rustc_middle/mir/interpret/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
//! An interpreter for MIR used in CTFE and by miri.
#[macro_use]
mod error;
mod allocation;
mod pointer;
mod queries;
mod value;
use std::io::{Read, Write};
use std::num::NonZero;
use std::{fmt, io};
use rustc_abi::{AddressSpace, Align, Endian, HasDataLayout, Size};
use rustc_ast::{LitKind, Mutability};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sync::Lock;
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable};
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_serialize::{Decodable, Encodable};
use tracing::{debug, trace};
// Also make the error macros available from this module.
pub use {
err_exhaust, err_inval, err_machine_stop, err_ub, err_ub_custom, err_ub_format, err_unsup,
err_unsup_format, throw_exhaust, throw_inval, throw_machine_stop, throw_ub, throw_ub_custom,
throw_ub_format, throw_unsup, throw_unsup_format,
};
pub use self::allocation::{
AllocBytes, AllocError, AllocRange, AllocResult, Allocation, ConstAllocation, InitChunk,
InitChunkIter, alloc_range,
};
pub use self::error::{
BadBytesAccess, CheckAlignMsg, CheckInAllocMsg, ErrorHandled, EvalStaticInitializerRawResult,
EvalToAllocationRawResult, EvalToConstValueResult, EvalToValTreeResult, ExpectedKind,
InterpErrorInfo, InterpErrorKind, InterpResult, InvalidMetaKind, InvalidProgramInfo,
MachineStopType, Misalignment, PointerKind, ReportedErrorInfo, ResourceExhaustionInfo,
ScalarSizeMismatch, UndefinedBehaviorInfo, UnsupportedOpInfo, ValidationErrorInfo,
ValidationErrorKind, interp_ok,
};
pub use self::pointer::{CtfeProvenance, Pointer, PointerArithmetic, Provenance};
pub use self::value::Scalar;
use crate::mir;
use crate::ty::codec::{TyDecoder, TyEncoder};
use crate::ty::{self, Instance, ParamEnv, Ty, TyCtxt};
/// Uniquely identifies one of the following:
/// - A constant
/// - A static
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable)]
pub struct GlobalId<'tcx> {
/// For a constant or static, the `Instance` of the item itself.
/// For a promoted global, the `Instance` of the function they belong to.
pub instance: ty::Instance<'tcx>,
/// The index for promoted globals within their function's `mir::Body`.
pub promoted: Option<mir::Promoted>,
}
impl<'tcx> GlobalId<'tcx> {
pub fn display(self, tcx: TyCtxt<'tcx>) -> String {
let instance_name = with_no_trimmed_paths!(tcx.def_path_str(self.instance.def.def_id()));
if let Some(promoted) = self.promoted {
format!("{instance_name}::{promoted:?}")
} else {
instance_name
}
}
}
/// Input argument for `tcx.lit_to_const`.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash, HashStable)]
pub struct LitToConstInput<'tcx> {
/// The absolute value of the resultant constant.
pub lit: &'tcx LitKind,
/// The type of the constant.
pub ty: Ty<'tcx>,
/// If the constant is negative.
pub neg: bool,
}
/// Error type for `tcx.lit_to_const`.
#[derive(Copy, Clone, Debug, Eq, PartialEq, HashStable)]
pub enum LitToConstError {
/// The literal's inferred type did not match the expected `ty` in the input.
/// This is used for graceful error handling (`span_delayed_bug`) in
/// type checking (`Const::from_anon_const`).
TypeError,
Reported(ErrorGuaranteed),
}
#[derive(Copy, Clone, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct AllocId(pub NonZero<u64>);
// We want the `Debug` output to be readable as it is used by `derive(Debug)` for
// all the Miri types.
impl fmt::Debug for AllocId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if f.alternate() { write!(f, "a{}", self.0) } else { write!(f, "alloc{}", self.0) }
}
}
// No "Display" since AllocIds are not usually user-visible.
#[derive(TyDecodable, TyEncodable)]
enum AllocDiscriminant {
Alloc,
Fn,
VTable,
Static,
}
pub fn specialized_encode_alloc_id<'tcx, E: TyEncoder<I = TyCtxt<'tcx>>>(
encoder: &mut E,
tcx: TyCtxt<'tcx>,
alloc_id: AllocId,
) {
match tcx.global_alloc(alloc_id) {
GlobalAlloc::Memory(alloc) => {
trace!("encoding {:?} with {:#?}", alloc_id, alloc);
AllocDiscriminant::Alloc.encode(encoder);
alloc.encode(encoder);
}
GlobalAlloc::Function { instance } => {
trace!("encoding {:?} with {:#?}", alloc_id, instance);
AllocDiscriminant::Fn.encode(encoder);
instance.encode(encoder);
}
GlobalAlloc::VTable(ty, poly_trait_ref) => {
trace!("encoding {:?} with {ty:#?}, {poly_trait_ref:#?}", alloc_id);
AllocDiscriminant::VTable.encode(encoder);
ty.encode(encoder);
poly_trait_ref.encode(encoder);
}
GlobalAlloc::Static(did) => {
assert!(!tcx.is_thread_local_static(did));
// References to statics doesn't need to know about their allocations,
// just about its `DefId`.
AllocDiscriminant::Static.encode(encoder);
// Cannot use `did.encode(encoder)` because of a bug around
// specializations and method calls.
Encodable::<E>::encode(&did, encoder);
}
}
}
#[derive(Clone)]
enum State {
Empty,
Done(AllocId),
}
pub struct AllocDecodingState {
// For each `AllocId`, we keep track of which decoding state it's currently in.
decoding_state: Vec<Lock<State>>,
// The offsets of each allocation in the data stream.
data_offsets: Vec<u64>,
}
impl AllocDecodingState {
#[inline]
pub fn new_decoding_session(&self) -> AllocDecodingSession<'_> {
AllocDecodingSession { state: self }
}
pub fn new(data_offsets: Vec<u64>) -> Self {
let decoding_state =
std::iter::repeat_with(|| Lock::new(State::Empty)).take(data_offsets.len()).collect();
Self { decoding_state, data_offsets }
}
}
#[derive(Copy, Clone)]
pub struct AllocDecodingSession<'s> {
state: &'s AllocDecodingState,
}
impl<'s> AllocDecodingSession<'s> {
/// Decodes an `AllocId` in a thread-safe way.
pub fn decode_alloc_id<'tcx, D>(&self, decoder: &mut D) -> AllocId
where
D: TyDecoder<I = TyCtxt<'tcx>>,
{
// Read the index of the allocation.
let idx = usize::try_from(decoder.read_u32()).unwrap();
let pos = usize::try_from(self.state.data_offsets[idx]).unwrap();
// Decode the `AllocDiscriminant` now so that we know if we have to reserve an
// `AllocId`.
let (alloc_kind, pos) = decoder.with_position(pos, |decoder| {
let alloc_kind = AllocDiscriminant::decode(decoder);
(alloc_kind, decoder.position())
});
// We are going to hold this lock during the entire decoding of this allocation, which may
// require that we decode other allocations. This cannot deadlock for two reasons:
//
// At the time of writing, it is only possible to create an allocation that contains a pointer
// to itself using the const_allocate intrinsic (which is for testing only), and even attempting
// to evaluate such consts blows the stack. If we ever grow a mechanism for producing
// cyclic allocations, we will need a new strategy for decoding that doesn't bring back
// https://github.com/rust-lang/rust/issues/126741.
//
// It is also impossible to create two allocations (call them A and B) where A is a pointer to B, and B
// is a pointer to A, because attempting to evaluate either of those consts will produce a
// query cycle, failing compilation.
let mut entry = self.state.decoding_state[idx].lock();
// Check the decoding state to see if it's already decoded or if we should
// decode it here.
if let State::Done(alloc_id) = *entry {
return alloc_id;
}
// Now decode the actual data.
let alloc_id = decoder.with_position(pos, |decoder| match alloc_kind {
AllocDiscriminant::Alloc => {
trace!("creating memory alloc ID");
let alloc = <ConstAllocation<'tcx> as Decodable<_>>::decode(decoder);
trace!("decoded alloc {:?}", alloc);
decoder.interner().reserve_and_set_memory_alloc(alloc)
}
AllocDiscriminant::Fn => {
trace!("creating fn alloc ID");
let instance = ty::Instance::decode(decoder);
trace!("decoded fn alloc instance: {:?}", instance);
decoder.interner().reserve_and_set_fn_alloc(instance, CTFE_ALLOC_SALT)
}
AllocDiscriminant::VTable => {
trace!("creating vtable alloc ID");
let ty = Decodable::decode(decoder);
let poly_trait_ref = Decodable::decode(decoder);
trace!("decoded vtable alloc instance: {ty:?}, {poly_trait_ref:?}");
decoder.interner().reserve_and_set_vtable_alloc(ty, poly_trait_ref, CTFE_ALLOC_SALT)
}
AllocDiscriminant::Static => {
trace!("creating extern static alloc ID");
let did = <DefId as Decodable<D>>::decode(decoder);
trace!("decoded static def-ID: {:?}", did);
decoder.interner().reserve_and_set_static_alloc(did)
}
});
*entry = State::Done(alloc_id);
alloc_id
}
}
/// An allocation in the global (tcx-managed) memory can be either a function pointer,
/// a static, or a "real" allocation with some data in it.
#[derive(Debug, Clone, Eq, PartialEq, Hash, TyDecodable, TyEncodable, HashStable)]
pub enum GlobalAlloc<'tcx> {
/// The alloc ID is used as a function pointer.
Function { instance: Instance<'tcx> },
/// This alloc ID points to a symbolic (not-reified) vtable.
/// We remember the full dyn type, not just the principal trait, so that
/// const-eval and Miri can detect UB due to invalid transmutes of
/// `dyn Trait` types.
VTable(Ty<'tcx>, &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>),
/// The alloc ID points to a "lazy" static variable that did not get computed (yet).
/// This is also used to break the cycle in recursive statics.
Static(DefId),
/// The alloc ID points to memory.
Memory(ConstAllocation<'tcx>),
}
impl<'tcx> GlobalAlloc<'tcx> {
/// Panics if the `GlobalAlloc` does not refer to an `GlobalAlloc::Memory`
#[track_caller]
#[inline]
pub fn unwrap_memory(&self) -> ConstAllocation<'tcx> {
match *self {
GlobalAlloc::Memory(mem) => mem,
_ => bug!("expected memory, got {:?}", self),
}
}
/// Panics if the `GlobalAlloc` is not `GlobalAlloc::Function`
#[track_caller]
#[inline]
pub fn unwrap_fn(&self) -> Instance<'tcx> {
match *self {
GlobalAlloc::Function { instance, .. } => instance,
_ => bug!("expected function, got {:?}", self),
}
}
/// Panics if the `GlobalAlloc` is not `GlobalAlloc::VTable`
#[track_caller]
#[inline]
pub fn unwrap_vtable(&self) -> (Ty<'tcx>, Option<ty::PolyExistentialTraitRef<'tcx>>) {
match *self {
GlobalAlloc::VTable(ty, dyn_ty) => (ty, dyn_ty.principal()),
_ => bug!("expected vtable, got {:?}", self),
}
}
/// The address space that this `GlobalAlloc` should be placed in.
#[inline]
pub fn address_space(&self, cx: &impl HasDataLayout) -> AddressSpace {
match self {
GlobalAlloc::Function { .. } => cx.data_layout().instruction_address_space,
GlobalAlloc::Static(..) | GlobalAlloc::Memory(..) | GlobalAlloc::VTable(..) => {
AddressSpace::DATA
}
}
}
pub fn mutability(&self, tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>) -> Mutability {
// Let's see what kind of memory we are.
match self {
GlobalAlloc::Static(did) => {
let DefKind::Static { safety: _, mutability, nested } = tcx.def_kind(did) else {
bug!()
};
if nested {
// Nested statics in a `static` are never interior mutable,
// so just use the declared mutability.
if cfg!(debug_assertions) {
let alloc = tcx.eval_static_initializer(did).unwrap();
assert_eq!(alloc.0.mutability, mutability);
}
mutability
} else {
let mutability = match mutability {
Mutability::Not
if !tcx
.type_of(did)
.no_bound_vars()
.expect("statics should not have generic parameters")
.is_freeze(tcx, param_env) =>
{
Mutability::Mut
}
_ => mutability,
};
mutability
}
}
GlobalAlloc::Memory(alloc) => alloc.inner().mutability,
GlobalAlloc::Function { .. } | GlobalAlloc::VTable(..) => {
// These are immutable.
Mutability::Not
}
}
}
pub fn size_and_align(&self, tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>) -> (Size, Align) {
match self {
GlobalAlloc::Static(def_id) => {
let DefKind::Static { nested, .. } = tcx.def_kind(def_id) else {
bug!("GlobalAlloc::Static is not a static")
};
if nested {
// Nested anonymous statics are untyped, so let's get their
// size and alignment from the allocation itself. This always
// succeeds, as the query is fed at DefId creation time, so no
// evaluation actually occurs.
let alloc = tcx.eval_static_initializer(def_id).unwrap();
(alloc.0.size(), alloc.0.align)
} else {
// Use size and align of the type for everything else. We need
// to do that to
// * avoid cycle errors in case of self-referential statics,
// * be able to get information on extern statics.
let ty = tcx
.type_of(def_id)
.no_bound_vars()
.expect("statics should not have generic parameters");
let layout = tcx.layout_of(param_env.and(ty)).unwrap();
assert!(layout.is_sized());
(layout.size, layout.align.abi)
}
}
GlobalAlloc::Memory(alloc) => {
let alloc = alloc.inner();
(alloc.size(), alloc.align)
}
GlobalAlloc::Function { .. } => (Size::ZERO, Align::ONE),
GlobalAlloc::VTable(..) => {
// No data to be accessed here. But vtables are pointer-aligned.
return (Size::ZERO, tcx.data_layout.pointer_align.abi);
}
}
}
}
pub const CTFE_ALLOC_SALT: usize = 0;
pub(crate) struct AllocMap<'tcx> {
/// Maps `AllocId`s to their corresponding allocations.
alloc_map: FxHashMap<AllocId, GlobalAlloc<'tcx>>,
/// Used to deduplicate global allocations: functions, vtables, string literals, ...
///
/// The `usize` is a "salt" used by Miri to make deduplication imperfect, thus better emulating
/// the actual guarantees.
dedup: FxHashMap<(GlobalAlloc<'tcx>, usize), AllocId>,
/// The `AllocId` to assign to the next requested ID.
/// Always incremented; never gets smaller.
next_id: AllocId,
}
impl<'tcx> AllocMap<'tcx> {
pub(crate) fn new() -> Self {
AllocMap {
alloc_map: Default::default(),
dedup: Default::default(),
next_id: AllocId(NonZero::new(1).unwrap()),
}
}
fn reserve(&mut self) -> AllocId {
let next = self.next_id;
self.next_id.0 = self.next_id.0.checked_add(1).expect(
"You overflowed a u64 by incrementing by 1... \
You've just earned yourself a free drink if we ever meet. \
Seriously, how did you do that?!",
);
next
}
}
impl<'tcx> TyCtxt<'tcx> {
/// Obtains a new allocation ID that can be referenced but does not
/// yet have an allocation backing it.
///
/// Make sure to call `set_alloc_id_memory` or `set_alloc_id_same_memory` before returning such
/// an `AllocId` from a query.
pub fn reserve_alloc_id(self) -> AllocId {
self.alloc_map.lock().reserve()
}
/// Reserves a new ID *if* this allocation has not been dedup-reserved before.
/// Should not be used for mutable memory.
fn reserve_and_set_dedup(self, alloc: GlobalAlloc<'tcx>, salt: usize) -> AllocId {
let mut alloc_map = self.alloc_map.lock();
if let GlobalAlloc::Memory(mem) = alloc {
if mem.inner().mutability.is_mut() {
bug!("trying to dedup-reserve mutable memory");
}
}
let alloc_salt = (alloc, salt);
if let Some(&alloc_id) = alloc_map.dedup.get(&alloc_salt) {
return alloc_id;
}
let id = alloc_map.reserve();
debug!("creating alloc {:?} with id {id:?}", alloc_salt.0);
alloc_map.alloc_map.insert(id, alloc_salt.0.clone());
alloc_map.dedup.insert(alloc_salt, id);
id
}
/// Generates an `AllocId` for a memory allocation. If the exact same memory has been
/// allocated before, this will return the same `AllocId`.
pub fn reserve_and_set_memory_dedup(self, mem: ConstAllocation<'tcx>, salt: usize) -> AllocId {
self.reserve_and_set_dedup(GlobalAlloc::Memory(mem), salt)
}
/// Generates an `AllocId` for a static or return a cached one in case this function has been
/// called on the same static before.
pub fn reserve_and_set_static_alloc(self, static_id: DefId) -> AllocId {
let salt = 0; // Statics have a guaranteed unique address, no salt added.
self.reserve_and_set_dedup(GlobalAlloc::Static(static_id), salt)
}
/// Generates an `AllocId` for a function. Will get deduplicated.
pub fn reserve_and_set_fn_alloc(self, instance: Instance<'tcx>, salt: usize) -> AllocId {
self.reserve_and_set_dedup(GlobalAlloc::Function { instance }, salt)
}
/// Generates an `AllocId` for a (symbolic, not-reified) vtable. Will get deduplicated.
pub fn reserve_and_set_vtable_alloc(
self,
ty: Ty<'tcx>,
dyn_ty: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
salt: usize,
) -> AllocId {
self.reserve_and_set_dedup(GlobalAlloc::VTable(ty, dyn_ty), salt)
}
/// Interns the `Allocation` and return a new `AllocId`, even if there's already an identical
/// `Allocation` with a different `AllocId`.
/// Statics with identical content will still point to the same `Allocation`, i.e.,
/// their data will be deduplicated through `Allocation` interning -- but they
/// are different places in memory and as such need different IDs.
pub fn reserve_and_set_memory_alloc(self, mem: ConstAllocation<'tcx>) -> AllocId {
let id = self.reserve_alloc_id();
self.set_alloc_id_memory(id, mem);
id
}
/// Returns `None` in case the `AllocId` is dangling. An `InterpretCx` can still have a
/// local `Allocation` for that `AllocId`, but having such an `AllocId` in a constant is
/// illegal and will likely ICE.
/// This function exists to allow const eval to detect the difference between evaluation-
/// local dangling pointers and allocations in constants/statics.
#[inline]
pub fn try_get_global_alloc(self, id: AllocId) -> Option<GlobalAlloc<'tcx>> {
self.alloc_map.lock().alloc_map.get(&id).cloned()
}
#[inline]
#[track_caller]
/// Panics in case the `AllocId` is dangling. Since that is impossible for `AllocId`s in
/// constants (as all constants must pass interning and validation that check for dangling
/// ids), this function is frequently used throughout rustc, but should not be used within
/// the interpreter.
pub fn global_alloc(self, id: AllocId) -> GlobalAlloc<'tcx> {
match self.try_get_global_alloc(id) {
Some(alloc) => alloc,
None => bug!("could not find allocation for {id:?}"),
}
}
/// Freezes an `AllocId` created with `reserve` by pointing it at an `Allocation`. Trying to
/// call this function twice, even with the same `Allocation` will ICE the compiler.
pub fn set_alloc_id_memory(self, id: AllocId, mem: ConstAllocation<'tcx>) {
if let Some(old) = self.alloc_map.lock().alloc_map.insert(id, GlobalAlloc::Memory(mem)) {
bug!("tried to set allocation ID {id:?}, but it was already existing as {old:#?}");
}
}
/// Freezes an `AllocId` created with `reserve` by pointing it at a static item. Trying to
/// call this function twice, even with the same `DefId` will ICE the compiler.
pub fn set_nested_alloc_id_static(self, id: AllocId, def_id: LocalDefId) {
if let Some(old) =
self.alloc_map.lock().alloc_map.insert(id, GlobalAlloc::Static(def_id.to_def_id()))
{
bug!("tried to set allocation ID {id:?}, but it was already existing as {old:#?}");
}
}
}
////////////////////////////////////////////////////////////////////////////////
// Methods to access integers in the target endianness
////////////////////////////////////////////////////////////////////////////////
#[inline]
pub fn write_target_uint(
endianness: Endian,
mut target: &mut [u8],
data: u128,
) -> Result<(), io::Error> {
// This u128 holds an "any-size uint" (since smaller uints can fits in it)
// So we do not write all bytes of the u128, just the "payload".
match endianness {
Endian::Little => target.write(&data.to_le_bytes())?,
Endian::Big => target.write(&data.to_be_bytes()[16 - target.len()..])?,
};
debug_assert!(target.len() == 0); // We should have filled the target buffer.
Ok(())
}
#[inline]
pub fn read_target_uint(endianness: Endian, mut source: &[u8]) -> Result<u128, io::Error> {
// This u128 holds an "any-size uint" (since smaller uints can fits in it)
let mut buf = [0u8; std::mem::size_of::<u128>()];
// So we do not read exactly 16 bytes into the u128, just the "payload".
let uint = match endianness {
Endian::Little => {
source.read_exact(&mut buf[..source.len()])?;
Ok(u128::from_le_bytes(buf))
}
Endian::Big => {
source.read_exact(&mut buf[16 - source.len()..])?;
Ok(u128::from_be_bytes(buf))
}
};
debug_assert!(source.len() == 0); // We should have consumed the source buffer.
uint
}