use std::assert_matches::assert_matches;
use std::fmt::Formatter;
use rustc_abi::{BackendRepr, FIRST_VARIANT, FieldIdx, Size, VariantIdx};
use rustc_const_eval::const_eval::{DummyMachine, throw_machine_stop_str};
use rustc_const_eval::interpret::{
ImmTy, Immediate, InterpCx, OpTy, PlaceTy, Projectable, interp_ok,
};
use rustc_data_structures::fx::FxHashMap;
use rustc_hir::def::DefKind;
use rustc_middle::bug;
use rustc_middle::mir::interpret::{InterpResult, Scalar};
use rustc_middle::mir::visit::{MutVisitor, PlaceContext, Visitor};
use rustc_middle::mir::*;
use rustc_middle::ty::layout::{HasParamEnv, LayoutOf};
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_mir_dataflow::fmt::DebugWithContext;
use rustc_mir_dataflow::lattice::{FlatSet, HasBottom};
use rustc_mir_dataflow::value_analysis::{
Map, PlaceIndex, State, TrackElem, ValueOrPlace, debug_with_context,
};
use rustc_mir_dataflow::{Analysis, Results, ResultsVisitor};
use rustc_span::DUMMY_SP;
use tracing::{debug, debug_span, instrument};
const BLOCK_LIMIT: usize = 100;
const PLACE_LIMIT: usize = 100;
pub(super) struct DataflowConstProp;
impl<'tcx> crate::MirPass<'tcx> for DataflowConstProp {
fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
sess.mir_opt_level() >= 3
}
#[instrument(skip_all level = "debug")]
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
debug!(def_id = ?body.source.def_id());
if tcx.sess.mir_opt_level() < 4 && body.basic_blocks.len() > BLOCK_LIMIT {
debug!("aborted dataflow const prop due too many basic blocks");
return;
}
let place_limit = if tcx.sess.mir_opt_level() < 4 { Some(PLACE_LIMIT) } else { None };
let map = Map::new(tcx, body, place_limit);
let analysis = ConstAnalysis::new(tcx, body, map);
let mut results =
debug_span!("analyze").in_scope(|| analysis.iterate_to_fixpoint(tcx, body, None));
let mut visitor = Collector::new(tcx, &body.local_decls);
debug_span!("collect").in_scope(|| results.visit_reachable_with(body, &mut visitor));
let mut patch = visitor.patch;
debug_span!("patch").in_scope(|| patch.visit_body_preserves_cfg(body));
}
}
struct ConstAnalysis<'a, 'tcx> {
map: Map<'tcx>,
tcx: TyCtxt<'tcx>,
local_decls: &'a LocalDecls<'tcx>,
ecx: InterpCx<'tcx, DummyMachine>,
param_env: ty::ParamEnv<'tcx>,
}
impl<'tcx> Analysis<'tcx> for ConstAnalysis<'_, 'tcx> {
type Domain = State<FlatSet<Scalar>>;
const NAME: &'static str = "ConstAnalysis";
fn bottom_value(&self, _body: &Body<'tcx>) -> Self::Domain {
State::Unreachable
}
fn initialize_start_block(&self, body: &Body<'tcx>, state: &mut Self::Domain) {
assert_matches!(state, State::Unreachable);
*state = State::new_reachable();
for arg in body.args_iter() {
state.flood(PlaceRef { local: arg, projection: &[] }, &self.map);
}
}
fn apply_statement_effect(
&mut self,
state: &mut Self::Domain,
statement: &Statement<'tcx>,
_location: Location,
) {
if state.is_reachable() {
self.handle_statement(statement, state);
}
}
fn apply_terminator_effect<'mir>(
&mut self,
state: &mut Self::Domain,
terminator: &'mir Terminator<'tcx>,
_location: Location,
) -> TerminatorEdges<'mir, 'tcx> {
if state.is_reachable() {
self.handle_terminator(terminator, state)
} else {
TerminatorEdges::None
}
}
fn apply_call_return_effect(
&mut self,
state: &mut Self::Domain,
_block: BasicBlock,
return_places: CallReturnPlaces<'_, 'tcx>,
) {
if state.is_reachable() {
self.handle_call_return(return_places, state)
}
}
}
impl<'a, 'tcx> ConstAnalysis<'a, 'tcx> {
fn new(tcx: TyCtxt<'tcx>, body: &'a Body<'tcx>, map: Map<'tcx>) -> Self {
let param_env = tcx.param_env_reveal_all_normalized(body.source.def_id());
Self {
map,
tcx,
local_decls: &body.local_decls,
ecx: InterpCx::new(tcx, DUMMY_SP, param_env, DummyMachine),
param_env,
}
}
fn handle_statement(&self, statement: &Statement<'tcx>, state: &mut State<FlatSet<Scalar>>) {
match &statement.kind {
StatementKind::Assign(box (place, rvalue)) => {
self.handle_assign(*place, rvalue, state);
}
StatementKind::SetDiscriminant { box place, variant_index } => {
self.handle_set_discriminant(*place, *variant_index, state);
}
StatementKind::Intrinsic(box intrinsic) => {
self.handle_intrinsic(intrinsic);
}
StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
state.flood_with(
Place::from(*local).as_ref(),
&self.map,
FlatSet::<Scalar>::BOTTOM,
);
}
StatementKind::Deinit(box place) => {
state.flood_with(place.as_ref(), &self.map, FlatSet::<Scalar>::BOTTOM);
}
StatementKind::Retag(..) => {
}
StatementKind::ConstEvalCounter
| StatementKind::Nop
| StatementKind::FakeRead(..)
| StatementKind::PlaceMention(..)
| StatementKind::Coverage(..)
| StatementKind::AscribeUserType(..) => (),
}
}
fn handle_intrinsic(&self, intrinsic: &NonDivergingIntrinsic<'tcx>) {
match intrinsic {
NonDivergingIntrinsic::Assume(..) => {
}
NonDivergingIntrinsic::CopyNonOverlapping(CopyNonOverlapping {
dst: _,
src: _,
count: _,
}) => {
}
}
}
fn handle_operand(
&self,
operand: &Operand<'tcx>,
state: &mut State<FlatSet<Scalar>>,
) -> ValueOrPlace<FlatSet<Scalar>> {
match operand {
Operand::Constant(box constant) => {
ValueOrPlace::Value(self.handle_constant(constant, state))
}
Operand::Copy(place) | Operand::Move(place) => {
self.map.find(place.as_ref()).map(ValueOrPlace::Place).unwrap_or(ValueOrPlace::TOP)
}
}
}
fn handle_terminator<'mir>(
&self,
terminator: &'mir Terminator<'tcx>,
state: &mut State<FlatSet<Scalar>>,
) -> TerminatorEdges<'mir, 'tcx> {
match &terminator.kind {
TerminatorKind::Call { .. } | TerminatorKind::InlineAsm { .. } => {
}
TerminatorKind::Drop { place, .. } => {
state.flood_with(place.as_ref(), &self.map, FlatSet::<Scalar>::BOTTOM);
}
TerminatorKind::Yield { .. } => {
bug!("encountered disallowed terminator");
}
TerminatorKind::SwitchInt { discr, targets } => {
return self.handle_switch_int(discr, targets, state);
}
TerminatorKind::TailCall { .. } => {
}
TerminatorKind::Goto { .. }
| TerminatorKind::UnwindResume
| TerminatorKind::UnwindTerminate(_)
| TerminatorKind::Return
| TerminatorKind::Unreachable
| TerminatorKind::Assert { .. }
| TerminatorKind::CoroutineDrop
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::FalseUnwind { .. } => {
}
}
terminator.edges()
}
fn handle_call_return(
&self,
return_places: CallReturnPlaces<'_, 'tcx>,
state: &mut State<FlatSet<Scalar>>,
) {
return_places.for_each(|place| {
state.flood(place.as_ref(), &self.map);
})
}
fn handle_set_discriminant(
&self,
place: Place<'tcx>,
variant_index: VariantIdx,
state: &mut State<FlatSet<Scalar>>,
) {
state.flood_discr(place.as_ref(), &self.map);
if self.map.find_discr(place.as_ref()).is_some() {
let enum_ty = place.ty(self.local_decls, self.tcx).ty;
if let Some(discr) = self.eval_discriminant(enum_ty, variant_index) {
state.assign_discr(
place.as_ref(),
ValueOrPlace::Value(FlatSet::Elem(discr)),
&self.map,
);
}
}
}
fn handle_assign(
&self,
target: Place<'tcx>,
rvalue: &Rvalue<'tcx>,
state: &mut State<FlatSet<Scalar>>,
) {
match rvalue {
Rvalue::Use(operand) => {
state.flood(target.as_ref(), &self.map);
if let Some(target) = self.map.find(target.as_ref()) {
self.assign_operand(state, target, operand);
}
}
Rvalue::CopyForDeref(rhs) => {
state.flood(target.as_ref(), &self.map);
if let Some(target) = self.map.find(target.as_ref()) {
self.assign_operand(state, target, &Operand::Copy(*rhs));
}
}
Rvalue::Aggregate(kind, operands) => {
state.flood(target.as_ref(), &self.map);
let Some(target_idx) = self.map.find(target.as_ref()) else { return };
let (variant_target, variant_index) = match **kind {
AggregateKind::Tuple | AggregateKind::Closure(..) => (Some(target_idx), None),
AggregateKind::Adt(def_id, variant_index, ..) => {
match self.tcx.def_kind(def_id) {
DefKind::Struct => (Some(target_idx), None),
DefKind::Enum => (
self.map.apply(target_idx, TrackElem::Variant(variant_index)),
Some(variant_index),
),
_ => return,
}
}
_ => return,
};
if let Some(variant_target_idx) = variant_target {
for (field_index, operand) in operands.iter_enumerated() {
if let Some(field) =
self.map.apply(variant_target_idx, TrackElem::Field(field_index))
{
self.assign_operand(state, field, operand);
}
}
}
if let Some(variant_index) = variant_index
&& let Some(discr_idx) = self.map.apply(target_idx, TrackElem::Discriminant)
{
let enum_ty = target.ty(self.local_decls, self.tcx).ty;
if let Some(discr_val) = self.eval_discriminant(enum_ty, variant_index) {
state.insert_value_idx(discr_idx, FlatSet::Elem(discr_val), &self.map);
}
}
}
Rvalue::BinaryOp(op, box (left, right)) if op.is_overflowing() => {
state.flood(target.as_ref(), &self.map);
let Some(target) = self.map.find(target.as_ref()) else { return };
let value_target = self.map.apply(target, TrackElem::Field(0_u32.into()));
let overflow_target = self.map.apply(target, TrackElem::Field(1_u32.into()));
if value_target.is_some() || overflow_target.is_some() {
let (val, overflow) = self.binary_op(state, *op, left, right);
if let Some(value_target) = value_target {
state.insert_value_idx(value_target, val, &self.map);
}
if let Some(overflow_target) = overflow_target {
state.insert_value_idx(overflow_target, overflow, &self.map);
}
}
}
Rvalue::Cast(
CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize, _),
operand,
_,
) => {
let pointer = self.handle_operand(operand, state);
state.assign(target.as_ref(), pointer, &self.map);
if let Some(target_len) = self.map.find_len(target.as_ref())
&& let operand_ty = operand.ty(self.local_decls, self.tcx)
&& let Some(operand_ty) = operand_ty.builtin_deref(true)
&& let ty::Array(_, len) = operand_ty.kind()
&& let Some(len) = Const::Ty(self.tcx.types.usize, *len)
.try_eval_scalar_int(self.tcx, self.param_env)
{
state.insert_value_idx(target_len, FlatSet::Elem(len.into()), &self.map);
}
}
_ => {
let result = self.handle_rvalue(rvalue, state);
state.assign(target.as_ref(), result, &self.map);
}
}
}
fn handle_rvalue(
&self,
rvalue: &Rvalue<'tcx>,
state: &mut State<FlatSet<Scalar>>,
) -> ValueOrPlace<FlatSet<Scalar>> {
let val = match rvalue {
Rvalue::Len(place) => {
let place_ty = place.ty(self.local_decls, self.tcx);
if let ty::Array(_, len) = place_ty.ty.kind() {
Const::Ty(self.tcx.types.usize, *len)
.try_eval_scalar(self.tcx, self.param_env)
.map_or(FlatSet::Top, FlatSet::Elem)
} else if let [ProjectionElem::Deref] = place.projection[..] {
state.get_len(place.local.into(), &self.map)
} else {
FlatSet::Top
}
}
Rvalue::Cast(CastKind::IntToInt | CastKind::IntToFloat, operand, ty) => {
let Ok(layout) = self.tcx.layout_of(self.param_env.and(*ty)) else {
return ValueOrPlace::Value(FlatSet::Top);
};
match self.eval_operand(operand, state) {
FlatSet::Elem(op) => self
.ecx
.int_to_int_or_float(&op, layout)
.discard_err()
.map_or(FlatSet::Top, |result| self.wrap_immediate(*result)),
FlatSet::Bottom => FlatSet::Bottom,
FlatSet::Top => FlatSet::Top,
}
}
Rvalue::Cast(CastKind::FloatToInt | CastKind::FloatToFloat, operand, ty) => {
let Ok(layout) = self.tcx.layout_of(self.param_env.and(*ty)) else {
return ValueOrPlace::Value(FlatSet::Top);
};
match self.eval_operand(operand, state) {
FlatSet::Elem(op) => self
.ecx
.float_to_float_or_int(&op, layout)
.discard_err()
.map_or(FlatSet::Top, |result| self.wrap_immediate(*result)),
FlatSet::Bottom => FlatSet::Bottom,
FlatSet::Top => FlatSet::Top,
}
}
Rvalue::Cast(CastKind::Transmute, operand, _) => {
match self.eval_operand(operand, state) {
FlatSet::Elem(op) => self.wrap_immediate(*op),
FlatSet::Bottom => FlatSet::Bottom,
FlatSet::Top => FlatSet::Top,
}
}
Rvalue::BinaryOp(op, box (left, right)) if !op.is_overflowing() => {
let (val, _overflow) = self.binary_op(state, *op, left, right);
val
}
Rvalue::UnaryOp(op, operand) => match self.eval_operand(operand, state) {
FlatSet::Elem(value) => self
.ecx
.unary_op(*op, &value)
.discard_err()
.map_or(FlatSet::Top, |val| self.wrap_immediate(*val)),
FlatSet::Bottom => FlatSet::Bottom,
FlatSet::Top => FlatSet::Top,
},
Rvalue::NullaryOp(null_op, ty) => {
let Ok(layout) = self.tcx.layout_of(self.param_env.and(*ty)) else {
return ValueOrPlace::Value(FlatSet::Top);
};
let val = match null_op {
NullOp::SizeOf if layout.is_sized() => layout.size.bytes(),
NullOp::AlignOf if layout.is_sized() => layout.align.abi.bytes(),
NullOp::OffsetOf(fields) => self
.ecx
.tcx
.offset_of_subfield(self.ecx.param_env(), layout, fields.iter())
.bytes(),
_ => return ValueOrPlace::Value(FlatSet::Top),
};
FlatSet::Elem(Scalar::from_target_usize(val, &self.tcx))
}
Rvalue::Discriminant(place) => state.get_discr(place.as_ref(), &self.map),
Rvalue::Use(operand) => return self.handle_operand(operand, state),
Rvalue::CopyForDeref(place) => {
return self.handle_operand(&Operand::Copy(*place), state);
}
Rvalue::Ref(..) | Rvalue::RawPtr(..) => {
return ValueOrPlace::TOP;
}
Rvalue::Repeat(..)
| Rvalue::ThreadLocalRef(..)
| Rvalue::Cast(..)
| Rvalue::BinaryOp(..)
| Rvalue::Aggregate(..)
| Rvalue::ShallowInitBox(..) => {
return ValueOrPlace::TOP;
}
};
ValueOrPlace::Value(val)
}
fn handle_constant(
&self,
constant: &ConstOperand<'tcx>,
_state: &mut State<FlatSet<Scalar>>,
) -> FlatSet<Scalar> {
constant
.const_
.try_eval_scalar(self.tcx, self.param_env)
.map_or(FlatSet::Top, FlatSet::Elem)
}
fn handle_switch_int<'mir>(
&self,
discr: &'mir Operand<'tcx>,
targets: &'mir SwitchTargets,
state: &mut State<FlatSet<Scalar>>,
) -> TerminatorEdges<'mir, 'tcx> {
let value = match self.handle_operand(discr, state) {
ValueOrPlace::Value(value) => value,
ValueOrPlace::Place(place) => state.get_idx(place, &self.map),
};
match value {
FlatSet::Bottom => TerminatorEdges::None,
FlatSet::Elem(scalar) => {
let choice = scalar.assert_scalar_int().to_bits_unchecked();
TerminatorEdges::Single(targets.target_for_value(choice))
}
FlatSet::Top => TerminatorEdges::SwitchInt { discr, targets },
}
}
fn assign_operand(
&self,
state: &mut State<FlatSet<Scalar>>,
place: PlaceIndex,
operand: &Operand<'tcx>,
) {
match operand {
Operand::Copy(rhs) | Operand::Move(rhs) => {
if let Some(rhs) = self.map.find(rhs.as_ref()) {
state.insert_place_idx(place, rhs, &self.map);
} else if rhs.projection.first() == Some(&PlaceElem::Deref)
&& let FlatSet::Elem(pointer) = state.get(rhs.local.into(), &self.map)
&& let rhs_ty = self.local_decls[rhs.local].ty
&& let Ok(rhs_layout) = self.tcx.layout_of(self.param_env.and(rhs_ty))
{
let op = ImmTy::from_scalar(pointer, rhs_layout).into();
self.assign_constant(state, place, op, rhs.projection);
}
}
Operand::Constant(box constant) => {
if let Some(constant) =
self.ecx.eval_mir_constant(&constant.const_, constant.span, None).discard_err()
{
self.assign_constant(state, place, constant, &[]);
}
}
}
}
#[instrument(level = "trace", skip(self, state))]
fn assign_constant(
&self,
state: &mut State<FlatSet<Scalar>>,
place: PlaceIndex,
mut operand: OpTy<'tcx>,
projection: &[PlaceElem<'tcx>],
) {
for &(mut proj_elem) in projection {
if let PlaceElem::Index(index) = proj_elem {
if let FlatSet::Elem(index) = state.get(index.into(), &self.map)
&& let Some(offset) = index.to_target_usize(&self.tcx).discard_err()
&& let Some(min_length) = offset.checked_add(1)
{
proj_elem = PlaceElem::ConstantIndex { offset, min_length, from_end: false };
} else {
return;
}
}
operand = if let Some(operand) = self.ecx.project(&operand, proj_elem).discard_err() {
operand
} else {
return;
}
}
self.map.for_each_projection_value(
place,
operand,
&mut |elem, op| match elem {
TrackElem::Field(idx) => self.ecx.project_field(op, idx.as_usize()).discard_err(),
TrackElem::Variant(idx) => self.ecx.project_downcast(op, idx).discard_err(),
TrackElem::Discriminant => {
let variant = self.ecx.read_discriminant(op).discard_err()?;
let discr_value =
self.ecx.discriminant_for_variant(op.layout.ty, variant).discard_err()?;
Some(discr_value.into())
}
TrackElem::DerefLen => {
let op: OpTy<'_> = self.ecx.deref_pointer(op).discard_err()?.into();
let len_usize = op.len(&self.ecx).discard_err()?;
let layout =
self.tcx.layout_of(self.param_env.and(self.tcx.types.usize)).unwrap();
Some(ImmTy::from_uint(len_usize, layout).into())
}
},
&mut |place, op| {
if let Some(imm) = self.ecx.read_immediate_raw(op).discard_err()
&& let Some(imm) = imm.right()
{
let elem = self.wrap_immediate(*imm);
state.insert_value_idx(place, elem, &self.map);
}
},
);
}
fn binary_op(
&self,
state: &mut State<FlatSet<Scalar>>,
op: BinOp,
left: &Operand<'tcx>,
right: &Operand<'tcx>,
) -> (FlatSet<Scalar>, FlatSet<Scalar>) {
let left = self.eval_operand(left, state);
let right = self.eval_operand(right, state);
match (left, right) {
(FlatSet::Bottom, _) | (_, FlatSet::Bottom) => (FlatSet::Bottom, FlatSet::Bottom),
(FlatSet::Elem(left), FlatSet::Elem(right)) => {
match self.ecx.binary_op(op, &left, &right).discard_err() {
Some(val) => {
if matches!(val.layout.backend_repr, BackendRepr::ScalarPair(..)) {
let (val, overflow) = val.to_scalar_pair();
(FlatSet::Elem(val), FlatSet::Elem(overflow))
} else {
(FlatSet::Elem(val.to_scalar()), FlatSet::Bottom)
}
}
_ => (FlatSet::Top, FlatSet::Top),
}
}
(FlatSet::Elem(const_arg), _) | (_, FlatSet::Elem(const_arg)) => {
let layout = const_arg.layout;
if !matches!(layout.backend_repr, rustc_abi::BackendRepr::Scalar(..)) {
return (FlatSet::Top, FlatSet::Top);
}
let arg_scalar = const_arg.to_scalar();
let Some(arg_value) = arg_scalar.to_bits(layout.size).discard_err() else {
return (FlatSet::Top, FlatSet::Top);
};
match op {
BinOp::BitAnd if arg_value == 0 => (FlatSet::Elem(arg_scalar), FlatSet::Bottom),
BinOp::BitOr
if arg_value == layout.size.truncate(u128::MAX)
|| (layout.ty.is_bool() && arg_value == 1) =>
{
(FlatSet::Elem(arg_scalar), FlatSet::Bottom)
}
BinOp::Mul if layout.ty.is_integral() && arg_value == 0 => {
(FlatSet::Elem(arg_scalar), FlatSet::Elem(Scalar::from_bool(false)))
}
_ => (FlatSet::Top, FlatSet::Top),
}
}
(FlatSet::Top, FlatSet::Top) => (FlatSet::Top, FlatSet::Top),
}
}
fn eval_operand(
&self,
op: &Operand<'tcx>,
state: &mut State<FlatSet<Scalar>>,
) -> FlatSet<ImmTy<'tcx>> {
let value = match self.handle_operand(op, state) {
ValueOrPlace::Value(value) => value,
ValueOrPlace::Place(place) => state.get_idx(place, &self.map),
};
match value {
FlatSet::Top => FlatSet::Top,
FlatSet::Elem(scalar) => {
let ty = op.ty(self.local_decls, self.tcx);
self.tcx.layout_of(self.param_env.and(ty)).map_or(FlatSet::Top, |layout| {
FlatSet::Elem(ImmTy::from_scalar(scalar, layout))
})
}
FlatSet::Bottom => FlatSet::Bottom,
}
}
fn eval_discriminant(&self, enum_ty: Ty<'tcx>, variant_index: VariantIdx) -> Option<Scalar> {
if !enum_ty.is_enum() {
return None;
}
let enum_ty_layout = self.tcx.layout_of(self.param_env.and(enum_ty)).ok()?;
let discr_value =
self.ecx.discriminant_for_variant(enum_ty_layout.ty, variant_index).discard_err()?;
Some(discr_value.to_scalar())
}
fn wrap_immediate(&self, imm: Immediate) -> FlatSet<Scalar> {
match imm {
Immediate::Scalar(scalar) => FlatSet::Elem(scalar),
Immediate::Uninit => FlatSet::Bottom,
_ => FlatSet::Top,
}
}
}
impl<'tcx> DebugWithContext<ConstAnalysis<'_, 'tcx>> for State<FlatSet<Scalar>> {
fn fmt_with(&self, ctxt: &ConstAnalysis<'_, 'tcx>, f: &mut Formatter<'_>) -> std::fmt::Result {
match self {
State::Reachable(values) => debug_with_context(values, None, &ctxt.map, f),
State::Unreachable => write!(f, "unreachable"),
}
}
fn fmt_diff_with(
&self,
old: &Self,
ctxt: &ConstAnalysis<'_, 'tcx>,
f: &mut Formatter<'_>,
) -> std::fmt::Result {
match (self, old) {
(State::Reachable(this), State::Reachable(old)) => {
debug_with_context(this, Some(old), &ctxt.map, f)
}
_ => Ok(()), }
}
}
struct Patch<'tcx> {
tcx: TyCtxt<'tcx>,
before_effect: FxHashMap<(Location, Place<'tcx>), Const<'tcx>>,
assignments: FxHashMap<Location, Const<'tcx>>,
}
impl<'tcx> Patch<'tcx> {
pub(crate) fn new(tcx: TyCtxt<'tcx>) -> Self {
Self { tcx, before_effect: FxHashMap::default(), assignments: FxHashMap::default() }
}
fn make_operand(&self, const_: Const<'tcx>) -> Operand<'tcx> {
Operand::Constant(Box::new(ConstOperand { span: DUMMY_SP, user_ty: None, const_ }))
}
}
struct Collector<'a, 'tcx> {
patch: Patch<'tcx>,
local_decls: &'a LocalDecls<'tcx>,
}
impl<'a, 'tcx> Collector<'a, 'tcx> {
pub(crate) fn new(tcx: TyCtxt<'tcx>, local_decls: &'a LocalDecls<'tcx>) -> Self {
Self { patch: Patch::new(tcx), local_decls }
}
#[instrument(level = "trace", skip(self, ecx, map), ret)]
fn try_make_constant(
&self,
ecx: &mut InterpCx<'tcx, DummyMachine>,
place: Place<'tcx>,
state: &State<FlatSet<Scalar>>,
map: &Map<'tcx>,
) -> Option<Const<'tcx>> {
let ty = place.ty(self.local_decls, self.patch.tcx).ty;
let layout = ecx.layout_of(ty).ok()?;
if layout.is_zst() {
return Some(Const::zero_sized(ty));
}
if layout.is_unsized() {
return None;
}
let place = map.find(place.as_ref())?;
if layout.backend_repr.is_scalar()
&& let Some(value) = propagatable_scalar(place, state, map)
{
return Some(Const::Val(ConstValue::Scalar(value), ty));
}
if matches!(layout.backend_repr, BackendRepr::Scalar(..) | BackendRepr::ScalarPair(..)) {
let alloc_id = ecx
.intern_with_temp_alloc(layout, |ecx, dest| {
try_write_constant(ecx, dest, place, ty, state, map)
})
.discard_err()?;
return Some(Const::Val(ConstValue::Indirect { alloc_id, offset: Size::ZERO }, ty));
}
None
}
}
#[instrument(level = "trace", skip(map), ret)]
fn propagatable_scalar(
place: PlaceIndex,
state: &State<FlatSet<Scalar>>,
map: &Map<'_>,
) -> Option<Scalar> {
if let FlatSet::Elem(value) = state.get_idx(place, map)
&& value.try_to_scalar_int().is_ok()
{
Some(value)
} else {
None
}
}
#[instrument(level = "trace", skip(ecx, state, map), ret)]
fn try_write_constant<'tcx>(
ecx: &mut InterpCx<'tcx, DummyMachine>,
dest: &PlaceTy<'tcx>,
place: PlaceIndex,
ty: Ty<'tcx>,
state: &State<FlatSet<Scalar>>,
map: &Map<'tcx>,
) -> InterpResult<'tcx> {
let layout = ecx.layout_of(ty)?;
if layout.is_zst() {
return interp_ok(());
}
if layout.backend_repr.is_scalar()
&& let Some(value) = propagatable_scalar(place, state, map)
{
return ecx.write_immediate(Immediate::Scalar(value), dest);
}
match ty.kind() {
ty::FnDef(..) => {}
ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Char =>
throw_machine_stop_str!("primitive type with provenance"),
ty::Tuple(elem_tys) => {
for (i, elem) in elem_tys.iter().enumerate() {
let Some(field) = map.apply(place, TrackElem::Field(FieldIdx::from_usize(i))) else {
throw_machine_stop_str!("missing field in tuple")
};
let field_dest = ecx.project_field(dest, i)?;
try_write_constant(ecx, &field_dest, field, elem, state, map)?;
}
}
ty::Adt(def, args) => {
if def.is_union() {
throw_machine_stop_str!("cannot propagate unions")
}
let (variant_idx, variant_def, variant_place, variant_dest) = if def.is_enum() {
let Some(discr) = map.apply(place, TrackElem::Discriminant) else {
throw_machine_stop_str!("missing discriminant for enum")
};
let FlatSet::Elem(Scalar::Int(discr)) = state.get_idx(discr, map) else {
throw_machine_stop_str!("discriminant with provenance")
};
let discr_bits = discr.to_bits(discr.size());
let Some((variant, _)) = def.discriminants(*ecx.tcx).find(|(_, var)| discr_bits == var.val) else {
throw_machine_stop_str!("illegal discriminant for enum")
};
let Some(variant_place) = map.apply(place, TrackElem::Variant(variant)) else {
throw_machine_stop_str!("missing variant for enum")
};
let variant_dest = ecx.project_downcast(dest, variant)?;
(variant, def.variant(variant), variant_place, variant_dest)
} else {
(FIRST_VARIANT, def.non_enum_variant(), place, dest.clone())
};
for (i, field) in variant_def.fields.iter_enumerated() {
let ty = field.ty(*ecx.tcx, args);
let Some(field) = map.apply(variant_place, TrackElem::Field(i)) else {
throw_machine_stop_str!("missing field in ADT")
};
let field_dest = ecx.project_field(&variant_dest, i.as_usize())?;
try_write_constant(ecx, &field_dest, field, ty, state, map)?;
}
ecx.write_discriminant(variant_idx, dest)?;
}
ty::Array(_, _)
| ty::Pat(_, _)
| ty::Ref(..) | ty::RawPtr(..) | ty::FnPtr(..) | ty::Str | ty::Slice(_)
| ty::Never
| ty::Foreign(..)
| ty::Alias(..)
| ty::Param(_)
| ty::Bound(..)
| ty::Placeholder(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(..)
| ty::Dynamic(..) => throw_machine_stop_str!("unsupported type"),
ty::Error(_) | ty::Infer(..) | ty::CoroutineWitness(..) => bug!(),
}
interp_ok(())
}
impl<'mir, 'tcx> ResultsVisitor<'mir, 'tcx, Results<'tcx, ConstAnalysis<'_, 'tcx>>>
for Collector<'_, 'tcx>
{
type Domain = State<FlatSet<Scalar>>;
#[instrument(level = "trace", skip(self, results, statement))]
fn visit_statement_before_primary_effect(
&mut self,
results: &mut Results<'tcx, ConstAnalysis<'_, 'tcx>>,
state: &Self::Domain,
statement: &'mir Statement<'tcx>,
location: Location,
) {
match &statement.kind {
StatementKind::Assign(box (_, rvalue)) => {
OperandCollector {
state,
visitor: self,
ecx: &mut results.analysis.ecx,
map: &results.analysis.map,
}
.visit_rvalue(rvalue, location);
}
_ => (),
}
}
#[instrument(level = "trace", skip(self, results, statement))]
fn visit_statement_after_primary_effect(
&mut self,
results: &mut Results<'tcx, ConstAnalysis<'_, 'tcx>>,
state: &Self::Domain,
statement: &'mir Statement<'tcx>,
location: Location,
) {
match statement.kind {
StatementKind::Assign(box (_, Rvalue::Use(Operand::Constant(_)))) => {
}
StatementKind::Assign(box (place, _)) => {
if let Some(value) = self.try_make_constant(
&mut results.analysis.ecx,
place,
state,
&results.analysis.map,
) {
self.patch.assignments.insert(location, value);
}
}
_ => (),
}
}
fn visit_terminator_before_primary_effect(
&mut self,
results: &mut Results<'tcx, ConstAnalysis<'_, 'tcx>>,
state: &Self::Domain,
terminator: &'mir Terminator<'tcx>,
location: Location,
) {
OperandCollector {
state,
visitor: self,
ecx: &mut results.analysis.ecx,
map: &results.analysis.map,
}
.visit_terminator(terminator, location);
}
}
impl<'tcx> MutVisitor<'tcx> for Patch<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
if let Some(value) = self.assignments.get(&location) {
match &mut statement.kind {
StatementKind::Assign(box (_, rvalue)) => {
*rvalue = Rvalue::Use(self.make_operand(*value));
}
_ => bug!("found assignment info for non-assign statement"),
}
} else {
self.super_statement(statement, location);
}
}
fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
match operand {
Operand::Copy(place) | Operand::Move(place) => {
if let Some(value) = self.before_effect.get(&(location, *place)) {
*operand = self.make_operand(*value);
} else if !place.projection.is_empty() {
self.super_operand(operand, location)
}
}
Operand::Constant(_) => {}
}
}
fn process_projection_elem(
&mut self,
elem: PlaceElem<'tcx>,
location: Location,
) -> Option<PlaceElem<'tcx>> {
if let PlaceElem::Index(local) = elem {
let offset = self.before_effect.get(&(location, local.into()))?;
let offset = offset.try_to_scalar()?;
let offset = offset.to_target_usize(&self.tcx).discard_err()?;
let min_length = offset.checked_add(1)?;
Some(PlaceElem::ConstantIndex { offset, min_length, from_end: false })
} else {
None
}
}
}
struct OperandCollector<'a, 'b, 'tcx> {
state: &'a State<FlatSet<Scalar>>,
visitor: &'a mut Collector<'b, 'tcx>,
ecx: &'a mut InterpCx<'tcx, DummyMachine>,
map: &'a Map<'tcx>,
}
impl<'tcx> Visitor<'tcx> for OperandCollector<'_, '_, 'tcx> {
fn visit_projection_elem(
&mut self,
_: PlaceRef<'tcx>,
elem: PlaceElem<'tcx>,
_: PlaceContext,
location: Location,
) {
if let PlaceElem::Index(local) = elem
&& let Some(value) =
self.visitor.try_make_constant(self.ecx, local.into(), self.state, self.map)
{
self.visitor.patch.before_effect.insert((location, local.into()), value);
}
}
fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
if let Some(place) = operand.place() {
if let Some(value) =
self.visitor.try_make_constant(self.ecx, place, self.state, self.map)
{
self.visitor.patch.before_effect.insert((location, place), value);
} else if !place.projection.is_empty() {
self.super_operand(operand, location)
}
}
}
}