match self {
DecoderError::UnparsableF32(_, err) => Some(err),
DecoderError::UnparsableU32(_, err) => Some(err),
_ => None,
}
}
}
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
enum LineType {
Exposure,
Pixaspect,
Colorcorr,
DimensionsHeight,
DimensionsWidth,
}
impl fmt::Display for LineType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
LineType::Exposure => "EXPOSURE",
LineType::Pixaspect => "PIXASPECT",
LineType::Colorcorr => "COLORCORR",
LineType::DimensionsHeight => "height dimension",
LineType::DimensionsWidth => "width dimension",
})
}
}
#[derive(Debug)]
pub struct HdrAdapter<R: Read> {
inner: Option<HdrDecoder<R>>,
meta: HdrMetadata,
}
impl<R: BufRead> HdrAdapter<R> {
pub fn new(r: R) -> ImageResult<HdrAdapter<R>> {
let decoder = HdrDecoder::new(r)?;
let meta = decoder.metadata();
Ok(HdrAdapter {
inner: Some(decoder),
meta,
})
}
pub fn new_nonstrict(r: R) -> ImageResult<HdrAdapter<R>> {
let decoder = HdrDecoder::with_strictness(r, false)?;
let meta = decoder.metadata();
Ok(HdrAdapter {
inner: Some(decoder),
meta,
})
}
fn read_image_data(&mut self, buf: &mut [u8]) -> ImageResult<()> {
assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
match self.inner.take() {
Some(decoder) => {
let img: Vec<Rgb<u8>> = decoder.read_image_ldr()?;
for (i, Rgb(data)) in img.into_iter().enumerate() {
buf[(i * 3)..][..3].copy_from_slice(&data);
}
Ok(())
}
None => Err(ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::NoMoreData,
))),
}
}
}
pub struct HdrReader<R>(Cursor<Vec<u8>>, PhantomData<R>);
impl<R> Read for HdrReader<R> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.0.read(buf)
}
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
if self.0.position() == 0 && buf.is_empty() {
mem::swap(buf, self.0.get_mut());
Ok(buf.len())
} else {
self.0.read_to_end(buf)
}
}
}
impl<'a, R: 'a + BufRead> ImageDecoder<'a> for HdrAdapter<R> {
type Reader = HdrReader<R>;
fn dimensions(&self) -> (u32, u32) {
(self.meta.width, self.meta.height)
}
fn color_type(&self) -> ColorType {
ColorType::Rgb8
}
fn into_reader(self) -> ImageResult<Self::Reader> {
Ok(HdrReader(
Cursor::new(image::decoder_to_vec(self)?),
PhantomData,
))
}
fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
self.read_image_data(buf)
}
}
impl<'a, R: 'a + BufRead + Seek> ImageDecoderRect<'a> for HdrAdapter<R> {
fn read_rect_with_progress<F: Fn(Progress)>(
&mut self,
x: u32,
y: u32,
width: u32,
height: u32,
buf: &mut [u8],
progress_callback: F,
) -> ImageResult<()> {
image::load_rect(
x,
y,
width,
height,
buf,
progress_callback,
self,
|_, _| unreachable!(),
|s, buf| s.read_image_data(buf),
)
}
}
pub const SIGNATURE: &[u8] = b"#?RADIANCE";
const SIGNATURE_LENGTH: usize = 10;
#[derive(Debug)]
pub struct HdrDecoder<R> {
r: R,
width: u32,
height: u32,
meta: HdrMetadata,
}
#[repr(C)]
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
pub struct Rgbe8Pixel {
pub c: [u8; 3],
pub e: u8,
}
pub fn rgbe8(r: u8, g: u8, b: u8, e: u8) -> Rgbe8Pixel {
Rgbe8Pixel { c: [r, g, b], e }
}
impl Rgbe8Pixel {
#[inline]
pub fn to_hdr(self) -> Rgb<f32> {
if self.e == 0 {
Rgb([0.0, 0.0, 0.0])
} else {
let exp = f32::exp2(<f32 as From<_>>::from(self.e) - (128.0 + 8.0));
Rgb([
exp * <f32 as From<_>>::from(self.c[0]),
exp * <f32 as From<_>>::from(self.c[1]),
exp * <f32 as From<_>>::from(self.c[2]),
])
}
}
#[inline]
pub fn to_ldr<T: Primitive + Zero>(self) -> Rgb<T> {
self.to_ldr_scale_gamma(1.0, 2.2)
}
#[inline]
pub fn to_ldr_scale_gamma<T: Primitive + Zero>(self, scale: f32, gamma: f32) -> Rgb<T> {
let Rgb(data) = self.to_hdr();
let (r, g, b) = (data[0], data[1], data[2]);
#[inline]
fn sg<T: Primitive + Zero>(v: f32, scale: f32, gamma: f32) -> T {
let t_max = T::max_value();
let t_max_f32: f32 = num_traits::NumCast::from(t_max)
.expect("to_ldr_scale_gamma: maximum value of type is not representable as f32");
let fv = f32::powf(v * scale, gamma) * t_max_f32 + 0.5;
if fv < 0.0 {
T::zero()
} else if fv > t_max_f32 {
t_max
} else {
num_traits::NumCast::from(fv)
.expect("to_ldr_scale_gamma: cannot convert f32 to target type. NaN?")
}
}
Rgb([
sg(r, scale, gamma),
sg(g, scale, gamma),
sg(b, scale, gamma),
])
}
}
impl<R: BufRead> HdrDecoder<R> {
pub fn new(reader: R) -> ImageResult<HdrDecoder<R>> {
HdrDecoder::with_strictness(reader, true)
}
pub fn with_strictness(mut reader: R, strict: bool) -> ImageResult<HdrDecoder<R>> {
let mut attributes = HdrMetadata::new();
{
let r = &mut reader;
if strict {
let mut signature = [0; SIGNATURE_LENGTH];
r.read_exact(&mut signature)?;
if signature != SIGNATURE {
return Err(DecoderError::RadianceHdrSignatureInvalid.into());
} read_line_u8(r)?;
} else {
}
loop {
match read_line_u8(r)? {
None => {
return Err(DecoderError::TruncatedHeader.into());
}
Some(line) => {
if line.is_empty() {
break;
} else if line[0] == b'#' {
continue;
} let line = String::from_utf8_lossy(&line[..]);
attributes.update_header_info(&line, strict)?;
} } } } let (width, height) = match read_line_u8(&mut reader)? {
None => {
return Err(DecoderError::TruncatedDimensions.into());
}
Some(dimensions) => {
let dimensions = String::from_utf8_lossy(&dimensions[..]);
parse_dimensions_line(&dimensions, strict)?
}
};
if crate::utils::check_dimension_overflow(width, height, ColorType::Rgb8.bytes_per_pixel())
{
return Err(ImageError::Unsupported(
UnsupportedError::from_format_and_kind(
ImageFormat::Hdr.into(),
UnsupportedErrorKind::GenericFeature(format!(
"Image dimensions ({}x{}) are too large",
width, height
)),
),
));
}
Ok(HdrDecoder {
r: reader,
width,
height,
meta: HdrMetadata {
width,
height,
..attributes
},
})
} pub fn metadata(&self) -> HdrMetadata {
self.meta.clone()
}
pub fn read_image_native(mut self) -> ImageResult<Vec<Rgbe8Pixel>> {
if self.width == 0 || self.height == 0 {
return Ok(vec![]);
}
let pixel_count = self.width as usize * self.height as usize;
let mut ret = vec![Default::default(); pixel_count];
for chunk in ret.chunks_mut(self.width as usize) {
read_scanline(&mut self.r, chunk)?;
}
Ok(ret)
}
pub fn read_image_transform<T: Send, F: Send + Sync + Fn(Rgbe8Pixel) -> T>(
mut self,
f: F,
output_slice: &mut [T],
) -> ImageResult<()> {
assert_eq!(
output_slice.len(),
self.width as usize * self.height as usize
);
if self.width == 0 || self.height == 0 {
return Ok(());
}
let chunks_iter = output_slice.chunks_mut(self.width as usize);
let mut buf = vec![Default::default(); self.width as usize];
for chunk in chunks_iter {
read_scanline(&mut self.r, &mut buf[..])?;
for (dst, &pix) in chunk.iter_mut().zip(buf.iter()) {
*dst = f(pix);
}
}
Ok(())
}
pub fn read_image_ldr(self) -> ImageResult<Vec<Rgb<u8>>> {
let mut ret = vec![Rgb([0, 0, 0]); self.width as usize * self.height as usize];
self.read_image_transform(|pix| pix.to_ldr(), &mut ret[..])?;
Ok(ret)
}
pub fn read_image_hdr(self) -> ImageResult<Vec<Rgb<f32>>> {
let mut ret = vec![Rgb([0.0, 0.0, 0.0]); self.width as usize * self.height as usize];
self.read_image_transform(|pix| pix.to_hdr(), &mut ret[..])?;
Ok(ret)
}
}
impl<R: Read> IntoIterator for HdrDecoder<R> {
type Item = ImageResult<Rgbe8Pixel>;
type IntoIter = HdrImageDecoderIterator<R>;
fn into_iter(self) -> Self::IntoIter {
HdrImageDecoderIterator {
r: self.r,
scanline_cnt: self.height as usize,
buf: vec![Default::default(); self.width as usize],
col: 0,
scanline: 0,
trouble: true, error_encountered: false,
}
}
}
pub struct HdrImageDecoderIterator<R: Read> {
r: R,
scanline_cnt: usize,
buf: Vec<Rgbe8Pixel>, col: usize, scanline: usize, trouble: bool, error_encountered: bool,
}
impl<R: Read> HdrImageDecoderIterator<R> {
#[inline]
fn advance(&mut self) {
self.col += 1;
if self.col == self.buf.len() {
self.col = 0;
self.scanline += 1;
self.trouble = true;
}
}
}
impl<R: Read> Iterator for HdrImageDecoderIterator<R> {
type Item = ImageResult<Rgbe8Pixel>;
fn next(&mut self) -> Option<Self::Item> {
if !self.trouble {
let ret = self.buf[self.col];
self.advance();
Some(Ok(ret))
} else {
if self.buf.is_empty() || self.scanline == self.scanline_cnt {
return None;
} if self.error_encountered {
self.advance();
return Some(Err(ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::FailedAlready,
))));
} if self.col == 0 {
match read_scanline(&mut self.r, &mut self.buf[..]) {
Ok(_) => {
}
Err(err) => {
self.advance();
self.error_encountered = true;
self.trouble = true;
return Some(Err(err));
}
}
} self.trouble = false;
let ret = self.buf[0];
self.advance();
Some(Ok(ret))
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let total_cnt = self.buf.len() * self.scanline_cnt;
let cur_cnt = self.buf.len() * self.scanline + self.col;
let remaining = total_cnt - cur_cnt;
(remaining, Some(remaining))
}
}
impl<R: Read> ExactSizeIterator for HdrImageDecoderIterator<R> {}
fn read_scanline<R: Read>(r: &mut R, buf: &mut [Rgbe8Pixel]) -> ImageResult<()> {
assert!(!buf.is_empty());
let width = buf.len();
let fb = read_rgbe(r)?;
if fb.c[0] == 2 && fb.c[1] == 2 && fb.c[2] < 128 {
decode_component(r, width, |offset, value| buf[offset].c[0] = value)?;
decode_component(r, width, |offset, value| buf[offset].c[1] = value)?;
decode_component(r, width, |offset, value| buf[offset].c[2] = value)?;
decode_component(r, width, |offset, value| buf[offset].e = value)?;
} else {
decode_old_rle(r, fb, buf)?;
}
Ok(())
}
#[inline(always)]
fn read_byte<R: Read>(r: &mut R) -> io::Result<u8> {
let mut buf = [0u8];
r.read_exact(&mut buf[..])?;
Ok(buf[0])
}
#[inline]
fn decode_component<R: Read, S: FnMut(usize, u8)>(
r: &mut R,
width: usize,
mut set_component: S,
) -> ImageResult<()> {
let mut buf = [0; 128];
let mut pos = 0;
while pos < width {
pos += {
let rl = read_byte(r)?;
if rl <= 128 {
if pos + rl as usize > width {
return Err(DecoderError::WrongScanlineLength(pos + rl as usize, width).into());
}
r.read_exact(&mut buf[0..rl as usize])?;
for (offset, &value) in buf[0..rl as usize].iter().enumerate() {
set_component(pos + offset, value);
}
rl as usize
} else {
let rl = rl - 128;
if pos + rl as usize > width {
return Err(DecoderError::WrongScanlineLength(pos + rl as usize, width).into());
}
let value = read_byte(r)?;
for offset in 0..rl as usize {
set_component(pos + offset, value);
}
rl as usize
}
};
}
if pos != width {
return Err(DecoderError::WrongScanlineLength(pos, width).into());
}
Ok(())
}
fn decode_old_rle<R: Read>(r: &mut R, fb: Rgbe8Pixel, buf: &mut [Rgbe8Pixel]) -> ImageResult<()> {
assert!(!buf.is_empty());
let width = buf.len();
#[inline]
fn rl_marker(pix: Rgbe8Pixel) -> Option<usize> {
if pix.c == [1, 1, 1] {
Some(pix.e as usize)
} else {
None
}
}
if rl_marker(fb).is_some() {
return Err(DecoderError::FirstPixelRlMarker.into());
}
buf[0] = fb; let mut x_off = 1; let mut rl_mult = 1; let mut prev_pixel = fb;
while x_off < width {
let pix = read_rgbe(r)?;
x_off += {
if let Some(rl) = rl_marker(pix) {
let rl = rl * rl_mult;
rl_mult *= 256;
if x_off + rl <= width {
for b in &mut buf[x_off..x_off + rl] {
*b = prev_pixel;
}
} else {
return Err(DecoderError::WrongScanlineLength(x_off + rl, width).into());
};
rl } else {
rl_mult = 1; prev_pixel = pix;
buf[x_off] = pix;
1 }
};
}
if x_off != width {
return Err(DecoderError::WrongScanlineLength(x_off, width).into());
}
Ok(())
}
fn read_rgbe<R: Read>(r: &mut R) -> io::Result<Rgbe8Pixel> {
let mut buf = [0u8; 4];
r.read_exact(&mut buf[..])?;
Ok(Rgbe8Pixel {
c: [buf[0], buf[1], buf[2]],
e: buf[3],
})
}
#[derive(Debug, Clone)]
pub struct HdrMetadata {
pub width: u32,
pub height: u32,
pub orientation: ((i8, i8), (i8, i8)),
pub exposure: Option<f32>,
pub color_correction: Option<(f32, f32, f32)>,
pub pixel_aspect_ratio: Option<f32>,
pub custom_attributes: Vec<(String, String)>,
}
impl HdrMetadata {
fn new() -> HdrMetadata {
HdrMetadata {
width: 0,
height: 0,
orientation: ((1, 0), (0, 1)),
exposure: None,
color_correction: None,
pixel_aspect_ratio: None,
custom_attributes: vec![],
}
}
fn update_header_info(&mut self, line: &str, strict: bool) -> ImageResult<()> {
let maybe_key_value = split_at_first(line, "=").map(|(key, value)| (key.trim(), value));
match maybe_key_value {
Some((key, val)) => self
.custom_attributes
.push((key.to_owned(), val.to_owned())),
None => self.custom_attributes.push(("".into(), line.to_owned())),
}
match maybe_key_value {
Some(("FORMAT", val)) => {
if val.trim() != "32-bit_rle_rgbe" {
return Err(ImageError::Unsupported(
UnsupportedError::from_format_and_kind(
ImageFormat::Hdr.into(),
UnsupportedErrorKind::Format(ImageFormatHint::Name(limit_string_len(
val, 20,
))),
),
));
}
}
Some(("EXPOSURE", val)) => {
match val.trim().parse::<f32>() {
Ok(v) => {
self.exposure = Some(self.exposure.unwrap_or(1.0) * v); }
Err(parse_error) => {
if strict {
return Err(DecoderError::UnparsableF32(
LineType::Exposure,
parse_error,
)
.into());
} }
};
}
Some(("PIXASPECT", val)) => {
match val.trim().parse::<f32>() {
Ok(v) => {
self.pixel_aspect_ratio = Some(self.pixel_aspect_ratio.unwrap_or(1.0) * v);
}
Err(parse_error) => {
if strict {
return Err(DecoderError::UnparsableF32(
LineType::Pixaspect,
parse_error,
)
.into());
} }
};
}
Some(("COLORCORR", val)) => {
let mut rgbcorr = [1.0, 1.0, 1.0];
match parse_space_separated_f32(val, &mut rgbcorr, LineType::Colorcorr) {
Ok(extra_numbers) => {
if strict && extra_numbers {
return Err(DecoderError::ExtraneousColorcorrNumbers.into());
} let (rc, gc, bc) = self.color_correction.unwrap_or((1.0, 1.0, 1.0));
self.color_correction =
Some((rc * rgbcorr[0], gc * rgbcorr[1], bc * rgbcorr[2]));
}
Err(err) => {
if strict {
return Err(err);
} }
}
}
None => {
}
_ => {
}
} Ok(())
}
}
fn parse_space_separated_f32(line: &str, vals: &mut [f32], line_tp: LineType) -> ImageResult<bool> {
let mut nums = line.split_whitespace();
for val in vals.iter_mut() {
if let Some(num) = nums.next() {
match num.parse::<f32>() {
Ok(v) => *val = v,
Err(err) => return Err(DecoderError::UnparsableF32(line_tp, err).into()),
}
} else {
return Err(DecoderError::LineTooShort(line_tp).into());
}
}
Ok(nums.next().is_some())
}
fn parse_dimensions_line(line: &str, strict: bool) -> ImageResult<(u32, u32)> {
const DIMENSIONS_COUNT: usize = 4;
let mut dim_parts = line.split_whitespace();
let c1_tag = dim_parts
.next()
.ok_or(DecoderError::DimensionsLineTooShort(0, DIMENSIONS_COUNT))?;
let c1_str = dim_parts
.next()
.ok_or(DecoderError::DimensionsLineTooShort(1, DIMENSIONS_COUNT))?;
let c2_tag = dim_parts
.next()
.ok_or(DecoderError::DimensionsLineTooShort(2, DIMENSIONS_COUNT))?;
let c2_str = dim_parts
.next()
.ok_or(DecoderError::DimensionsLineTooShort(3, DIMENSIONS_COUNT))?;
if strict && dim_parts.next().is_some() {
return Err(DecoderError::DimensionsLineTooLong(DIMENSIONS_COUNT).into());
} match (c1_tag, c2_tag) {
("-Y", "+X") => {
let height = c1_str
.parse::<u32>()
.map_err(|pe| DecoderError::UnparsableU32(LineType::DimensionsHeight, pe))?;
let width = c2_str
.parse::<u32>()
.map_err(|pe| DecoderError::UnparsableU32(LineType::DimensionsWidth, pe))?;
Ok((width, height))
}
_ => Err(ImageError::Unsupported(
UnsupportedError::from_format_and_kind(
ImageFormat::Hdr.into(),
UnsupportedErrorKind::GenericFeature(format!(
"Orientation {} {}",
limit_string_len(c1_tag, 4),
limit_string_len(c2_tag, 4)
)),
),
)),
} }
fn limit_string_len(s: &str, len: usize) -> String {
let s_char_len = s.chars().count();
if s_char_len > len {
s.chars().take(len).chain("...".chars()).collect()
} else {
s.into()
}
}
fn split_at_first<'a>(s: &'a str, separator: &str) -> Option<(&'a str, &'a str)> {
match s.find(separator) {
None | Some(0) => None,
Some(p) if p >= s.len() - separator.len() => None,
Some(p) => Some((&s[..p], &s[(p + separator.len())..])),
}
}
#[test]
fn split_at_first_test() {
assert_eq!(split_at_first(&Cow::Owned("".into()), "="), None);
assert_eq!(split_at_first(&Cow::Owned("=".into()), "="), None);
assert_eq!(split_at_first(&Cow::Owned("= ".into()), "="), None);
assert_eq!(
split_at_first(&Cow::Owned(" = ".into()), "="),
Some((" ", " "))
);
assert_eq!(
split_at_first(&Cow::Owned("EXPOSURE= ".into()), "="),
Some(("EXPOSURE", " "))
);
assert_eq!(
split_at_first(&Cow::Owned("EXPOSURE= =".into()), "="),
Some(("EXPOSURE", " ="))
);
assert_eq!(
split_at_first(&Cow::Owned("EXPOSURE== =".into()), "=="),
Some(("EXPOSURE", " ="))
);
assert_eq!(split_at_first(&Cow::Owned("EXPOSURE".into()), ""), None);
}
fn read_line_u8<R: BufRead>(r: &mut R) -> ::std::io::Result<Option<Vec<u8>>> {
let mut ret = Vec::with_capacity(16);
match r.read_until(b'\n', &mut ret) {
Ok(0) => Ok(None),
Ok(_) => {
if let Some(&b'\n') = ret[..].last() {
let _ = ret.pop();
}
Ok(Some(ret))
}
Err(err) => Err(err),
}
}
#[test]
fn read_line_u8_test() {
let buf: Vec<_> = (&b"One\nTwo\nThree\nFour\n\n\n"[..]).into();
let input = &mut ::std::io::Cursor::new(buf);
assert_eq!(&read_line_u8(input).unwrap().unwrap()[..], &b"One"[..]);
assert_eq!(&read_line_u8(input).unwrap().unwrap()[..], &b"Two"[..]);
assert_eq!(&read_line_u8(input).unwrap().unwrap()[..], &b"Three"[..]);
assert_eq!(&read_line_u8(input).unwrap().unwrap()[..], &b"Four"[..]);
assert_eq!(&read_line_u8(input).unwrap().unwrap()[..], &b""[..]);
assert_eq!(&read_line_u8(input).unwrap().unwrap()[..], &b""[..]);
assert_eq!(read_line_u8(input).unwrap(), None);
}
pub fn read_raw_file<P: AsRef<Path>>(path: P) -> ::std::io::Result<Vec<Rgb<f32>>> {
use byteorder::{LittleEndian as LE, ReadBytesExt};
use std::fs::File;
use std::io::BufReader;
let mut r = BufReader::new(File::open(path)?);
let w = r.read_u32::<LE>()? as usize;
let h = r.read_u32::<LE>()? as usize;
let c = r.read_u32::<LE>()? as usize;
assert_eq!(c, 3);
let cnt = w * h;
let mut ret = Vec::with_capacity(cnt);
for _ in 0..cnt {
let cr = r.read_f32::<LE>()?;
let cg = r.read_f32::<LE>()?;
let cb = r.read_f32::<LE>()?;
ret.push(Rgb([cr, cg, cb]));
}
Ok(ret)
}
#[cfg(test)]
mod test {
use super::*;
use std::io::Cursor;
#[test]
fn dimension_overflow() {
let data = b"#?RADIANCE\nFORMAT=32-bit_rle_rgbe\n\n -Y 4294967295 +X 4294967295";
assert!(HdrAdapter::new(Cursor::new(data)).is_err());
assert!(HdrAdapter::new_nonstrict(Cursor::new(data)).is_err());
}
}