1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
//! Contains the generic `ImageBuffer` struct.
use num_traits::Zero;
use std::fmt;
use std::marker::PhantomData;
use std::ops::{Deref, DerefMut, Index, IndexMut, Range};
use std::path::Path;
use std::slice::{ChunksExact, ChunksExactMut};

use crate::color::{FromColor, Luma, LumaA, Rgb, Rgba};
use crate::dynimage::{save_buffer, save_buffer_with_format, write_buffer_with_format};
use crate::error::ImageResult;
use crate::flat::{FlatSamples, SampleLayout};
use crate::image::{GenericImage, GenericImageView, ImageEncoder, ImageFormat, ImageOutputFormat};
use crate::math::Rect;
use crate::traits::{EncodableLayout, Pixel, PixelWithColorType};
use crate::utils::expand_packed;

/// Iterate over pixel refs.
pub struct Pixels<'a, P: Pixel + 'a>
where
    P::Subpixel: 'a,
{
    chunks: ChunksExact<'a, P::Subpixel>,
}

impl<'a, P: Pixel + 'a> Iterator for Pixels<'a, P>
where
    P::Subpixel: 'a,
{
    type Item = &'a P;

    #[inline(always)]
    fn next(&mut self) -> Option<&'a P> {
        self.chunks.next().map(|v| <P as Pixel>::from_slice(v))
    }

    #[inline(always)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }
}

impl<'a, P: Pixel + 'a> ExactSizeIterator for Pixels<'a, P>
where
    P::Subpixel: 'a,
{
    fn len(&self) -> usize {
        self.chunks.len()
    }
}

impl<'a, P: Pixel + 'a> DoubleEndedIterator for Pixels<'a, P>
where
    P::Subpixel: 'a,
{
    #[inline(always)]
    fn next_back(&mut self) -> Option<&'a P> {
        self.chunks.next_back().map(|v| <P as Pixel>::from_slice(v))
    }
}

impl<P: Pixel> Clone for Pixels<'_, P> {
    fn clone(&self) -> Self {
        Pixels {
            chunks: self.chunks.clone(),
        }
    }
}

impl<P: Pixel> fmt::Debug for Pixels<'_, P>
where
    P::Subpixel: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Pixels")
            .field("chunks", &self.chunks)
            .finish()
    }
}

/// Iterate over mutable pixel refs.
pub struct PixelsMut<'a, P: Pixel + 'a>
where
    P::Subpixel: 'a,
{
    chunks: ChunksExactMut<'a, P::Subpixel>,
}

impl<'a, P: Pixel + 'a> Iterator for PixelsMut<'a, P>
where
    P::Subpixel: 'a,
{
    type Item = &'a mut P;

    #[inline(always)]
    fn next(&mut self) -> Option<&'a mut P> {
        self.chunks.next().map(|v| <P as Pixel>::from_slice_mut(v))
    }

    #[inline(always)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }
}

impl<'a, P: Pixel + 'a> ExactSizeIterator for PixelsMut<'a, P>
where
    P::Subpixel: 'a,
{
    fn len(&self) -> usize {
        self.chunks.len()
    }
}

impl<'a, P: Pixel + 'a> DoubleEndedIterator for PixelsMut<'a, P>
where
    P::Subpixel: 'a,
{
    #[inline(always)]
    fn next_back(&mut self) -> Option<&'a mut P> {
        self.chunks
            .next_back()
            .map(|v| <P as Pixel>::from_slice_mut(v))
    }
}

impl<P: Pixel> fmt::Debug for PixelsMut<'_, P>
where
    P::Subpixel: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("PixelsMut")
            .field("chunks", &self.chunks)
            .finish()
    }
}

/// Iterate over rows of an image
///
/// This iterator is created with [`ImageBuffer::rows`]. See its document for details.
///
/// [`ImageBuffer::rows`]: ../struct.ImageBuffer.html#method.rows
pub struct Rows<'a, P: Pixel + 'a>
where
    <P as Pixel>::Subpixel: 'a,
{
    pixels: ChunksExact<'a, P::Subpixel>,
}

impl<'a, P: Pixel + 'a> Rows<'a, P> {
    /// Construct the iterator from image pixels. This is not public since it has a (hidden) panic
    /// condition. The `pixels` slice must be large enough so that all pixels are addressable.
    fn with_image(pixels: &'a [P::Subpixel], width: u32, height: u32) -> Self {
        let row_len = (width as usize) * usize::from(<P as Pixel>::CHANNEL_COUNT);
        if row_len == 0 {
            Rows {
                pixels: [].chunks_exact(1),
            }
        } else {
            let pixels = pixels
                .get(..row_len * height as usize)
                .expect("Pixel buffer has too few subpixels");
            // Rows are physically present. In particular, height is smaller than `usize::MAX` as
            // all subpixels can be indexed.
            Rows {
                pixels: pixels.chunks_exact(row_len),
            }
        }
    }
}

impl<'a, P: Pixel + 'a> Iterator for Rows<'a, P>
where
    P::Subpixel: 'a,
{
    type Item = Pixels<'a, P>;

    #[inline(always)]
    fn next(&mut self) -> Option<Pixels<'a, P>> {
        let row = self.pixels.next()?;
        Some(Pixels {
            // Note: this is not reached when CHANNEL_COUNT is 0.
            chunks: row.chunks_exact(<P as Pixel>::CHANNEL_COUNT as usize),
        })
    }

    #[inline(always)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }
}

impl<'a, P: Pixel + 'a> ExactSizeIterator for Rows<'a, P>
where
    P::Subpixel: 'a,
{
    fn len(&self) -> usize {
        self.pixels.len()
    }
}

impl<'a, P: Pixel + 'a> DoubleEndedIterator for Rows<'a, P>
where
    P::Subpixel: 'a,
{
    #[inline(always)]
    fn next_back(&mut self) -> Option<Pixels<'a, P>> {
        let row = self.pixels.next_back()?;
        Some(Pixels {
            // Note: this is not reached when CHANNEL_COUNT is 0.
            chunks: row.chunks_exact(<P as Pixel>::CHANNEL_COUNT as usize),
        })
    }
}

impl<P: Pixel> Clone for Rows<'_, P> {
    fn clone(&self) -> Self {
        Rows {
            pixels: self.pixels.clone(),
        }
    }
}

impl<P: Pixel> fmt::Debug for Rows<'_, P>
where
    P::Subpixel: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Rows")
            .field("pixels", &self.pixels)
            .finish()
    }
}

/// Iterate over mutable rows of an image
///
/// This iterator is created with [`ImageBuffer::rows_mut`]. See its document for details.
///
/// [`ImageBuffer::rows_mut`]: ../struct.ImageBuffer.html#method.rows_mut
pub struct RowsMut<'a, P: Pixel + 'a>
where
    <P as Pixel>::Subpixel: 'a,
{
    pixels: ChunksExactMut<'a, P::Subpixel>,
}

impl<'a, P: Pixel + 'a> RowsMut<'a, P> {
    /// Construct the iterator from image pixels. This is not public since it has a (hidden) panic
    /// condition. The `pixels` slice must be large enough so that all pixels are addressable.
    fn with_image(pixels: &'a mut [P::Subpixel], width: u32, height: u32) -> Self {
        let row_len = (width as usize) * usize::from(<P as Pixel>::CHANNEL_COUNT);
        if row_len == 0 {
            RowsMut {
                pixels: [].chunks_exact_mut(1),
            }
        } else {
            let pixels = pixels
                .get_mut(..row_len * height as usize)
                .expect("Pixel buffer has too few subpixels");
            // Rows are physically present. In particular, height is smaller than `usize::MAX` as
            // all subpixels can be indexed.
            RowsMut {
                pixels: pixels.chunks_exact_mut(row_len),
            }
        }
    }
}

impl<'a, P: Pixel + 'a> Iterator for RowsMut<'a, P>
where
    P::Subpixel: 'a,
{
    type Item = PixelsMut<'a, P>;

    #[inline(always)]
    fn next(&mut self) -> Option<PixelsMut<'a, P>> {
        let row = self.pixels.next()?;
        Some(PixelsMut {
            // Note: this is not reached when CHANNEL_COUNT is 0.
            chunks: row.chunks_exact_mut(<P as Pixel>::CHANNEL_COUNT as usize),
        })
    }

    #[inline(always)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }
}

impl<'a, P: Pixel + 'a> ExactSizeIterator for RowsMut<'a, P>
where
    P::Subpixel: 'a,
{
    fn len(&self) -> usize {
        self.pixels.len()
    }
}

impl<'a, P: Pixel + 'a> DoubleEndedIterator for RowsMut<'a, P>
where
    P::Subpixel: 'a,
{
    #[inline(always)]
    fn next_back(&mut self) -> Option<PixelsMut<'a, P>> {
        let row = self.pixels.next_back()?;
        Some(PixelsMut {
            // Note: this is not reached when CHANNEL_COUNT is 0.
            chunks: row.chunks_exact_mut(<P as Pixel>::CHANNEL_COUNT as usize),
        })
    }
}

impl<P: Pixel> fmt::Debug for RowsMut<'_, P>
where
    P::Subpixel: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("RowsMut")
            .field("pixels", &self.pixels)
            .finish()
    }
}

/// Enumerate the pixels of an image.
pub struct EnumeratePixels<'a, P: Pixel + 'a>
where
    <P as Pixel>::Subpixel: 'a,
{
    pixels: Pixels<'a, P>,
    x: u32,
    y: u32,
    width: u32,
}

impl<'a, P: Pixel + 'a> Iterator for EnumeratePixels<'a, P>
where
    P::Subpixel: 'a,
{
    type Item = (u32, u32, &'a P);

    #[inline(always)]
    fn next(&mut self) -> Option<(u32, u32, &'a P)> {
        if self.x >= self.width {
            self.x = 0;
            self.y += 1;
        }
        let (x, y) = (self.x, self.y);
        self.x += 1;
        self.pixels.next().map(|p| (x, y, p))
    }

    #[inline(always)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }
}

impl<'a, P: Pixel + 'a> ExactSizeIterator for EnumeratePixels<'a, P>
where
    P::Subpixel: 'a,
{
    fn len(&self) -> usize {
        self.pixels.len()
    }
}

impl<P: Pixel> Clone for EnumeratePixels<'_, P> {
    fn clone(&self) -> Self {
        EnumeratePixels {
            pixels: self.pixels.clone(),
            ..*self
        }
    }
}

impl<P: Pixel> fmt::Debug for EnumeratePixels<'_, P>
where
    P::Subpixel: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("EnumeratePixels")
            .field("pixels", &self.pixels)
            .field("x", &self.x)
            .field("y", &self.y)
            .field("width", &self.width)
            .finish()
    }
}

/// Enumerate the rows of an image.
pub struct EnumerateRows<'a, P: Pixel + 'a>
where
    <P as Pixel>::Subpixel: 'a,
{
    rows: Rows<'a, P>,
    y: u32,
    width: u32,
}

impl<'a, P: Pixel + 'a> Iterator for EnumerateRows<'a, P>
where
    P::Subpixel: 'a,
{
    type Item = (u32, EnumeratePixels<'a, P>);

    #[inline(always)]
    fn next(&mut self) -> Option<(u32, EnumeratePixels<'a, P>)> {
        let y = self.y;
        self.y += 1;
        self.rows.next().map(|r| {
            (
                y,
                EnumeratePixels {
                    x: 0,
                    y,
                    width: self.width,
                    pixels: r,
                },
            )
        })
    }

    #[inline(always)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }
}

impl<'a, P: Pixel + 'a> ExactSizeIterator for EnumerateRows<'a, P>
where
    P::Subpixel: 'a,
{
    fn len(&self) -> usize {
        self.rows.len()
    }
}

impl<P: Pixel> Clone for EnumerateRows<'_, P> {
    fn clone(&self) -> Self {
        EnumerateRows {
            rows: self.rows.clone(),
            ..*self
        }
    }
}

impl<P: Pixel> fmt::Debug for EnumerateRows<'_, P>
where
    P::Subpixel: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("EnumerateRows")
            .field("rows", &self.rows)
            .field("y", &self.y)
            .field("width", &self.width)
            .finish()
    }
}

/// Enumerate the pixels of an image.
pub struct EnumeratePixelsMut<'a, P: Pixel + 'a>
where
    <P as Pixel>::Subpixel: 'a,
{
    pixels: PixelsMut<'a, P>,
    x: u32,
    y: u32,
    width: u32,
}

impl<'a, P: Pixel + 'a> Iterator for EnumeratePixelsMut<'a, P>
where
    P::Subpixel: 'a,
{
    type Item = (u32, u32, &'a mut P);

    #[inline(always)]
    fn next(&mut self) -> Option<(u32, u32, &'a mut P)> {
        if self.x >= self.width {
            self.x = 0;
            self.y += 1;
        }
        let (x, y) = (self.x, self.y);
        self.x += 1;
        self.pixels.next().map(|p| (x, y, p))
    }

    #[inline(always)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }
}

impl<'a, P: Pixel + 'a> ExactSizeIterator for EnumeratePixelsMut<'a, P>
where
    P::Subpixel: 'a,
{
    fn len(&self) -> usize {
        self.pixels.len()
    }
}

impl<P: Pixel> fmt::Debug for EnumeratePixelsMut<'_, P>
where
    P::Subpixel: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("EnumeratePixelsMut")
            .field("pixels", &self.pixels)
            .field("x", &self.x)
            .field("y", &self.y)
            .field("width", &self.width)
            .finish()
    }
}

/// Enumerate the rows of an image.
pub struct EnumerateRowsMut<'a, P: Pixel + 'a>
where
    <P as Pixel>::Subpixel: 'a,
{
    rows: RowsMut<'a, P>,
    y: u32,
    width: u32,
}

impl<'a, P: Pixel + 'a> Iterator for EnumerateRowsMut<'a, P>
where
    P::Subpixel: 'a,
{
    type Item = (u32, EnumeratePixelsMut<'a, P>);

    #[inline(always)]
    fn next(&mut self) -> Option<(u32, EnumeratePixelsMut<'a, P>)> {
        let y = self.y;
        self.y += 1;
        self.rows.next().map(|r| {
            (
                y,
                EnumeratePixelsMut {
                    x: 0,
                    y,
                    width: self.width,
                    pixels: r,
                },
            )
        })
    }

    #[inline(always)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }
}

impl<'a, P: Pixel + 'a> ExactSizeIterator for EnumerateRowsMut<'a, P>
where
    P::Subpixel: 'a,
{
    fn len(&self) -> usize {
        self.rows.len()
    }
}

impl<P: Pixel> fmt::Debug for EnumerateRowsMut<'_, P>
where
    P::Subpixel: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("EnumerateRowsMut")
            .field("rows", &self.rows)
            .field("y", &self.y)
            .field("width", &self.width)
            .finish()
    }
}

/// Generic image buffer
///
/// This is an image parameterised by its Pixel types, represented by a width and height and a
/// container of channel data. It provides direct access to its pixels and implements the
/// [`GenericImageView`] and [`GenericImage`] traits. In many ways, this is the standard buffer
/// implementing those traits. Using this concrete type instead of a generic type parameter has
/// been shown to improve performance.
///
/// The crate defines a few type aliases with regularly used pixel types for your convenience, such
/// as [`RgbImage`], [`GrayImage`] etc.
///
/// [`GenericImage`]: trait.GenericImage.html
/// [`GenericImageView`]: trait.GenericImageView.html
/// [`RgbImage`]: type.RgbImage.html
/// [`GrayImage`]: type.GrayImage.html
///
/// To convert between images of different Pixel types use [`DynamicImage`].
///
/// You can retrieve a complete description of the buffer's layout and contents through
/// [`as_flat_samples`] and [`as_flat_samples_mut`]. This can be handy to also use the contents in
/// a foreign language, map it as a GPU host buffer or other similar tasks.
///
/// [`DynamicImage`]: enum.DynamicImage.html
/// [`as_flat_samples`]: #method.as_flat_samples
/// [`as_flat_samples_mut`]: #method.as_flat_samples_mut
///
/// ## Examples
///
/// Create a simple canvas and paint a small cross.
///
/// ```
/// use image::{RgbImage, Rgb};
///
/// let mut img = RgbImage::new(32, 32);
///
/// for x in 15..=17 {
///     for y in 8..24 {
///         img.put_pixel(x, y, Rgb([255, 0, 0]));
///         img.put_pixel(y, x, Rgb([255, 0, 0]));
///     }
/// }
/// ```
///
/// Overlays an image on top of a larger background raster.
///
/// ```no_run
/// use image::{GenericImage, GenericImageView, ImageBuffer, open};
///
/// let on_top = open("path/to/some.png").unwrap().into_rgb8();
/// let mut img = ImageBuffer::from_fn(512, 512, |x, y| {
///     if (x + y) % 2 == 0 {
///         image::Rgb([0, 0, 0])
///     } else {
///         image::Rgb([255, 255, 255])
///     }
/// });
///
/// image::imageops::overlay(&mut img, &on_top, 128, 128);
/// ```
///
/// Convert an RgbaImage to a GrayImage.
///
/// ```no_run
/// use image::{open, DynamicImage};
///
/// let rgba = open("path/to/some.png").unwrap().into_rgba8();
/// let gray = DynamicImage::ImageRgba8(rgba).into_luma8();
/// ```
#[derive(Debug, Hash, PartialEq, Eq)]
pub struct ImageBuffer<P: Pixel, Container> {
    width: u32,
    height: u32,
    _phantom: PhantomData<P>,
    data: Container,
}

// generic implementation, shared along all image buffers
impl<P, Container> ImageBuffer<P, Container>
where
    P: Pixel,
    Container: Deref<Target = [P::Subpixel]>,
{
    /// Constructs a buffer from a generic container
    /// (for example a `Vec` or a slice)
    ///
    /// Returns `None` if the container is not big enough (including when the image dimensions
    /// necessitate an allocation of more bytes than supported by the container).
    pub fn from_raw(width: u32, height: u32, buf: Container) -> Option<ImageBuffer<P, Container>> {
        if Self::check_image_fits(width, height, buf.len()) {
            Some(ImageBuffer {
                data: buf,
                width,
                height,
                _phantom: PhantomData,
            })
        } else {
            None
        }
    }

    /// Returns the underlying raw buffer
    pub fn into_raw(self) -> Container {
        self.data
    }

    /// Returns the underlying raw buffer
    pub fn as_raw(&self) -> &Container {
        &self.data
    }

    /// The width and height of this image.
    pub fn dimensions(&self) -> (u32, u32) {
        (self.width, self.height)
    }

    /// The width of this image.
    pub fn width(&self) -> u32 {
        self.width
    }

    /// The height of this image.
    pub fn height(&self) -> u32 {
        self.height
    }

    // TODO: choose name under which to expose.
    pub(crate) fn inner_pixels(&self) -> &[P::Subpixel] {
        let len = Self::image_buffer_len(self.width, self.height).unwrap();
        &self.data[..len]
    }

    /// Returns an iterator over the pixels of this image.
    /// The iteration order is x = 0 to width then y = 0 to height
    pub fn pixels(&self) -> Pixels<P> {
        Pixels {
            chunks: self
                .inner_pixels()
                .chunks_exact(<P as Pixel>::CHANNEL_COUNT as usize),
        }
    }

    /// Returns an iterator over the rows of this image.
    ///
    /// Only non-empty rows can be iterated in this manner. In particular the iterator will not
    /// yield any item when the width of the image is `0` or a pixel type without any channels is
    /// used. This ensures that its length can always be represented by `usize`.
    pub fn rows(&self) -> Rows<P> {
        Rows::with_image(&self.data, self.width, self.height)
    }

    /// Enumerates over the pixels of the image.
    /// The iterator yields the coordinates of each pixel
    /// along with a reference to them.
    /// The iteration order is x = 0 to width then y = 0 to height
    /// Starting from the top left.
    pub fn enumerate_pixels(&self) -> EnumeratePixels<P> {
        EnumeratePixels {
            pixels: self.pixels(),
            x: 0,
            y: 0,
            width: self.width,
        }
    }

    /// Enumerates over the rows of the image.
    /// The iterator yields the y-coordinate of each row
    /// along with a reference to them.
    pub fn enumerate_rows(&self) -> EnumerateRows<P> {
        EnumerateRows {
            rows: self.rows(),
            y: 0,
            width: self.width,
        }
    }

    /// Gets a reference to the pixel at location `(x, y)`
    ///
    /// # Panics
    ///
    /// Panics if `(x, y)` is out of the bounds `(width, height)`.
    #[inline]
    #[track_caller]
    pub fn get_pixel(&self, x: u32, y: u32) -> &P {
        match self.pixel_indices(x, y) {
            None => panic!(
                "Image index {:?} out of bounds {:?}",
                (x, y),
                (self.width, self.height)
            ),
            Some(pixel_indices) => <P as Pixel>::from_slice(&self.data[pixel_indices]),
        }
    }

    /// Gets a reference to the pixel at location `(x, y)` or returns `None` if
    /// the index is out of the bounds `(width, height)`.
    pub fn get_pixel_checked(&self, x: u32, y: u32) -> Option<&P> {
        if x >= self.width {
            return None;
        }
        let num_channels = <P as Pixel>::CHANNEL_COUNT as usize;
        let i = (y as usize)
            .saturating_mul(self.width as usize)
            .saturating_add(x as usize)
            .saturating_mul(num_channels);

        self.data
            .get(i..i + num_channels)
            .map(|pixel_indices| <P as Pixel>::from_slice(pixel_indices))
    }

    /// Test that the image fits inside the buffer.
    ///
    /// Verifies that the maximum image of pixels inside the bounds is smaller than the provided
    /// length. Note that as a corrolary we also have that the index calculation of pixels inside
    /// the bounds will not overflow.
    fn check_image_fits(width: u32, height: u32, len: usize) -> bool {
        let checked_len = Self::image_buffer_len(width, height);
        checked_len.map(|min_len| min_len <= len).unwrap_or(false)
    }

    fn image_buffer_len(width: u32, height: u32) -> Option<usize> {
        Some(<P as Pixel>::CHANNEL_COUNT as usize)
            .and_then(|size| size.checked_mul(width as usize))
            .and_then(|size| size.checked_mul(height as usize))
    }

    #[inline(always)]
    fn pixel_indices(&self, x: u32, y: u32) -> Option<Range<usize>> {
        if x >= self.width || y >= self.height {
            return None;
        }

        Some(self.pixel_indices_unchecked(x, y))
    }

    #[inline(always)]
    fn pixel_indices_unchecked(&self, x: u32, y: u32) -> Range<usize> {
        let no_channels = <P as Pixel>::CHANNEL_COUNT as usize;
        // If in bounds, this can't overflow as we have tested that at construction!
        let min_index = (y as usize * self.width as usize + x as usize) * no_channels;
        min_index..min_index + no_channels
    }

    /// Get the format of the buffer when viewed as a matrix of samples.
    pub fn sample_layout(&self) -> SampleLayout {
        // None of these can overflow, as all our memory is addressable.
        SampleLayout::row_major_packed(<P as Pixel>::CHANNEL_COUNT, self.width, self.height)
    }

    /// Return the raw sample buffer with its stride an dimension information.
    ///
    /// The returned buffer is guaranteed to be well formed in all cases. It is laid out by
    /// colors, width then height, meaning `channel_stride <= width_stride <= height_stride`. All
    /// strides are in numbers of elements but those are mostly `u8` in which case the strides are
    /// also byte strides.
    pub fn into_flat_samples(self) -> FlatSamples<Container>
    where
        Container: AsRef<[P::Subpixel]>,
    {
        // None of these can overflow, as all our memory is addressable.
        let layout = self.sample_layout();
        FlatSamples {
            samples: self.data,
            layout,
            color_hint: None, // TODO: the pixel type might contain P::COLOR_TYPE if it satisfies PixelWithColorType
        }
    }

    /// Return a view on the raw sample buffer.
    ///
    /// See [`into_flat_samples`](#method.into_flat_samples) for more details.
    pub fn as_flat_samples(&self) -> FlatSamples<&[P::Subpixel]>
    where
        Container: AsRef<[P::Subpixel]>,
    {
        let layout = self.sample_layout();
        FlatSamples {
            samples: self.data.as_ref(),
            layout,
            color_hint: None, // TODO: the pixel type might contain P::COLOR_TYPE if it satisfies PixelWithColorType
        }
    }

    /// Return a mutable view on the raw sample buffer.
    ///
    /// See [`into_flat_samples`](#method.into_flat_samples) for more details.
    pub fn as_flat_samples_mut(&mut self) -> FlatSamples<&mut [P::Subpixel]>
    where
        Container: AsMut<[P::Subpixel]>,
    {
        let layout = self.sample_layout();
        FlatSamples {
            samples: self.data.as_mut(),
            layout,
            color_hint: None, // TODO: the pixel type might contain P::COLOR_TYPE if it satisfies PixelWithColorType
        }
    }
}

impl<P, Container> ImageBuffer<P, Container>
where
    P: Pixel,
    Container: Deref<Target = [P::Subpixel]> + DerefMut,
{
    // TODO: choose name under which to expose.
    fn inner_pixels_mut(&mut self) -> &mut [P::Subpixel] {
        let len = Self::image_buffer_len(self.width, self.height).unwrap();
        &mut self.data[..len]
    }

    /// Returns an iterator over the mutable pixels of this image.
    pub fn pixels_mut(&mut self) -> PixelsMut<P> {
        PixelsMut {
            chunks: self
                .inner_pixels_mut()
                .chunks_exact_mut(<P as Pixel>::CHANNEL_COUNT as usize),
        }
    }

    /// Returns an iterator over the mutable rows of this image.
    ///
    /// Only non-empty rows can be iterated in this manner. In particular the iterator will not
    /// yield any item when the width of the image is `0` or a pixel type without any channels is
    /// used. This ensures that its length can always be represented by `usize`.
    pub fn rows_mut(&mut self) -> RowsMut<P> {
        RowsMut::with_image(&mut self.data, self.width, self.height)
    }

    /// Enumerates over the pixels of the image.
    /// The iterator yields the coordinates of each pixel
    /// along with a mutable reference to them.
    pub fn enumerate_pixels_mut(&mut self) -> EnumeratePixelsMut<P> {
        let width = self.width;
        EnumeratePixelsMut {
            pixels: self.pixels_mut(),
            x: 0,
            y: 0,
            width,
        }
    }

    /// Enumerates over the rows of the image.
    /// The iterator yields the y-coordinate of each row
    /// along with a mutable reference to them.
    pub fn enumerate_rows_mut(&mut self) -> EnumerateRowsMut<P> {
        let width = self.width;
        EnumerateRowsMut {
            rows: self.rows_mut(),
            y: 0,
            width,
        }
    }

    /// Gets a reference to the mutable pixel at location `(x, y)`
    ///
    /// # Panics
    ///
    /// Panics if `(x, y)` is out of the bounds `(width, height)`.
    #[inline]
    #[track_caller]
    pub fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut P {
        match self.pixel_indices(x, y) {
            None => panic!(
                "Image index {:?} out of bounds {:?}",
                (x, y),
                (self.width, self.height)
            ),
            Some(pixel_indices) => <P as Pixel>::from_slice_mut(&mut self.data[pixel_indices]),
        }
    }

    /// Gets a reference to the mutable pixel at location `(x, y)` or returns
    /// `None` if the index is out of the bounds `(width, height)`.
    pub fn get_pixel_mut_checked(&mut self, x: u32, y: u32) -> Option<&mut P> {
        if x >= self.width {
            return None;
        }
        let num_channels = <P as Pixel>::CHANNEL_COUNT as usize;
        let i = (y as usize)
            .saturating_mul(self.width as usize)
            .saturating_add(x as usize)
            .saturating_mul(num_channels);

        self.data
            .get_mut(i..i + num_channels)
            .map(|pixel_indices| <P as Pixel>::from_slice_mut(pixel_indices))
    }

    /// Puts a pixel at location `(x, y)`
    ///
    /// # Panics
    ///
    /// Panics if `(x, y)` is out of the bounds `(width, height)`.
    #[inline]
    #[track_caller]
    pub fn put_pixel(&mut self, x: u32, y: u32, pixel: P) {
        *self.get_pixel_mut(x, y) = pixel
    }
}

impl<P, Container> ImageBuffer<P, Container>
where
    P: Pixel,
    [P::Subpixel]: EncodableLayout,
    Container: Deref<Target = [P::Subpixel]>,
{
    /// Saves the buffer to a file at the path specified.
    ///
    /// The image format is derived from the file extension.
    pub fn save<Q>(&self, path: Q) -> ImageResult<()>
    where
        Q: AsRef<Path>,
        P: PixelWithColorType,
    {
        save_buffer(
            path,
            self.inner_pixels().as_bytes(),
            self.width(),
            self.height(),
            <P as PixelWithColorType>::COLOR_TYPE,
        )
    }
}

impl<P, Container> ImageBuffer<P, Container>
where
    P: Pixel,
    [P::Subpixel]: EncodableLayout,
    Container: Deref<Target = [P::Subpixel]>,
{
    /// Saves the buffer to a file at the specified path in
    /// the specified format.
    ///
    /// See [`save_buffer_with_format`](fn.save_buffer_with_format.html) for
    /// supported types.
    pub fn save_with_format<Q>(&self, path: Q, format: ImageFormat) -> ImageResult<()>
    where
        Q: AsRef<Path>,
        P: PixelWithColorType,
    {
        // This is valid as the subpixel is u8.
        save_buffer_with_format(
            path,
            self.inner_pixels().as_bytes(),
            self.width(),
            self.height(),
            <P as PixelWithColorType>::COLOR_TYPE,
            format,
        )
    }
}

impl<P, Container> ImageBuffer<P, Container>
where
    P: Pixel,
    [P::Subpixel]: EncodableLayout,
    Container: Deref<Target = [P::Subpixel]>,
{
    /// Writes the buffer to a writer in the specified format.
    ///
    /// Assumes the writer is buffered. In most cases,
    /// you should wrap your writer in a `BufWriter` for best performance.
    ///
    /// See [`ImageOutputFormat`](enum.ImageOutputFormat.html) for
    /// supported types.
    pub fn write_to<W, F>(&self, writer: &mut W, format: F) -> ImageResult<()>
    where
        W: std::io::Write + std::io::Seek,
        F: Into<ImageOutputFormat>,
        P: PixelWithColorType,
    {
        // This is valid as the subpixel is u8.
        write_buffer_with_format(
            writer,
            self.inner_pixels().as_bytes(),
            self.width(),
            self.height(),
            <P as PixelWithColorType>::COLOR_TYPE,
            format,
        )
    }
}

impl<P, Container> ImageBuffer<P, Container>
where
    P: Pixel,
    [P::Subpixel]: EncodableLayout,
    Container: Deref<Target = [P::Subpixel]>,
{
    /// Writes the buffer with the given encoder.
    pub fn write_with_encoder<E>(&self, encoder: E) -> ImageResult<()>
    where
        E: ImageEncoder,
        P: PixelWithColorType,
    {
        // This is valid as the subpixel is u8.
        encoder.write_image(
            self.inner_pixels().as_bytes(),
            self.width(),
            self.height(),
            <P as PixelWithColorType>::COLOR_TYPE,
        )
    }
}

impl<P, Container> Default for ImageBuffer<P, Container>
where
    P: Pixel,
    Container: Default,
{
    fn default() -> Self {
        Self {
            width: 0,
            height: 0,
            _phantom: PhantomData,
            data: Default::default(),
        }
    }
}

impl<P, Container> Deref for ImageBuffer<P, Container>
where
    P: Pixel,
    Container: Deref<Target = [P::Subpixel]>,
{
    type Target = [P::Subpixel];

    fn deref(&self) -> &<Self as Deref>::Target {
        &self.data
    }
}

impl<P, Container> DerefMut for ImageBuffer<P, Container>
where
    P: Pixel,
    Container: Deref<Target = [P::Subpixel]> + DerefMut,
{
    fn deref_mut(&mut self) -> &mut <Self as Deref>::Target {
        &mut self.data
    }
}

impl<P, Container> Index<(u32, u32)> for ImageBuffer<P, Container>
where
    P: Pixel,
    Container: Deref<Target = [P::Subpixel]>,
{
    type Output = P;

    fn index(&self, (x, y): (u32, u32)) -> &P {
        self.get_pixel(x, y)
    }
}

impl<P, Container> IndexMut<(u32, u32)> for ImageBuffer<P, Container>
where
    P: Pixel,
    Container: Deref<Target = [P::Subpixel]> + DerefMut,
{
    fn index_mut(&mut self, (x, y): (u32, u32)) -> &mut P {
        self.get_pixel_mut(x, y)
    }
}

impl<P, Container> Clone for ImageBuffer<P, Container>
where
    P: Pixel,
    Container: Deref<Target = [P::Subpixel]> + Clone,
{
    fn clone(&self) -> ImageBuffer<P, Container> {
        ImageBuffer {
            data: self.data.clone(),
            width: self.width,
            height: self.height,
            _phantom: PhantomData,
        }
    }
}

impl<P, Container> GenericImageView for ImageBuffer<P, Container>
where
    P: Pixel,
    Container: Deref<Target = [P::Subpixel]> + Deref,
{
    type Pixel = P;

    fn dimensions(&self) -> (u32, u32) {
        self.dimensions()
    }

    fn bounds(&self) -> (u32, u32, u32, u32) {
        (0, 0, self.width, self.height)
    }

    fn get_pixel(&self, x: u32, y: u32) -> P {
        *self.get_pixel(x, y)
    }

    /// Returns the pixel located at (x, y), ignoring bounds checking.
    #[inline(always)]
    unsafe fn unsafe_get_pixel(&self, x: u32, y: u32) -> P {
        let indices = self.pixel_indices_unchecked(x, y);
        *<P as Pixel>::from_slice(self.data.get_unchecked(indices))
    }
}

impl<P, Container> GenericImage for ImageBuffer<P, Container>
where
    P: Pixel,
    Container: Deref<Target = [P::Subpixel]> + DerefMut,
{
    fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut P {
        self.get_pixel_mut(x, y)
    }

    fn put_pixel(&mut self, x: u32, y: u32, pixel: P) {
        *self.get_pixel_mut(x, y) = pixel
    }

    /// Puts a pixel at location (x, y), ignoring bounds checking.
    #[inline(always)]
    unsafe fn unsafe_put_pixel(&mut self, x: u32, y: u32, pixel: P) {
        let indices = self.pixel_indices_unchecked(x, y);
        let p = <P as Pixel>::from_slice_mut(self.data.get_unchecked_mut(indices));
        *p = pixel
    }

    /// Put a pixel at location (x, y), taking into account alpha channels
    ///
    /// DEPRECATED: This method will be removed. Blend the pixel directly instead.
    fn blend_pixel(&mut self, x: u32, y: u32, p: P) {
        self.get_pixel_mut(x, y).blend(&p)
    }

    fn copy_within(&mut self, source: Rect, x: u32, y: u32) -> bool {
        let Rect {
            x: sx,
            y: sy,
            width,
            height,
        } = source;
        let dx = x;
        let dy = y;
        assert!(sx < self.width() && dx < self.width());
        assert!(sy < self.height() && dy < self.height());
        if self.width() - dx.max(sx) < width || self.height() - dy.max(sy) < height {
            return false;
        }

        if sy < dy {
            for y in (0..height).rev() {
                let sy = sy + y;
                let dy = dy + y;
                let Range { start, .. } = self.pixel_indices_unchecked(sx, sy);
                let Range { end, .. } = self.pixel_indices_unchecked(sx + width - 1, sy);
                let dst = self.pixel_indices_unchecked(dx, dy).start;
                self.data.copy_within(start..end, dst);
            }
        } else {
            for y in 0..height {
                let sy = sy + y;
                let dy = dy + y;
                let Range { start, .. } = self.pixel_indices_unchecked(sx, sy);
                let Range { end, .. } = self.pixel_indices_unchecked(sx + width - 1, sy);
                let dst = self.pixel_indices_unchecked(dx, dy).start;
                self.data.copy_within(start..end, dst);
            }
        }
        true
    }
}

// concrete implementation for `Vec`-backed buffers
// TODO: I think that rustc does not "see" this impl any more: the impl with
// Container meets the same requirements. At least, I got compile errors that
// there is no such function as `into_vec`, whereas `into_raw` did work, and
// `into_vec` is redundant anyway, because `into_raw` will give you the vector,
// and it is more generic.
impl<P: Pixel> ImageBuffer<P, Vec<P::Subpixel>> {
    /// Creates a new image buffer based on a `Vec<P::Subpixel>`.
    ///
    /// # Panics
    ///
    /// Panics when the resulting image is larger than the maximum size of a vector.
    pub fn new(width: u32, height: u32) -> ImageBuffer<P, Vec<P::Subpixel>> {
        let size = Self::image_buffer_len(width, height)
            .expect("Buffer length in `ImageBuffer::new` overflows usize");
        ImageBuffer {
            data: vec![Zero::zero(); size],
            width,
            height,
            _phantom: PhantomData,
        }
    }

    /// Constructs a new ImageBuffer by copying a pixel
    ///
    /// # Panics
    ///
    /// Panics when the resulting image is larger the the maximum size of a vector.
    pub fn from_pixel(width: u32, height: u32, pixel: P) -> ImageBuffer<P, Vec<P::Subpixel>> {
        let mut buf = ImageBuffer::new(width, height);
        for p in buf.pixels_mut() {
            *p = pixel
        }
        buf
    }

    /// Constructs a new ImageBuffer by repeated application of the supplied function.
    ///
    /// The arguments to the function are the pixel's x and y coordinates.
    ///
    /// # Panics
    ///
    /// Panics when the resulting image is larger the the maximum size of a vector.
    pub fn from_fn<F>(width: u32, height: u32, mut f: F) -> ImageBuffer<P, Vec<P::Subpixel>>
    where
        F: FnMut(u32, u32) -> P,
    {
        let mut buf = ImageBuffer::new(width, height);
        for (x, y, p) in buf.enumerate_pixels_mut() {
            *p = f(x, y)
        }
        buf
    }

    /// Creates an image buffer out of an existing buffer.
    /// Returns None if the buffer is not big enough.
    pub fn from_vec(
        width: u32,
        height: u32,
        buf: Vec<P::Subpixel>,
    ) -> Option<ImageBuffer<P, Vec<P::Subpixel>>> {
        ImageBuffer::from_raw(width, height, buf)
    }

    /// Consumes the image buffer and returns the underlying data
    /// as an owned buffer
    pub fn into_vec(self) -> Vec<P::Subpixel> {
        self.into_raw()
    }
}

/// Provides color conversions for whole image buffers.
pub trait ConvertBuffer<T> {
    /// Converts `self` to a buffer of type T
    ///
    /// A generic implementation is provided to convert any image buffer to a image buffer
    /// based on a `Vec<T>`.
    fn convert(&self) -> T;
}

// concrete implementation Luma -> Rgba
impl GrayImage {
    /// Expands a color palette by re-using the existing buffer.
    /// Assumes 8 bit per pixel. Uses an optionally transparent index to
    /// adjust it's alpha value accordingly.
    pub fn expand_palette(
        self,
        palette: &[(u8, u8, u8)],
        transparent_idx: Option<u8>,
    ) -> RgbaImage {
        let (width, height) = self.dimensions();
        let mut data = self.into_raw();
        let entries = data.len();
        data.resize(entries.checked_mul(4).unwrap(), 0);
        let mut buffer = ImageBuffer::from_vec(width, height, data).unwrap();
        expand_packed(&mut buffer, 4, 8, |idx, pixel| {
            let (r, g, b) = palette[idx as usize];
            let a = if let Some(t_idx) = transparent_idx {
                if t_idx == idx {
                    0
                } else {
                    255
                }
            } else {
                255
            };
            pixel[0] = r;
            pixel[1] = g;
            pixel[2] = b;
            pixel[3] = a;
        });
        buffer
    }
}

// TODO: Equality constraints are not yet supported in where clauses, when they
// are, the T parameter should be removed in favor of ToType::Subpixel, which
// will then be FromType::Subpixel.
impl<Container, FromType: Pixel, ToType: Pixel>
    ConvertBuffer<ImageBuffer<ToType, Vec<ToType::Subpixel>>> for ImageBuffer<FromType, Container>
where
    Container: Deref<Target = [FromType::Subpixel]>,
    ToType: FromColor<FromType>,
{
    /// # Examples
    /// Convert RGB image to gray image.
    /// ```no_run
    /// use image::buffer::ConvertBuffer;
    /// use image::GrayImage;
    ///
    /// let image_path = "examples/fractal.png";
    /// let image = image::open(&image_path)
    ///     .expect("Open file failed")
    ///     .to_rgba8();
    ///
    /// let gray_image: GrayImage = image.convert();
    /// ```
    fn convert(&self) -> ImageBuffer<ToType, Vec<ToType::Subpixel>> {
        let mut buffer: ImageBuffer<ToType, Vec<ToType::Subpixel>> =
            ImageBuffer::new(self.width, self.height);
        for (to, from) in buffer.pixels_mut().zip(self.pixels()) {
            to.from_color(from)
        }
        buffer
    }
}

/// Sendable Rgb image buffer
pub type RgbImage = ImageBuffer<Rgb<u8>, Vec<u8>>;
/// Sendable Rgb + alpha channel image buffer
pub type RgbaImage = ImageBuffer<Rgba<u8>, Vec<u8>>;
/// Sendable grayscale image buffer
pub type GrayImage = ImageBuffer<Luma<u8>, Vec<u8>>;
/// Sendable grayscale + alpha channel image buffer
pub type GrayAlphaImage = ImageBuffer<LumaA<u8>, Vec<u8>>;
/// Sendable 16-bit Rgb image buffer
pub(crate) type Rgb16Image = ImageBuffer<Rgb<u16>, Vec<u16>>;
/// Sendable 16-bit Rgb + alpha channel image buffer
pub(crate) type Rgba16Image = ImageBuffer<Rgba<u16>, Vec<u16>>;
/// Sendable 16-bit grayscale image buffer
pub(crate) type Gray16Image = ImageBuffer<Luma<u16>, Vec<u16>>;
/// Sendable 16-bit grayscale + alpha channel image buffer
pub(crate) type GrayAlpha16Image = ImageBuffer<LumaA<u16>, Vec<u16>>;

/// An image buffer for 32-bit float RGB pixels,
/// where the backing container is a flattened vector of floats.
pub type Rgb32FImage = ImageBuffer<Rgb<f32>, Vec<f32>>;

/// An image buffer for 32-bit float RGBA pixels,
/// where the backing container is a flattened vector of floats.
pub type Rgba32FImage = ImageBuffer<Rgba<f32>, Vec<f32>>;

#[cfg(test)]
mod test {
    use super::{GrayImage, ImageBuffer, ImageOutputFormat, RgbImage};
    use crate::math::Rect;
    use crate::GenericImage as _;
    use crate::{color, Rgb};

    #[test]
    /// Tests if image buffers from slices work
    fn slice_buffer() {
        let data = [0; 9];
        let buf: ImageBuffer<color::Luma<u8>, _> = ImageBuffer::from_raw(3, 3, &data[..]).unwrap();
        assert_eq!(&*buf, &data[..])
    }

    #[test]
    fn get_pixel() {
        let mut a: RgbImage = ImageBuffer::new(10, 10);
        {
            let b = a.get_mut(3 * 10).unwrap();
            *b = 255;
        }
        assert_eq!(a.get_pixel(0, 1)[0], 255)
    }

    #[test]
    fn get_pixel_checked() {
        let mut a: RgbImage = ImageBuffer::new(10, 10);
        a.get_pixel_mut_checked(0, 1).map(|b| b[0] = 255);

        assert_eq!(a.get_pixel_checked(0, 1), Some(&Rgb([255, 0, 0])));
        assert_eq!(a.get_pixel_checked(0, 1).unwrap(), a.get_pixel(0, 1));
        assert_eq!(a.get_pixel_checked(10, 0), None);
        assert_eq!(a.get_pixel_checked(0, 10), None);
        assert_eq!(a.get_pixel_mut_checked(10, 0), None);
        assert_eq!(a.get_pixel_mut_checked(0, 10), None);

        // From image/issues/1672
        const WHITE: Rgb<u8> = Rgb([255_u8, 255, 255]);
        let mut a = RgbImage::new(2, 1);
        a.put_pixel(1, 0, WHITE);

        assert_eq!(a.get_pixel_checked(1, 0), Some(&WHITE));
        assert_eq!(a.get_pixel_checked(1, 0).unwrap(), a.get_pixel(1, 0));
    }

    #[test]
    fn mut_iter() {
        let mut a: RgbImage = ImageBuffer::new(10, 10);
        {
            let val = a.pixels_mut().next().unwrap();
            *val = Rgb([42, 0, 0]);
        }
        assert_eq!(a.data[0], 42)
    }

    #[test]
    fn zero_width_zero_height() {
        let mut image = RgbImage::new(0, 0);

        assert_eq!(image.rows_mut().count(), 0);
        assert_eq!(image.pixels_mut().count(), 0);
        assert_eq!(image.rows().count(), 0);
        assert_eq!(image.pixels().count(), 0);
    }

    #[test]
    fn zero_width_nonzero_height() {
        let mut image = RgbImage::new(0, 2);

        assert_eq!(image.rows_mut().count(), 0);
        assert_eq!(image.pixels_mut().count(), 0);
        assert_eq!(image.rows().count(), 0);
        assert_eq!(image.pixels().count(), 0);
    }

    #[test]
    fn nonzero_width_zero_height() {
        let mut image = RgbImage::new(2, 0);

        assert_eq!(image.rows_mut().count(), 0);
        assert_eq!(image.pixels_mut().count(), 0);
        assert_eq!(image.rows().count(), 0);
        assert_eq!(image.pixels().count(), 0);
    }

    #[test]
    fn pixels_on_large_buffer() {
        let mut image = RgbImage::from_raw(1, 1, vec![0; 6]).unwrap();

        assert_eq!(image.pixels().count(), 1);
        assert_eq!(image.enumerate_pixels().count(), 1);
        assert_eq!(image.pixels_mut().count(), 1);
        assert_eq!(image.enumerate_pixels_mut().count(), 1);

        assert_eq!(image.rows().count(), 1);
        assert_eq!(image.rows_mut().count(), 1);
    }

    #[test]
    fn default() {
        let image = ImageBuffer::<Rgb<u8>, Vec<u8>>::default();
        assert_eq!(image.dimensions(), (0, 0));
    }

    #[test]
    #[rustfmt::skip]
    fn test_image_buffer_copy_within_oob() {
        let mut image: GrayImage = ImageBuffer::from_raw(4, 4, vec![0u8; 16]).unwrap();
        assert!(!image.copy_within(Rect { x: 0, y: 0, width: 5, height: 4 }, 0, 0));
        assert!(!image.copy_within(Rect { x: 0, y: 0, width: 4, height: 5 }, 0, 0));
        assert!(!image.copy_within(Rect { x: 1, y: 0, width: 4, height: 4 }, 0, 0));
        assert!(!image.copy_within(Rect { x: 0, y: 0, width: 4, height: 4 }, 1, 0));
        assert!(!image.copy_within(Rect { x: 0, y: 1, width: 4, height: 4 }, 0, 0));
        assert!(!image.copy_within(Rect { x: 0, y: 0, width: 4, height: 4 }, 0, 1));
        assert!(!image.copy_within(Rect { x: 1, y: 1, width: 4, height: 4 }, 0, 0));
    }

    #[test]
    fn test_image_buffer_copy_within_tl() {
        let data = &[
            00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15,
        ];
        let expected = [
            00, 01, 02, 03, 04, 00, 01, 02, 08, 04, 05, 06, 12, 08, 09, 10,
        ];
        let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap();
        assert!(image.copy_within(
            Rect {
                x: 0,
                y: 0,
                width: 3,
                height: 3
            },
            1,
            1
        ));
        assert_eq!(&image.into_raw(), &expected);
    }

    #[test]
    fn test_image_buffer_copy_within_tr() {
        let data = &[
            00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15,
        ];
        let expected = [
            00, 01, 02, 03, 01, 02, 03, 07, 05, 06, 07, 11, 09, 10, 11, 15,
        ];
        let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap();
        assert!(image.copy_within(
            Rect {
                x: 1,
                y: 0,
                width: 3,
                height: 3
            },
            0,
            1
        ));
        assert_eq!(&image.into_raw(), &expected);
    }

    #[test]
    fn test_image_buffer_copy_within_bl() {
        let data = &[
            00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15,
        ];
        let expected = [
            00, 04, 05, 06, 04, 08, 09, 10, 08, 12, 13, 14, 12, 13, 14, 15,
        ];
        let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap();
        assert!(image.copy_within(
            Rect {
                x: 0,
                y: 1,
                width: 3,
                height: 3
            },
            1,
            0
        ));
        assert_eq!(&image.into_raw(), &expected);
    }

    #[test]
    fn test_image_buffer_copy_within_br() {
        let data = &[
            00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15,
        ];
        let expected = [
            05, 06, 07, 03, 09, 10, 11, 07, 13, 14, 15, 11, 12, 13, 14, 15,
        ];
        let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap();
        assert!(image.copy_within(
            Rect {
                x: 1,
                y: 1,
                width: 3,
                height: 3
            },
            0,
            0
        ));
        assert_eq!(&image.into_raw(), &expected);
    }

    #[test]
    #[cfg(feature = "png")]
    fn write_to_with_large_buffer() {
        // A buffer of 1 pixel, padded to 4 bytes as would be common in, e.g. BMP.
        let img: GrayImage = ImageBuffer::from_raw(1, 1, vec![0u8; 4]).unwrap();
        let mut buffer = std::io::Cursor::new(vec![]);
        assert!(img.write_to(&mut buffer, ImageOutputFormat::Png).is_ok());
    }

    #[test]
    fn exact_size_iter_size_hint() {
        // The docs for `std::iter::ExactSizeIterator` requires that the implementation of
        // `size_hint` on the iterator returns the same value as the `len` implementation.

        // This test should work for any size image.
        const N: u32 = 10;

        let mut image = RgbImage::from_raw(N, N, vec![0; (N * N * 3) as usize]).unwrap();

        let iter = image.pixels();
        let exact_len = ExactSizeIterator::len(&iter);
        assert_eq!(iter.size_hint(), (exact_len, Some(exact_len)));

        let iter = image.pixels_mut();
        let exact_len = ExactSizeIterator::len(&iter);
        assert_eq!(iter.size_hint(), (exact_len, Some(exact_len)));

        let iter = image.rows();
        let exact_len = ExactSizeIterator::len(&iter);
        assert_eq!(iter.size_hint(), (exact_len, Some(exact_len)));

        let iter = image.rows_mut();
        let exact_len = ExactSizeIterator::len(&iter);
        assert_eq!(iter.size_hint(), (exact_len, Some(exact_len)));

        let iter = image.enumerate_pixels();
        let exact_len = ExactSizeIterator::len(&iter);
        assert_eq!(iter.size_hint(), (exact_len, Some(exact_len)));

        let iter = image.enumerate_rows();
        let exact_len = ExactSizeIterator::len(&iter);
        assert_eq!(iter.size_hint(), (exact_len, Some(exact_len)));

        let iter = image.enumerate_pixels_mut();
        let exact_len = ExactSizeIterator::len(&iter);
        assert_eq!(iter.size_hint(), (exact_len, Some(exact_len)));

        let iter = image.enumerate_rows_mut();
        let exact_len = ExactSizeIterator::len(&iter);
        assert_eq!(iter.size_hint(), (exact_len, Some(exact_len)));
    }
}

#[cfg(test)]
#[cfg(feature = "benchmarks")]
mod benchmarks {
    use super::{ConvertBuffer, GrayImage, ImageBuffer, Pixel, RgbImage};
    use crate::GenericImage;
    use test;

    #[bench]
    fn conversion(b: &mut test::Bencher) {
        let mut a: RgbImage = ImageBuffer::new(1000, 1000);
        for p in a.pixels_mut() {
            let rgb = p.channels_mut();
            rgb[0] = 255;
            rgb[1] = 23;
            rgb[2] = 42;
        }
        assert!(a.data[0] != 0);
        b.iter(|| {
            let b: GrayImage = a.convert();
            assert!(0 != b.data[0]);
            assert!(a.data[0] != b.data[0]);
            test::black_box(b);
        });
        b.bytes = 1000 * 1000 * 3
    }

    #[bench]
    fn image_access_row_by_row(b: &mut test::Bencher) {
        let mut a: RgbImage = ImageBuffer::new(1000, 1000);
        for p in a.pixels_mut() {
            let rgb = p.channels_mut();
            rgb[0] = 255;
            rgb[1] = 23;
            rgb[2] = 42;
        }

        b.iter(move || {
            let image: &RgbImage = test::black_box(&a);
            let mut sum: usize = 0;
            for y in 0..1000 {
                for x in 0..1000 {
                    let pixel = image.get_pixel(x, y);
                    sum = sum.wrapping_add(pixel[0] as usize);
                    sum = sum.wrapping_add(pixel[1] as usize);
                    sum = sum.wrapping_add(pixel[2] as usize);
                }
            }
            test::black_box(sum)
        });

        b.bytes = 1000 * 1000 * 3;
    }

    #[bench]
    fn image_access_col_by_col(b: &mut test::Bencher) {
        let mut a: RgbImage = ImageBuffer::new(1000, 1000);
        for p in a.pixels_mut() {
            let rgb = p.channels_mut();
            rgb[0] = 255;
            rgb[1] = 23;
            rgb[2] = 42;
        }

        b.iter(move || {
            let image: &RgbImage = test::black_box(&a);
            let mut sum: usize = 0;
            for x in 0..1000 {
                for y in 0..1000 {
                    let pixel = image.get_pixel(x, y);
                    sum = sum.wrapping_add(pixel[0] as usize);
                    sum = sum.wrapping_add(pixel[1] as usize);
                    sum = sum.wrapping_add(pixel[2] as usize);
                }
            }
            test::black_box(sum)
        });

        b.bytes = 1000 * 1000 * 3;
    }
}