1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
use std::cmp::Ordering;
use std::iter::Iterator;
use std::time::Duration;
use crate::error::ImageResult;
use crate::RgbaImage;
/// An implementation dependent iterator, reading the frames as requested
pub struct Frames<'a> {
iterator: Box<dyn Iterator<Item = ImageResult<Frame>> + 'a>,
}
impl<'a> Frames<'a> {
/// Creates a new `Frames` from an implementation specific iterator.
pub fn new(iterator: Box<dyn Iterator<Item = ImageResult<Frame>> + 'a>) -> Self {
Frames { iterator }
}
/// Steps through the iterator from the current frame until the end and pushes each frame into
/// a `Vec`.
/// If en error is encountered that error is returned instead.
///
/// Note: This is equivalent to `Frames::collect::<ImageResult<Vec<Frame>>>()`
pub fn collect_frames(self) -> ImageResult<Vec<Frame>> {
self.collect()
}
}
impl<'a> Iterator for Frames<'a> {
type Item = ImageResult<Frame>;
fn next(&mut self) -> Option<ImageResult<Frame>> {
self.iterator.next()
}
}
/// A single animation frame
#[derive(Clone)]
pub struct Frame {
/// Delay between the frames in milliseconds
delay: Delay,
/// x offset
left: u32,
/// y offset
top: u32,
buffer: RgbaImage,
}
/// The delay of a frame relative to the previous one.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd)]
pub struct Delay {
ratio: Ratio,
}
impl Frame {
/// Constructs a new frame without any delay.
pub fn new(buffer: RgbaImage) -> Frame {
Frame {
delay: Delay::from_ratio(Ratio { numer: 0, denom: 1 }),
left: 0,
top: 0,
buffer,
}
}
/// Constructs a new frame
pub fn from_parts(buffer: RgbaImage, left: u32, top: u32, delay: Delay) -> Frame {
Frame {
delay,
left,
top,
buffer,
}
}
/// Delay of this frame
pub fn delay(&self) -> Delay {
self.delay
}
/// Returns the image buffer
pub fn buffer(&self) -> &RgbaImage {
&self.buffer
}
/// Returns a mutable image buffer
pub fn buffer_mut(&mut self) -> &mut RgbaImage {
&mut self.buffer
}
/// Returns the image buffer
pub fn into_buffer(self) -> RgbaImage {
self.buffer
}
/// Returns the x offset
pub fn left(&self) -> u32 {
self.left
}
/// Returns the y offset
pub fn top(&self) -> u32 {
self.top
}
}
impl Delay {
/// Create a delay from a ratio of milliseconds.
///
/// # Examples
///
/// ```
/// use image::Delay;
/// let delay_10ms = Delay::from_numer_denom_ms(10, 1);
/// ```
pub fn from_numer_denom_ms(numerator: u32, denominator: u32) -> Self {
Delay {
ratio: Ratio::new(numerator, denominator),
}
}
/// Convert from a duration, clamped between 0 and an implemented defined maximum.
///
/// The maximum is *at least* `i32::MAX` milliseconds. It should be noted that the accuracy of
/// the result may be relative and very large delays have a coarse resolution.
///
/// # Examples
///
/// ```
/// use std::time::Duration;
/// use image::Delay;
///
/// let duration = Duration::from_millis(20);
/// let delay = Delay::from_saturating_duration(duration);
/// ```
pub fn from_saturating_duration(duration: Duration) -> Self {
// A few notes: The largest number we can represent as a ratio is u32::MAX but we can
// sometimes represent much smaller numbers.
//
// We can represent duration as `millis+a/b` (where a < b, b > 0).
// We must thus bound b with `b·millis + (b-1) <= u32::MAX` or
// > `0 < b <= (u32::MAX + 1)/(millis + 1)`
// Corollary: millis <= u32::MAX
const MILLIS_BOUND: u128 = u32::max_value() as u128;
let millis = duration.as_millis().min(MILLIS_BOUND);
let submillis = (duration.as_nanos() % 1_000_000) as u32;
let max_b = if millis > 0 {
((MILLIS_BOUND + 1) / (millis + 1)) as u32
} else {
MILLIS_BOUND as u32
};
let millis = millis as u32;
let (a, b) = Self::closest_bounded_fraction(max_b, submillis, 1_000_000);
Self::from_numer_denom_ms(a + b * millis, b)
}
/// The numerator and denominator of the delay in milliseconds.
///
/// This is guaranteed to be an exact conversion if the `Delay` was previously created with the
/// `from_numer_denom_ms` constructor.
pub fn numer_denom_ms(self) -> (u32, u32) {
(self.ratio.numer, self.ratio.denom)
}
pub(crate) fn from_ratio(ratio: Ratio) -> Self {
Delay { ratio }
}
pub(crate) fn into_ratio(self) -> Ratio {
self.ratio
}
/// Given some fraction, compute an approximation with denominator bounded.
///
/// Note that `denom_bound` bounds nominator and denominator of all intermediate
/// approximations and the end result.
fn closest_bounded_fraction(denom_bound: u32, nom: u32, denom: u32) -> (u32, u32) {
use std::cmp::Ordering::*;
assert!(0 < denom);
assert!(0 < denom_bound);
assert!(nom < denom);
// Avoid a few type troubles. All intermediate results are bounded by `denom_bound` which
// is in turn bounded by u32::MAX. Representing with u64 allows multiplication of any two
// values without fears of overflow.
// Compare two fractions whose parts fit into a u32.
fn compare_fraction((an, ad): (u64, u64), (bn, bd): (u64, u64)) -> Ordering {
(an * bd).cmp(&(bn * ad))
}
// Computes the nominator of the absolute difference between two such fractions.
fn abs_diff_nom((an, ad): (u64, u64), (bn, bd): (u64, u64)) -> u64 {
let c0 = an * bd;
let c1 = ad * bn;
let d0 = c0.max(c1);
let d1 = c0.min(c1);
d0 - d1
}
let exact = (u64::from(nom), u64::from(denom));
// The lower bound fraction, numerator and denominator.
let mut lower = (0u64, 1u64);
// The upper bound fraction, numerator and denominator.
let mut upper = (1u64, 1u64);
// The closest approximation for now.
let mut guess = (u64::from(nom * 2 > denom), 1u64);
// loop invariant: ad, bd <= denom_bound
// iterates the Farey sequence.
loop {
// Break if we are done.
if compare_fraction(guess, exact) == Equal {
break;
}
// Break if next Farey number is out-of-range.
if u64::from(denom_bound) - lower.1 < upper.1 {
break;
}
// Next Farey approximation n between a and b
let next = (lower.0 + upper.0, lower.1 + upper.1);
// if F < n then replace the upper bound, else replace lower.
if compare_fraction(exact, next) == Less {
upper = next;
} else {
lower = next;
}
// Now correct the closest guess.
// In other words, if |c - f| > |n - f| then replace it with the new guess.
// This favors the guess with smaller denominator on equality.
// |g - f| = |g_diff_nom|/(gd*fd);
let g_diff_nom = abs_diff_nom(guess, exact);
// |n - f| = |n_diff_nom|/(nd*fd);
let n_diff_nom = abs_diff_nom(next, exact);
// The difference |n - f| is smaller than |g - f| if either the integral part of the
// fraction |n_diff_nom|/nd is smaller than the one of |g_diff_nom|/gd or if they are
// the same but the fractional part is larger.
if match (n_diff_nom / next.1).cmp(&(g_diff_nom / guess.1)) {
Less => true,
Greater => false,
// Note that the nominator for the fractional part is smaller than its denominator
// which is smaller than u32 and can't overflow the multiplication with the other
// denominator, that is we can compare these fractions by multiplication with the
// respective other denominator.
Equal => {
compare_fraction(
(n_diff_nom % next.1, next.1),
(g_diff_nom % guess.1, guess.1),
) == Less
}
} {
guess = next;
}
}
(guess.0 as u32, guess.1 as u32)
}
}
impl From<Delay> for Duration {
fn from(delay: Delay) -> Self {
let ratio = delay.into_ratio();
let ms = ratio.to_integer();
let rest = ratio.numer % ratio.denom;
let nanos = (u64::from(rest) * 1_000_000) / u64::from(ratio.denom);
Duration::from_millis(ms.into()) + Duration::from_nanos(nanos)
}
}
#[derive(Copy, Clone, Debug)]
pub(crate) struct Ratio {
numer: u32,
denom: u32,
}
impl Ratio {
#[inline]
pub(crate) fn new(numerator: u32, denominator: u32) -> Self {
assert_ne!(denominator, 0);
Self {
numer: numerator,
denom: denominator,
}
}
#[inline]
pub(crate) fn to_integer(&self) -> u32 {
self.numer / self.denom
}
}
impl PartialEq for Ratio {
fn eq(&self, other: &Self) -> bool {
self.cmp(other) == Ordering::Equal
}
}
impl Eq for Ratio {}
impl PartialOrd for Ratio {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Ratio {
fn cmp(&self, other: &Self) -> Ordering {
// The following comparison can be simplified:
// a / b <cmp> c / d
// We multiply both sides by `b`:
// a <cmp> c * b / d
// We multiply both sides by `d`:
// a * d <cmp> c * b
let a: u32 = self.numer;
let b: u32 = self.denom;
let c: u32 = other.numer;
let d: u32 = other.denom;
// We cast the types from `u32` to `u64` in order
// to not overflow the multiplications.
(a as u64 * d as u64).cmp(&(c as u64 * b as u64))
}
}
#[cfg(test)]
mod tests {
use super::{Delay, Duration, Ratio};
#[test]
fn simple() {
let second = Delay::from_numer_denom_ms(1000, 1);
assert_eq!(Duration::from(second), Duration::from_secs(1));
}
#[test]
fn fps_30() {
let thirtieth = Delay::from_numer_denom_ms(1000, 30);
let duration = Duration::from(thirtieth);
assert_eq!(duration.as_secs(), 0);
assert_eq!(duration.subsec_millis(), 33);
assert_eq!(duration.subsec_nanos(), 33_333_333);
}
#[test]
fn duration_outlier() {
let oob = Duration::from_secs(0xFFFF_FFFF);
let delay = Delay::from_saturating_duration(oob);
assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1));
}
#[test]
fn duration_approx() {
let oob = Duration::from_millis(0xFFFF_FFFF) + Duration::from_micros(1);
let delay = Delay::from_saturating_duration(oob);
assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1));
let inbounds = Duration::from_millis(0xFFFF_FFFF) - Duration::from_micros(1);
let delay = Delay::from_saturating_duration(inbounds);
assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1));
let fine =
Duration::from_millis(0xFFFF_FFFF / 1000) + Duration::from_micros(0xFFFF_FFFF % 1000);
let delay = Delay::from_saturating_duration(fine);
// Funnily, 0xFFFF_FFFF is divisble by 5, thus we compare with a `Ratio`.
assert_eq!(delay.into_ratio(), Ratio::new(0xFFFF_FFFF, 1000));
}
#[test]
fn precise() {
// The ratio has only 32 bits in the numerator, too imprecise to get more than 11 digits
// correct. But it may be expressed as 1_000_000/3 instead.
let exceed = Duration::from_secs(333) + Duration::from_nanos(333_333_333);
let delay = Delay::from_saturating_duration(exceed);
assert_eq!(Duration::from(delay), exceed);
}
#[test]
fn small() {
// Not quite a delay of `1 ms`.
let delay = Delay::from_numer_denom_ms(1 << 16, (1 << 16) + 1);
let duration = Duration::from(delay);
assert_eq!(duration.as_millis(), 0);
// Not precisely the original but should be smaller than 0.
let delay = Delay::from_saturating_duration(duration);
assert_eq!(delay.into_ratio().to_integer(), 0);
}
}