rustc_middle/ty/
layout.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
use std::num::NonZero;
use std::ops::Bound;
use std::{cmp, fmt};

use rustc_abi::{
    AddressSpace, Align, BackendRepr, ExternAbi, FieldIdx, FieldsShape, HasDataLayout, LayoutData,
    PointeeInfo, PointerKind, Primitive, ReprOptions, Scalar, Size, TagEncoding, TargetDataLayout,
    TyAbiInterface, VariantIdx, Variants,
};
use rustc_error_messages::DiagMessage;
use rustc_errors::{
    Diag, DiagArgValue, DiagCtxtHandle, Diagnostic, EmissionGuarantee, IntoDiagArg, Level,
};
use rustc_hir::LangItem;
use rustc_hir::def_id::DefId;
use rustc_index::IndexVec;
use rustc_macros::{HashStable, TyDecodable, TyEncodable, extension};
use rustc_session::config::OptLevel;
use rustc_span::symbol::{Symbol, sym};
use rustc_span::{DUMMY_SP, ErrorGuaranteed, Span};
use rustc_target::callconv::FnAbi;
use rustc_target::spec::{
    HasTargetSpec, HasWasmCAbiOpt, HasX86AbiOpt, PanicStrategy, Target, WasmCAbi, X86Abi,
};
use tracing::debug;
use {rustc_abi as abi, rustc_hir as hir};

use crate::error::UnsupportedFnAbi;
use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use crate::query::TyCtxtAt;
use crate::ty::normalize_erasing_regions::NormalizationError;
use crate::ty::{self, CoroutineArgsExt, Ty, TyCtxt, TypeVisitableExt};

#[extension(pub trait IntegerExt)]
impl abi::Integer {
    #[inline]
    fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>, signed: bool) -> Ty<'tcx> {
        use abi::Integer::{I8, I16, I32, I64, I128};
        match (*self, signed) {
            (I8, false) => tcx.types.u8,
            (I16, false) => tcx.types.u16,
            (I32, false) => tcx.types.u32,
            (I64, false) => tcx.types.u64,
            (I128, false) => tcx.types.u128,
            (I8, true) => tcx.types.i8,
            (I16, true) => tcx.types.i16,
            (I32, true) => tcx.types.i32,
            (I64, true) => tcx.types.i64,
            (I128, true) => tcx.types.i128,
        }
    }

    fn from_int_ty<C: HasDataLayout>(cx: &C, ity: ty::IntTy) -> abi::Integer {
        use abi::Integer::{I8, I16, I32, I64, I128};
        match ity {
            ty::IntTy::I8 => I8,
            ty::IntTy::I16 => I16,
            ty::IntTy::I32 => I32,
            ty::IntTy::I64 => I64,
            ty::IntTy::I128 => I128,
            ty::IntTy::Isize => cx.data_layout().ptr_sized_integer(),
        }
    }
    fn from_uint_ty<C: HasDataLayout>(cx: &C, ity: ty::UintTy) -> abi::Integer {
        use abi::Integer::{I8, I16, I32, I64, I128};
        match ity {
            ty::UintTy::U8 => I8,
            ty::UintTy::U16 => I16,
            ty::UintTy::U32 => I32,
            ty::UintTy::U64 => I64,
            ty::UintTy::U128 => I128,
            ty::UintTy::Usize => cx.data_layout().ptr_sized_integer(),
        }
    }

    /// Finds the appropriate Integer type and signedness for the given
    /// signed discriminant range and `#[repr]` attribute.
    /// N.B.: `u128` values above `i128::MAX` will be treated as signed, but
    /// that shouldn't affect anything, other than maybe debuginfo.
    fn repr_discr<'tcx>(
        tcx: TyCtxt<'tcx>,
        ty: Ty<'tcx>,
        repr: &ReprOptions,
        min: i128,
        max: i128,
    ) -> (abi::Integer, bool) {
        // Theoretically, negative values could be larger in unsigned representation
        // than the unsigned representation of the signed minimum. However, if there
        // are any negative values, the only valid unsigned representation is u128
        // which can fit all i128 values, so the result remains unaffected.
        let unsigned_fit = abi::Integer::fit_unsigned(cmp::max(min as u128, max as u128));
        let signed_fit = cmp::max(abi::Integer::fit_signed(min), abi::Integer::fit_signed(max));

        if let Some(ity) = repr.int {
            let discr = abi::Integer::from_attr(&tcx, ity);
            let fit = if ity.is_signed() { signed_fit } else { unsigned_fit };
            if discr < fit {
                bug!(
                    "Integer::repr_discr: `#[repr]` hint too small for \
                      discriminant range of enum `{}`",
                    ty
                )
            }
            return (discr, ity.is_signed());
        }

        let at_least = if repr.c() {
            // This is usually I32, however it can be different on some platforms,
            // notably hexagon and arm-none/thumb-none
            tcx.data_layout().c_enum_min_size
        } else {
            // repr(Rust) enums try to be as small as possible
            abi::Integer::I8
        };

        // If there are no negative values, we can use the unsigned fit.
        if min >= 0 {
            (cmp::max(unsigned_fit, at_least), false)
        } else {
            (cmp::max(signed_fit, at_least), true)
        }
    }
}

#[extension(pub trait FloatExt)]
impl abi::Float {
    #[inline]
    fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        use abi::Float::*;
        match *self {
            F16 => tcx.types.f16,
            F32 => tcx.types.f32,
            F64 => tcx.types.f64,
            F128 => tcx.types.f128,
        }
    }

    fn from_float_ty(fty: ty::FloatTy) -> Self {
        use abi::Float::*;
        match fty {
            ty::FloatTy::F16 => F16,
            ty::FloatTy::F32 => F32,
            ty::FloatTy::F64 => F64,
            ty::FloatTy::F128 => F128,
        }
    }
}

#[extension(pub trait PrimitiveExt)]
impl Primitive {
    #[inline]
    fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        match *self {
            Primitive::Int(i, signed) => i.to_ty(tcx, signed),
            Primitive::Float(f) => f.to_ty(tcx),
            // FIXME(erikdesjardins): handle non-default addrspace ptr sizes
            Primitive::Pointer(_) => Ty::new_mut_ptr(tcx, tcx.types.unit),
        }
    }

    /// Return an *integer* type matching this primitive.
    /// Useful in particular when dealing with enum discriminants.
    #[inline]
    fn to_int_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        match *self {
            Primitive::Int(i, signed) => i.to_ty(tcx, signed),
            // FIXME(erikdesjardins): handle non-default addrspace ptr sizes
            Primitive::Pointer(_) => {
                let signed = false;
                tcx.data_layout().ptr_sized_integer().to_ty(tcx, signed)
            }
            Primitive::Float(_) => bug!("floats do not have an int type"),
        }
    }
}

/// The first half of a wide pointer.
///
/// - For a trait object, this is the address of the box.
/// - For a slice, this is the base address.
pub const WIDE_PTR_ADDR: usize = 0;

/// The second half of a wide pointer.
///
/// - For a trait object, this is the address of the vtable.
/// - For a slice, this is the length.
pub const WIDE_PTR_EXTRA: usize = 1;

/// The maximum supported number of lanes in a SIMD vector.
///
/// This value is selected based on backend support:
/// * LLVM does not appear to have a vector width limit.
/// * Cranelift stores the base-2 log of the lane count in a 4 bit integer.
pub const MAX_SIMD_LANES: u64 = 1 << 0xF;

/// Used in `check_validity_requirement` to indicate the kind of initialization
/// that is checked to be valid
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
pub enum ValidityRequirement {
    Inhabited,
    Zero,
    /// The return value of mem::uninitialized, 0x01
    /// (unless -Zstrict-init-checks is on, in which case it's the same as Uninit).
    UninitMitigated0x01Fill,
    /// True uninitialized memory.
    Uninit,
}

impl ValidityRequirement {
    pub fn from_intrinsic(intrinsic: Symbol) -> Option<Self> {
        match intrinsic {
            sym::assert_inhabited => Some(Self::Inhabited),
            sym::assert_zero_valid => Some(Self::Zero),
            sym::assert_mem_uninitialized_valid => Some(Self::UninitMitigated0x01Fill),
            _ => None,
        }
    }
}

impl fmt::Display for ValidityRequirement {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::Inhabited => f.write_str("is inhabited"),
            Self::Zero => f.write_str("allows being left zeroed"),
            Self::UninitMitigated0x01Fill => f.write_str("allows being filled with 0x01"),
            Self::Uninit => f.write_str("allows being left uninitialized"),
        }
    }
}

#[derive(Copy, Clone, Debug, HashStable, TyEncodable, TyDecodable)]
pub enum LayoutError<'tcx> {
    Unknown(Ty<'tcx>),
    SizeOverflow(Ty<'tcx>),
    NormalizationFailure(Ty<'tcx>, NormalizationError<'tcx>),
    ReferencesError(ErrorGuaranteed),
    Cycle(ErrorGuaranteed),
}

impl<'tcx> LayoutError<'tcx> {
    pub fn diagnostic_message(&self) -> DiagMessage {
        use LayoutError::*;

        use crate::fluent_generated::*;
        match self {
            Unknown(_) => middle_unknown_layout,
            SizeOverflow(_) => middle_values_too_big,
            NormalizationFailure(_, _) => middle_cannot_be_normalized,
            Cycle(_) => middle_cycle,
            ReferencesError(_) => middle_layout_references_error,
        }
    }

    pub fn into_diagnostic(self) -> crate::error::LayoutError<'tcx> {
        use LayoutError::*;

        use crate::error::LayoutError as E;
        match self {
            Unknown(ty) => E::Unknown { ty },
            SizeOverflow(ty) => E::Overflow { ty },
            NormalizationFailure(ty, e) => {
                E::NormalizationFailure { ty, failure_ty: e.get_type_for_failure() }
            }
            Cycle(_) => E::Cycle,
            ReferencesError(_) => E::ReferencesError,
        }
    }
}

// FIXME: Once the other errors that embed this error have been converted to translatable
// diagnostics, this Display impl should be removed.
impl<'tcx> fmt::Display for LayoutError<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            LayoutError::Unknown(ty) => write!(f, "the type `{ty}` has an unknown layout"),
            LayoutError::SizeOverflow(ty) => {
                write!(f, "values of the type `{ty}` are too big for the target architecture")
            }
            LayoutError::NormalizationFailure(t, e) => write!(
                f,
                "unable to determine layout for `{}` because `{}` cannot be normalized",
                t,
                e.get_type_for_failure()
            ),
            LayoutError::Cycle(_) => write!(f, "a cycle occurred during layout computation"),
            LayoutError::ReferencesError(_) => write!(f, "the type has an unknown layout"),
        }
    }
}

impl<'tcx> IntoDiagArg for LayoutError<'tcx> {
    fn into_diag_arg(self) -> DiagArgValue {
        self.to_string().into_diag_arg()
    }
}

#[derive(Clone, Copy)]
pub struct LayoutCx<'tcx> {
    pub calc: abi::LayoutCalculator<TyCtxt<'tcx>>,
    pub param_env: ty::ParamEnv<'tcx>,
}

impl<'tcx> LayoutCx<'tcx> {
    pub fn new(tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Self {
        Self { calc: abi::LayoutCalculator::new(tcx), param_env }
    }
}

/// Type size "skeleton", i.e., the only information determining a type's size.
/// While this is conservative, (aside from constant sizes, only pointers,
/// newtypes thereof and null pointer optimized enums are allowed), it is
/// enough to statically check common use cases of transmute.
#[derive(Copy, Clone, Debug)]
pub enum SizeSkeleton<'tcx> {
    /// Any statically computable Layout.
    /// Alignment can be `None` if unknown.
    Known(Size, Option<Align>),

    /// This is a generic const expression (i.e. N * 2), which may contain some parameters.
    /// It must be of type usize, and represents the size of a type in bytes.
    /// It is not required to be evaluatable to a concrete value, but can be used to check
    /// that another SizeSkeleton is of equal size.
    Generic(ty::Const<'tcx>),

    /// A potentially-wide pointer.
    Pointer {
        /// If true, this pointer is never null.
        non_zero: bool,
        /// The type which determines the unsized metadata, if any,
        /// of this pointer. Either a type parameter or a projection
        /// depending on one, with regions erased.
        tail: Ty<'tcx>,
    },
}

impl<'tcx> SizeSkeleton<'tcx> {
    pub fn compute(
        ty: Ty<'tcx>,
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
    ) -> Result<SizeSkeleton<'tcx>, &'tcx LayoutError<'tcx>> {
        debug_assert!(!ty.has_non_region_infer());

        // First try computing a static layout.
        let err = match tcx.layout_of(param_env.and(ty)) {
            Ok(layout) => {
                if layout.is_sized() {
                    return Ok(SizeSkeleton::Known(layout.size, Some(layout.align.abi)));
                } else {
                    // Just to be safe, don't claim a known layout for unsized types.
                    return Err(tcx.arena.alloc(LayoutError::Unknown(ty)));
                }
            }
            Err(err @ LayoutError::Unknown(_)) => err,
            // We can't extract SizeSkeleton info from other layout errors
            Err(
                e @ LayoutError::Cycle(_)
                | e @ LayoutError::SizeOverflow(_)
                | e @ LayoutError::NormalizationFailure(..)
                | e @ LayoutError::ReferencesError(_),
            ) => return Err(e),
        };

        match *ty.kind() {
            ty::Ref(_, pointee, _) | ty::RawPtr(pointee, _) => {
                let non_zero = !ty.is_unsafe_ptr();

                let tail = tcx.struct_tail_raw(
                    pointee,
                    |ty| match tcx.try_normalize_erasing_regions(param_env, ty) {
                        Ok(ty) => ty,
                        Err(e) => Ty::new_error_with_message(
                            tcx,
                            DUMMY_SP,
                            format!(
                                "normalization failed for {} but no errors reported",
                                e.get_type_for_failure()
                            ),
                        ),
                    },
                    || {},
                );

                match tail.kind() {
                    ty::Param(_) | ty::Alias(ty::Projection | ty::Inherent, _) => {
                        debug_assert!(tail.has_non_region_param());
                        Ok(SizeSkeleton::Pointer { non_zero, tail: tcx.erase_regions(tail) })
                    }
                    ty::Error(guar) => {
                        // Fixes ICE #124031
                        return Err(tcx.arena.alloc(LayoutError::ReferencesError(*guar)));
                    }
                    _ => bug!(
                        "SizeSkeleton::compute({ty}): layout errored ({err:?}), yet \
                              tail `{tail}` is not a type parameter or a projection",
                    ),
                }
            }
            ty::Array(inner, len) if tcx.features().transmute_generic_consts() => {
                let len_eval = len.try_to_target_usize(tcx);
                if len_eval == Some(0) {
                    return Ok(SizeSkeleton::Known(Size::from_bytes(0), None));
                }

                match SizeSkeleton::compute(inner, tcx, param_env)? {
                    // This may succeed because the multiplication of two types may overflow
                    // but a single size of a nested array will not.
                    SizeSkeleton::Known(s, a) => {
                        if let Some(c) = len_eval {
                            let size = s
                                .bytes()
                                .checked_mul(c)
                                .ok_or_else(|| &*tcx.arena.alloc(LayoutError::SizeOverflow(ty)))?;
                            // Alignment is unchanged by arrays.
                            return Ok(SizeSkeleton::Known(Size::from_bytes(size), a));
                        }
                        Err(tcx.arena.alloc(LayoutError::Unknown(ty)))
                    }
                    SizeSkeleton::Pointer { .. } => Err(err),
                    SizeSkeleton::Generic(_) => Err(tcx.arena.alloc(LayoutError::Unknown(ty))),
                }
            }

            ty::Adt(def, args) => {
                // Only newtypes and enums w/ nullable pointer optimization.
                if def.is_union() || def.variants().is_empty() || def.variants().len() > 2 {
                    return Err(err);
                }

                // Get a zero-sized variant or a pointer newtype.
                let zero_or_ptr_variant = |i| {
                    let i = VariantIdx::from_usize(i);
                    let fields =
                        def.variant(i).fields.iter().map(|field| {
                            SizeSkeleton::compute(field.ty(tcx, args), tcx, param_env)
                        });
                    let mut ptr = None;
                    for field in fields {
                        let field = field?;
                        match field {
                            SizeSkeleton::Known(size, align) => {
                                let is_1zst = size.bytes() == 0
                                    && align.is_some_and(|align| align.bytes() == 1);
                                if !is_1zst {
                                    return Err(err);
                                }
                            }
                            SizeSkeleton::Pointer { .. } => {
                                if ptr.is_some() {
                                    return Err(err);
                                }
                                ptr = Some(field);
                            }
                            SizeSkeleton::Generic(_) => {
                                return Err(err);
                            }
                        }
                    }
                    Ok(ptr)
                };

                let v0 = zero_or_ptr_variant(0)?;
                // Newtype.
                if def.variants().len() == 1 {
                    if let Some(SizeSkeleton::Pointer { non_zero, tail }) = v0 {
                        return Ok(SizeSkeleton::Pointer {
                            non_zero: non_zero
                                || match tcx.layout_scalar_valid_range(def.did()) {
                                    (Bound::Included(start), Bound::Unbounded) => start > 0,
                                    (Bound::Included(start), Bound::Included(end)) => {
                                        0 < start && start < end
                                    }
                                    _ => false,
                                },
                            tail,
                        });
                    } else {
                        return Err(err);
                    }
                }

                let v1 = zero_or_ptr_variant(1)?;
                // Nullable pointer enum optimization.
                match (v0, v1) {
                    (Some(SizeSkeleton::Pointer { non_zero: true, tail }), None)
                    | (None, Some(SizeSkeleton::Pointer { non_zero: true, tail })) => {
                        Ok(SizeSkeleton::Pointer { non_zero: false, tail })
                    }
                    _ => Err(err),
                }
            }

            ty::Alias(..) => {
                let normalized = tcx.normalize_erasing_regions(param_env, ty);
                if ty == normalized {
                    Err(err)
                } else {
                    SizeSkeleton::compute(normalized, tcx, param_env)
                }
            }

            _ => Err(err),
        }
    }

    pub fn same_size(self, other: SizeSkeleton<'tcx>) -> bool {
        match (self, other) {
            (SizeSkeleton::Known(a, _), SizeSkeleton::Known(b, _)) => a == b,
            (SizeSkeleton::Pointer { tail: a, .. }, SizeSkeleton::Pointer { tail: b, .. }) => {
                a == b
            }
            // constants are always pre-normalized into a canonical form so this
            // only needs to check if their pointers are identical.
            (SizeSkeleton::Generic(a), SizeSkeleton::Generic(b)) => a == b,
            _ => false,
        }
    }
}

pub trait HasTyCtxt<'tcx>: HasDataLayout {
    fn tcx(&self) -> TyCtxt<'tcx>;
}

pub trait HasParamEnv<'tcx> {
    fn param_env(&self) -> ty::ParamEnv<'tcx>;
}

impl<'tcx> HasDataLayout for TyCtxt<'tcx> {
    #[inline]
    fn data_layout(&self) -> &TargetDataLayout {
        &self.data_layout
    }
}

impl<'tcx> HasTargetSpec for TyCtxt<'tcx> {
    fn target_spec(&self) -> &Target {
        &self.sess.target
    }
}

impl<'tcx> HasWasmCAbiOpt for TyCtxt<'tcx> {
    fn wasm_c_abi_opt(&self) -> WasmCAbi {
        self.sess.opts.unstable_opts.wasm_c_abi
    }
}

impl<'tcx> HasX86AbiOpt for TyCtxt<'tcx> {
    fn x86_abi_opt(&self) -> X86Abi {
        X86Abi { regparm: self.sess.opts.unstable_opts.regparm }
    }
}

impl<'tcx> HasTyCtxt<'tcx> for TyCtxt<'tcx> {
    #[inline]
    fn tcx(&self) -> TyCtxt<'tcx> {
        *self
    }
}

impl<'tcx> HasDataLayout for TyCtxtAt<'tcx> {
    #[inline]
    fn data_layout(&self) -> &TargetDataLayout {
        &self.data_layout
    }
}

impl<'tcx> HasTargetSpec for TyCtxtAt<'tcx> {
    fn target_spec(&self) -> &Target {
        &self.sess.target
    }
}

impl<'tcx> HasTyCtxt<'tcx> for TyCtxtAt<'tcx> {
    #[inline]
    fn tcx(&self) -> TyCtxt<'tcx> {
        **self
    }
}

impl<'tcx> HasParamEnv<'tcx> for LayoutCx<'tcx> {
    fn param_env(&self) -> ty::ParamEnv<'tcx> {
        self.param_env
    }
}

impl<'tcx> HasDataLayout for LayoutCx<'tcx> {
    fn data_layout(&self) -> &TargetDataLayout {
        self.calc.cx.data_layout()
    }
}

impl<'tcx> HasTargetSpec for LayoutCx<'tcx> {
    fn target_spec(&self) -> &Target {
        self.calc.cx.target_spec()
    }
}

impl<'tcx> HasWasmCAbiOpt for LayoutCx<'tcx> {
    fn wasm_c_abi_opt(&self) -> WasmCAbi {
        self.calc.cx.wasm_c_abi_opt()
    }
}

impl<'tcx> HasX86AbiOpt for LayoutCx<'tcx> {
    fn x86_abi_opt(&self) -> X86Abi {
        self.calc.cx.x86_abi_opt()
    }
}

impl<'tcx> HasTyCtxt<'tcx> for LayoutCx<'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.calc.cx
    }
}

pub trait MaybeResult<T> {
    type Error;

    fn from(x: Result<T, Self::Error>) -> Self;
    fn to_result(self) -> Result<T, Self::Error>;
}

impl<T> MaybeResult<T> for T {
    type Error = !;

    fn from(Ok(x): Result<T, Self::Error>) -> Self {
        x
    }
    fn to_result(self) -> Result<T, Self::Error> {
        Ok(self)
    }
}

impl<T, E> MaybeResult<T> for Result<T, E> {
    type Error = E;

    fn from(x: Result<T, Self::Error>) -> Self {
        x
    }
    fn to_result(self) -> Result<T, Self::Error> {
        self
    }
}

pub type TyAndLayout<'tcx> = rustc_abi::TyAndLayout<'tcx, Ty<'tcx>>;

/// Trait for contexts that want to be able to compute layouts of types.
/// This automatically gives access to `LayoutOf`, through a blanket `impl`.
pub trait LayoutOfHelpers<'tcx>: HasDataLayout + HasTyCtxt<'tcx> + HasParamEnv<'tcx> {
    /// The `TyAndLayout`-wrapping type (or `TyAndLayout` itself), which will be
    /// returned from `layout_of` (see also `handle_layout_err`).
    type LayoutOfResult: MaybeResult<TyAndLayout<'tcx>> = TyAndLayout<'tcx>;

    /// `Span` to use for `tcx.at(span)`, from `layout_of`.
    // FIXME(eddyb) perhaps make this mandatory to get contexts to track it better?
    #[inline]
    fn layout_tcx_at_span(&self) -> Span {
        DUMMY_SP
    }

    /// Helper used for `layout_of`, to adapt `tcx.layout_of(...)` into a
    /// `Self::LayoutOfResult` (which does not need to be a `Result<...>`).
    ///
    /// Most `impl`s, which propagate `LayoutError`s, should simply return `err`,
    /// but this hook allows e.g. codegen to return only `TyAndLayout` from its
    /// `cx.layout_of(...)`, without any `Result<...>` around it to deal with
    /// (and any `LayoutError`s are turned into fatal errors or ICEs).
    fn handle_layout_err(
        &self,
        err: LayoutError<'tcx>,
        span: Span,
        ty: Ty<'tcx>,
    ) -> <Self::LayoutOfResult as MaybeResult<TyAndLayout<'tcx>>>::Error;
}

/// Blanket extension trait for contexts that can compute layouts of types.
pub trait LayoutOf<'tcx>: LayoutOfHelpers<'tcx> {
    /// Computes the layout of a type. Note that this implicitly
    /// executes in "reveal all" mode, and will normalize the input type.
    #[inline]
    fn layout_of(&self, ty: Ty<'tcx>) -> Self::LayoutOfResult {
        self.spanned_layout_of(ty, DUMMY_SP)
    }

    /// Computes the layout of a type, at `span`. Note that this implicitly
    /// executes in "reveal all" mode, and will normalize the input type.
    // FIXME(eddyb) avoid passing information like this, and instead add more
    // `TyCtxt::at`-like APIs to be able to do e.g. `cx.at(span).layout_of(ty)`.
    #[inline]
    fn spanned_layout_of(&self, ty: Ty<'tcx>, span: Span) -> Self::LayoutOfResult {
        let span = if !span.is_dummy() { span } else { self.layout_tcx_at_span() };
        let tcx = self.tcx().at(span);

        MaybeResult::from(
            tcx.layout_of(self.param_env().and(ty))
                .map_err(|err| self.handle_layout_err(*err, span, ty)),
        )
    }
}

impl<'tcx, C: LayoutOfHelpers<'tcx>> LayoutOf<'tcx> for C {}

impl<'tcx> LayoutOfHelpers<'tcx> for LayoutCx<'tcx> {
    type LayoutOfResult = Result<TyAndLayout<'tcx>, &'tcx LayoutError<'tcx>>;

    #[inline]
    fn handle_layout_err(
        &self,
        err: LayoutError<'tcx>,
        _: Span,
        _: Ty<'tcx>,
    ) -> &'tcx LayoutError<'tcx> {
        self.tcx().arena.alloc(err)
    }
}

impl<'tcx, C> TyAbiInterface<'tcx, C> for Ty<'tcx>
where
    C: HasTyCtxt<'tcx> + HasParamEnv<'tcx>,
{
    fn ty_and_layout_for_variant(
        this: TyAndLayout<'tcx>,
        cx: &C,
        variant_index: VariantIdx,
    ) -> TyAndLayout<'tcx> {
        let layout = match this.variants {
            Variants::Single { index }
                // If all variants but one are uninhabited, the variant layout is the enum layout.
                if index == variant_index &&
                // Don't confuse variants of uninhabited enums with the enum itself.
                // For more details see https://github.com/rust-lang/rust/issues/69763.
                this.fields != FieldsShape::Primitive =>
            {
                this.layout
            }

            Variants::Single { index } => {
                let tcx = cx.tcx();
                let param_env = cx.param_env();

                // Deny calling for_variant more than once for non-Single enums.
                if let Ok(original_layout) = tcx.layout_of(param_env.and(this.ty)) {
                    assert_eq!(original_layout.variants, Variants::Single { index });
                }

                let fields = match this.ty.kind() {
                    ty::Adt(def, _) if def.variants().is_empty() =>
                        bug!("for_variant called on zero-variant enum {}", this.ty),
                    ty::Adt(def, _) => def.variant(variant_index).fields.len(),
                    _ => bug!("`ty_and_layout_for_variant` on unexpected type {}", this.ty),
                };
                tcx.mk_layout(LayoutData {
                    variants: Variants::Single { index: variant_index },
                    fields: match NonZero::new(fields) {
                        Some(fields) => FieldsShape::Union(fields),
                        None => FieldsShape::Arbitrary { offsets: IndexVec::new(), memory_index: IndexVec::new() },
                    },
                    backend_repr: BackendRepr::Uninhabited,
                    largest_niche: None,
                    align: tcx.data_layout.i8_align,
                    size: Size::ZERO,
                    max_repr_align: None,
                    unadjusted_abi_align: tcx.data_layout.i8_align.abi,
                })
            }

            Variants::Multiple { ref variants, .. } => cx.tcx().mk_layout(variants[variant_index].clone()),
        };

        assert_eq!(*layout.variants(), Variants::Single { index: variant_index });

        TyAndLayout { ty: this.ty, layout }
    }

    fn ty_and_layout_field(this: TyAndLayout<'tcx>, cx: &C, i: usize) -> TyAndLayout<'tcx> {
        enum TyMaybeWithLayout<'tcx> {
            Ty(Ty<'tcx>),
            TyAndLayout(TyAndLayout<'tcx>),
        }

        fn field_ty_or_layout<'tcx>(
            this: TyAndLayout<'tcx>,
            cx: &(impl HasTyCtxt<'tcx> + HasParamEnv<'tcx>),
            i: usize,
        ) -> TyMaybeWithLayout<'tcx> {
            let tcx = cx.tcx();
            let tag_layout = |tag: Scalar| -> TyAndLayout<'tcx> {
                TyAndLayout {
                    layout: tcx.mk_layout(LayoutData::scalar(cx, tag)),
                    ty: tag.primitive().to_ty(tcx),
                }
            };

            match *this.ty.kind() {
                ty::Bool
                | ty::Char
                | ty::Int(_)
                | ty::Uint(_)
                | ty::Float(_)
                | ty::FnPtr(..)
                | ty::Never
                | ty::FnDef(..)
                | ty::CoroutineWitness(..)
                | ty::Foreign(..)
                | ty::Pat(_, _)
                | ty::Dynamic(_, _, ty::Dyn) => {
                    bug!("TyAndLayout::field({:?}): not applicable", this)
                }

                // Potentially-wide pointers.
                ty::Ref(_, pointee, _) | ty::RawPtr(pointee, _) => {
                    assert!(i < this.fields.count());

                    // Reuse the wide `*T` type as its own thin pointer data field.
                    // This provides information about, e.g., DST struct pointees
                    // (which may have no non-DST form), and will work as long
                    // as the `Abi` or `FieldsShape` is checked by users.
                    if i == 0 {
                        let nil = tcx.types.unit;
                        let unit_ptr_ty = if this.ty.is_unsafe_ptr() {
                            Ty::new_mut_ptr(tcx, nil)
                        } else {
                            Ty::new_mut_ref(tcx, tcx.lifetimes.re_static, nil)
                        };

                        // NOTE(eddyb) using an empty `ParamEnv`, and `unwrap`-ing
                        // the `Result` should always work because the type is
                        // always either `*mut ()` or `&'static mut ()`.
                        return TyMaybeWithLayout::TyAndLayout(TyAndLayout {
                            ty: this.ty,
                            ..tcx.layout_of(ty::ParamEnv::reveal_all().and(unit_ptr_ty)).unwrap()
                        });
                    }

                    let mk_dyn_vtable = |principal: Option<ty::PolyExistentialTraitRef<'tcx>>| {
                        let min_count = ty::vtable_min_entries(tcx, principal);
                        Ty::new_imm_ref(
                            tcx,
                            tcx.lifetimes.re_static,
                            // FIXME: properly type (e.g. usize and fn pointers) the fields.
                            Ty::new_array(tcx, tcx.types.usize, min_count.try_into().unwrap()),
                        )
                    };

                    let metadata = if let Some(metadata_def_id) = tcx.lang_items().metadata_type()
                        // Projection eagerly bails out when the pointee references errors,
                        // fall back to structurally deducing metadata.
                        && !pointee.references_error()
                    {
                        let metadata = tcx.normalize_erasing_regions(
                            cx.param_env(),
                            Ty::new_projection(tcx, metadata_def_id, [pointee]),
                        );

                        // Map `Metadata = DynMetadata<dyn Trait>` back to a vtable, since it
                        // offers better information than `std::ptr::metadata::VTable`,
                        // and we rely on this layout information to trigger a panic in
                        // `std::mem::uninitialized::<&dyn Trait>()`, for example.
                        if let ty::Adt(def, args) = metadata.kind()
                            && tcx.is_lang_item(def.did(), LangItem::DynMetadata)
                            && let ty::Dynamic(data, _, ty::Dyn) = args.type_at(0).kind()
                        {
                            mk_dyn_vtable(data.principal())
                        } else {
                            metadata
                        }
                    } else {
                        match tcx.struct_tail_for_codegen(pointee, cx.param_env()).kind() {
                            ty::Slice(_) | ty::Str => tcx.types.usize,
                            ty::Dynamic(data, _, ty::Dyn) => mk_dyn_vtable(data.principal()),
                            _ => bug!("TyAndLayout::field({:?}): not applicable", this),
                        }
                    };

                    TyMaybeWithLayout::Ty(metadata)
                }

                // Arrays and slices.
                ty::Array(element, _) | ty::Slice(element) => TyMaybeWithLayout::Ty(element),
                ty::Str => TyMaybeWithLayout::Ty(tcx.types.u8),

                // Tuples, coroutines and closures.
                ty::Closure(_, args) => field_ty_or_layout(
                    TyAndLayout { ty: args.as_closure().tupled_upvars_ty(), ..this },
                    cx,
                    i,
                ),

                ty::CoroutineClosure(_, args) => field_ty_or_layout(
                    TyAndLayout { ty: args.as_coroutine_closure().tupled_upvars_ty(), ..this },
                    cx,
                    i,
                ),

                ty::Coroutine(def_id, args) => match this.variants {
                    Variants::Single { index } => TyMaybeWithLayout::Ty(
                        args.as_coroutine()
                            .state_tys(def_id, tcx)
                            .nth(index.as_usize())
                            .unwrap()
                            .nth(i)
                            .unwrap(),
                    ),
                    Variants::Multiple { tag, tag_field, .. } => {
                        if i == tag_field {
                            return TyMaybeWithLayout::TyAndLayout(tag_layout(tag));
                        }
                        TyMaybeWithLayout::Ty(args.as_coroutine().prefix_tys()[i])
                    }
                },

                ty::Tuple(tys) => TyMaybeWithLayout::Ty(tys[i]),

                // ADTs.
                ty::Adt(def, args) => {
                    match this.variants {
                        Variants::Single { index } => {
                            let field = &def.variant(index).fields[FieldIdx::from_usize(i)];
                            TyMaybeWithLayout::Ty(field.ty(tcx, args))
                        }

                        // Discriminant field for enums (where applicable).
                        Variants::Multiple { tag, .. } => {
                            assert_eq!(i, 0);
                            return TyMaybeWithLayout::TyAndLayout(tag_layout(tag));
                        }
                    }
                }

                ty::Dynamic(_, _, ty::DynStar) => {
                    if i == 0 {
                        TyMaybeWithLayout::Ty(Ty::new_mut_ptr(tcx, tcx.types.unit))
                    } else if i == 1 {
                        // FIXME(dyn-star) same FIXME as above applies here too
                        TyMaybeWithLayout::Ty(Ty::new_imm_ref(
                            tcx,
                            tcx.lifetimes.re_static,
                            Ty::new_array(tcx, tcx.types.usize, 3),
                        ))
                    } else {
                        bug!("no field {i} on dyn*")
                    }
                }

                ty::Alias(..)
                | ty::Bound(..)
                | ty::Placeholder(..)
                | ty::Param(_)
                | ty::Infer(_)
                | ty::Error(_) => bug!("TyAndLayout::field: unexpected type `{}`", this.ty),
            }
        }

        match field_ty_or_layout(this, cx, i) {
            TyMaybeWithLayout::Ty(field_ty) => {
                cx.tcx().layout_of(cx.param_env().and(field_ty)).unwrap_or_else(|e| {
                    bug!(
                        "failed to get layout for `{field_ty}`: {e:?},\n\
                         despite it being a field (#{i}) of an existing layout: {this:#?}",
                    )
                })
            }
            TyMaybeWithLayout::TyAndLayout(field_layout) => field_layout,
        }
    }

    /// Compute the information for the pointer stored at the given offset inside this type.
    /// This will recurse into fields of ADTs to find the inner pointer.
    fn ty_and_layout_pointee_info_at(
        this: TyAndLayout<'tcx>,
        cx: &C,
        offset: Size,
    ) -> Option<PointeeInfo> {
        let tcx = cx.tcx();
        let param_env = cx.param_env();

        let pointee_info = match *this.ty.kind() {
            ty::RawPtr(p_ty, _) if offset.bytes() == 0 => {
                tcx.layout_of(param_env.and(p_ty)).ok().map(|layout| PointeeInfo {
                    size: layout.size,
                    align: layout.align.abi,
                    safe: None,
                })
            }
            ty::FnPtr(..) if offset.bytes() == 0 => {
                tcx.layout_of(param_env.and(this.ty)).ok().map(|layout| PointeeInfo {
                    size: layout.size,
                    align: layout.align.abi,
                    safe: None,
                })
            }
            ty::Ref(_, ty, mt) if offset.bytes() == 0 => {
                // Use conservative pointer kind if not optimizing. This saves us the
                // Freeze/Unpin queries, and can save time in the codegen backend (noalias
                // attributes in LLVM have compile-time cost even in unoptimized builds).
                let optimize = tcx.sess.opts.optimize != OptLevel::No;
                let kind = match mt {
                    hir::Mutability::Not => PointerKind::SharedRef {
                        frozen: optimize && ty.is_freeze(tcx, cx.param_env()),
                    },
                    hir::Mutability::Mut => PointerKind::MutableRef {
                        unpin: optimize && ty.is_unpin(tcx, cx.param_env()),
                    },
                };

                tcx.layout_of(param_env.and(ty)).ok().map(|layout| PointeeInfo {
                    size: layout.size,
                    align: layout.align.abi,
                    safe: Some(kind),
                })
            }

            _ => {
                let mut data_variant = match &this.variants {
                    // Within the discriminant field, only the niche itself is
                    // always initialized, so we only check for a pointer at its
                    // offset.
                    //
                    // Our goal here is to check whether this represents a
                    // "dereferenceable or null" pointer, so we need to ensure
                    // that there is only one other variant, and it must be null.
                    // Below, we will then check whether the pointer is indeed
                    // dereferenceable.
                    Variants::Multiple {
                        tag_encoding:
                            TagEncoding::Niche { untagged_variant, niche_variants, niche_start },
                        tag_field,
                        variants,
                        ..
                    } if variants.len() == 2 && this.fields.offset(*tag_field) == offset => {
                        let tagged_variant = if untagged_variant.as_u32() == 0 {
                            VariantIdx::from_u32(1)
                        } else {
                            VariantIdx::from_u32(0)
                        };
                        assert_eq!(tagged_variant, *niche_variants.start());
                        if *niche_start == 0 {
                            // The other variant is encoded as "null", so we can recurse searching for
                            // a pointer here. This relies on the fact that the codegen backend
                            // only adds "dereferenceable" if there's also a "nonnull" proof,
                            // and that null is aligned for all alignments so it's okay to forward
                            // the pointer's alignment.
                            Some(this.for_variant(cx, *untagged_variant))
                        } else {
                            None
                        }
                    }
                    Variants::Multiple { .. } => None,
                    _ => Some(this),
                };

                if let Some(variant) = data_variant {
                    // We're not interested in any unions.
                    if let FieldsShape::Union(_) = variant.fields {
                        data_variant = None;
                    }
                }

                let mut result = None;

                if let Some(variant) = data_variant {
                    // FIXME(erikdesjardins): handle non-default addrspace ptr sizes
                    // (requires passing in the expected address space from the caller)
                    let ptr_end = offset + Primitive::Pointer(AddressSpace::DATA).size(cx);
                    for i in 0..variant.fields.count() {
                        let field_start = variant.fields.offset(i);
                        if field_start <= offset {
                            let field = variant.field(cx, i);
                            result = field.to_result().ok().and_then(|field| {
                                if ptr_end <= field_start + field.size {
                                    // We found the right field, look inside it.
                                    let field_info =
                                        field.pointee_info_at(cx, offset - field_start);
                                    field_info
                                } else {
                                    None
                                }
                            });
                            if result.is_some() {
                                break;
                            }
                        }
                    }
                }

                // Fixup info for the first field of a `Box`. Recursive traversal will have found
                // the raw pointer, so size and align are set to the boxed type, but `pointee.safe`
                // will still be `None`.
                if let Some(ref mut pointee) = result {
                    if offset.bytes() == 0
                        && let Some(boxed_ty) = this.ty.boxed_ty()
                    {
                        debug_assert!(pointee.safe.is_none());
                        let optimize = tcx.sess.opts.optimize != OptLevel::No;
                        pointee.safe = Some(PointerKind::Box {
                            unpin: optimize && boxed_ty.is_unpin(tcx, cx.param_env()),
                            global: this.ty.is_box_global(tcx),
                        });
                    }
                }

                result
            }
        };

        debug!(
            "pointee_info_at (offset={:?}, type kind: {:?}) => {:?}",
            offset,
            this.ty.kind(),
            pointee_info
        );

        pointee_info
    }

    fn is_adt(this: TyAndLayout<'tcx>) -> bool {
        matches!(this.ty.kind(), ty::Adt(..))
    }

    fn is_never(this: TyAndLayout<'tcx>) -> bool {
        matches!(this.ty.kind(), ty::Never)
    }

    fn is_tuple(this: TyAndLayout<'tcx>) -> bool {
        matches!(this.ty.kind(), ty::Tuple(..))
    }

    fn is_unit(this: TyAndLayout<'tcx>) -> bool {
        matches!(this.ty.kind(), ty::Tuple(list) if list.len() == 0)
    }

    fn is_transparent(this: TyAndLayout<'tcx>) -> bool {
        matches!(this.ty.kind(), ty::Adt(def, _) if def.repr().transparent())
    }
}

/// Calculates whether a function's ABI can unwind or not.
///
/// This takes two primary parameters:
///
/// * `fn_def_id` - the `DefId` of the function. If this is provided then we can
///   determine more precisely if the function can unwind. If this is not provided
///   then we will only infer whether the function can unwind or not based on the
///   ABI of the function. For example, a function marked with `#[rustc_nounwind]`
///   is known to not unwind even if it's using Rust ABI.
///
/// * `abi` - this is the ABI that the function is defined with. This is the
///   primary factor for determining whether a function can unwind or not.
///
/// Note that in this case unwinding is not necessarily panicking in Rust. Rust
/// panics are implemented with unwinds on most platform (when
/// `-Cpanic=unwind`), but this also accounts for `-Cpanic=abort` build modes.
/// Notably unwinding is disallowed for more non-Rust ABIs unless it's
/// specifically in the name (e.g. `"C-unwind"`). Unwinding within each ABI is
/// defined for each ABI individually, but it always corresponds to some form of
/// stack-based unwinding (the exact mechanism of which varies
/// platform-by-platform).
///
/// Rust functions are classified whether or not they can unwind based on the
/// active "panic strategy". In other words Rust functions are considered to
/// unwind in `-Cpanic=unwind` mode and cannot unwind in `-Cpanic=abort` mode.
/// Note that Rust supports intermingling panic=abort and panic=unwind code, but
/// only if the final panic mode is panic=abort. In this scenario any code
/// previously compiled assuming that a function can unwind is still correct, it
/// just never happens to actually unwind at runtime.
///
/// This function's answer to whether or not a function can unwind is quite
/// impactful throughout the compiler. This affects things like:
///
/// * Calling a function which can't unwind means codegen simply ignores any
///   associated unwinding cleanup.
/// * Calling a function which can unwind from a function which can't unwind
///   causes the `abort_unwinding_calls` MIR pass to insert a landing pad that
///   aborts the process.
/// * This affects whether functions have the LLVM `nounwind` attribute, which
///   affects various optimizations and codegen.
#[inline]
#[tracing::instrument(level = "debug", skip(tcx))]
pub fn fn_can_unwind(tcx: TyCtxt<'_>, fn_def_id: Option<DefId>, abi: ExternAbi) -> bool {
    if let Some(did) = fn_def_id {
        // Special attribute for functions which can't unwind.
        if tcx.codegen_fn_attrs(did).flags.contains(CodegenFnAttrFlags::NEVER_UNWIND) {
            return false;
        }

        // With `-C panic=abort`, all non-FFI functions are required to not unwind.
        //
        // Note that this is true regardless ABI specified on the function -- a `extern "C-unwind"`
        // function defined in Rust is also required to abort.
        if tcx.sess.panic_strategy() == PanicStrategy::Abort && !tcx.is_foreign_item(did) {
            return false;
        }

        // With -Z panic-in-drop=abort, drop_in_place never unwinds.
        //
        // This is not part of `codegen_fn_attrs` as it can differ between crates
        // and therefore cannot be computed in core.
        if tcx.sess.opts.unstable_opts.panic_in_drop == PanicStrategy::Abort
            && tcx.is_lang_item(did, LangItem::DropInPlace)
        {
            return false;
        }
    }

    // Otherwise if this isn't special then unwinding is generally determined by
    // the ABI of the itself. ABIs like `C` have variants which also
    // specifically allow unwinding (`C-unwind`), but not all platform-specific
    // ABIs have such an option. Otherwise the only other thing here is Rust
    // itself, and those ABIs are determined by the panic strategy configured
    // for this compilation.
    use ExternAbi::*;
    match abi {
        C { unwind }
        | System { unwind }
        | Cdecl { unwind }
        | Stdcall { unwind }
        | Fastcall { unwind }
        | Vectorcall { unwind }
        | Thiscall { unwind }
        | Aapcs { unwind }
        | Win64 { unwind }
        | SysV64 { unwind } => unwind,
        PtxKernel
        | Msp430Interrupt
        | X86Interrupt
        | EfiApi
        | AvrInterrupt
        | AvrNonBlockingInterrupt
        | RiscvInterruptM
        | RiscvInterruptS
        | CCmseNonSecureCall
        | CCmseNonSecureEntry
        | Unadjusted => false,
        Rust | RustCall | RustCold | RustIntrinsic => {
            tcx.sess.panic_strategy() == PanicStrategy::Unwind
        }
    }
}

/// Error produced by attempting to compute or adjust a `FnAbi`.
#[derive(Copy, Clone, Debug, HashStable)]
pub enum FnAbiError<'tcx> {
    /// Error produced by a `layout_of` call, while computing `FnAbi` initially.
    Layout(LayoutError<'tcx>),

    /// Error produced by attempting to adjust a `FnAbi`, for a "foreign" ABI.
    AdjustForForeignAbi(rustc_target::callconv::AdjustForForeignAbiError),
}

impl<'a, 'b, G: EmissionGuarantee> Diagnostic<'a, G> for FnAbiError<'b> {
    fn into_diag(self, dcx: DiagCtxtHandle<'a>, level: Level) -> Diag<'a, G> {
        match self {
            Self::Layout(e) => e.into_diagnostic().into_diag(dcx, level),
            Self::AdjustForForeignAbi(
                rustc_target::callconv::AdjustForForeignAbiError::Unsupported { arch, abi },
            ) => UnsupportedFnAbi { arch, abi: abi.name() }.into_diag(dcx, level),
        }
    }
}

// FIXME(eddyb) maybe use something like this for an unified `fn_abi_of`, not
// just for error handling.
#[derive(Debug)]
pub enum FnAbiRequest<'tcx> {
    OfFnPtr { sig: ty::PolyFnSig<'tcx>, extra_args: &'tcx ty::List<Ty<'tcx>> },
    OfInstance { instance: ty::Instance<'tcx>, extra_args: &'tcx ty::List<Ty<'tcx>> },
}

/// Trait for contexts that want to be able to compute `FnAbi`s.
/// This automatically gives access to `FnAbiOf`, through a blanket `impl`.
pub trait FnAbiOfHelpers<'tcx>: LayoutOfHelpers<'tcx> {
    /// The `&FnAbi`-wrapping type (or `&FnAbi` itself), which will be
    /// returned from `fn_abi_of_*` (see also `handle_fn_abi_err`).
    type FnAbiOfResult: MaybeResult<&'tcx FnAbi<'tcx, Ty<'tcx>>> = &'tcx FnAbi<'tcx, Ty<'tcx>>;

    /// Helper used for `fn_abi_of_*`, to adapt `tcx.fn_abi_of_*(...)` into a
    /// `Self::FnAbiOfResult` (which does not need to be a `Result<...>`).
    ///
    /// Most `impl`s, which propagate `FnAbiError`s, should simply return `err`,
    /// but this hook allows e.g. codegen to return only `&FnAbi` from its
    /// `cx.fn_abi_of_*(...)`, without any `Result<...>` around it to deal with
    /// (and any `FnAbiError`s are turned into fatal errors or ICEs).
    fn handle_fn_abi_err(
        &self,
        err: FnAbiError<'tcx>,
        span: Span,
        fn_abi_request: FnAbiRequest<'tcx>,
    ) -> <Self::FnAbiOfResult as MaybeResult<&'tcx FnAbi<'tcx, Ty<'tcx>>>>::Error;
}

/// Blanket extension trait for contexts that can compute `FnAbi`s.
pub trait FnAbiOf<'tcx>: FnAbiOfHelpers<'tcx> {
    /// Compute a `FnAbi` suitable for indirect calls, i.e. to `fn` pointers.
    ///
    /// NB: this doesn't handle virtual calls - those should use `fn_abi_of_instance`
    /// instead, where the instance is an `InstanceKind::Virtual`.
    #[inline]
    fn fn_abi_of_fn_ptr(
        &self,
        sig: ty::PolyFnSig<'tcx>,
        extra_args: &'tcx ty::List<Ty<'tcx>>,
    ) -> Self::FnAbiOfResult {
        // FIXME(eddyb) get a better `span` here.
        let span = self.layout_tcx_at_span();
        let tcx = self.tcx().at(span);

        MaybeResult::from(tcx.fn_abi_of_fn_ptr(self.param_env().and((sig, extra_args))).map_err(
            |err| self.handle_fn_abi_err(*err, span, FnAbiRequest::OfFnPtr { sig, extra_args }),
        ))
    }

    /// Compute a `FnAbi` suitable for declaring/defining an `fn` instance, and for
    /// direct calls to an `fn`.
    ///
    /// NB: that includes virtual calls, which are represented by "direct calls"
    /// to an `InstanceKind::Virtual` instance (of `<dyn Trait as Trait>::fn`).
    #[inline]
    #[tracing::instrument(level = "debug", skip(self))]
    fn fn_abi_of_instance(
        &self,
        instance: ty::Instance<'tcx>,
        extra_args: &'tcx ty::List<Ty<'tcx>>,
    ) -> Self::FnAbiOfResult {
        // FIXME(eddyb) get a better `span` here.
        let span = self.layout_tcx_at_span();
        let tcx = self.tcx().at(span);

        MaybeResult::from(
            tcx.fn_abi_of_instance(self.param_env().and((instance, extra_args))).map_err(|err| {
                // HACK(eddyb) at least for definitions of/calls to `Instance`s,
                // we can get some kind of span even if one wasn't provided.
                // However, we don't do this early in order to avoid calling
                // `def_span` unconditionally (which may have a perf penalty).
                let span = if !span.is_dummy() { span } else { tcx.def_span(instance.def_id()) };
                self.handle_fn_abi_err(*err, span, FnAbiRequest::OfInstance {
                    instance,
                    extra_args,
                })
            }),
        )
    }
}

impl<'tcx, C: FnAbiOfHelpers<'tcx>> FnAbiOf<'tcx> for C {}

impl<'tcx> TyCtxt<'tcx> {
    pub fn offset_of_subfield<I>(
        self,
        param_env: ty::ParamEnv<'tcx>,
        mut layout: TyAndLayout<'tcx>,
        indices: I,
    ) -> Size
    where
        I: Iterator<Item = (VariantIdx, FieldIdx)>,
    {
        let cx = LayoutCx::new(self, param_env);
        let mut offset = Size::ZERO;

        for (variant, field) in indices {
            layout = layout.for_variant(&cx, variant);
            let index = field.index();
            offset += layout.fields.offset(index);
            layout = layout.field(&cx, index);
            if !layout.is_sized() {
                // If it is not sized, then the tail must still have at least a known static alignment.
                let tail = self.struct_tail_for_codegen(layout.ty, param_env);
                if !matches!(tail.kind(), ty::Slice(..)) {
                    bug!(
                        "offset of not-statically-aligned field (type {:?}) cannot be computed statically",
                        layout.ty
                    );
                }
            }
        }

        offset
    }
}