rustc_const_eval/interpret/step.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
//! This module contains the `InterpCx` methods for executing a single step of the interpreter.
//!
//! The main entry point is the `step` method.
use either::Either;
use rustc_abi::{FIRST_VARIANT, FieldIdx};
use rustc_index::IndexSlice;
use rustc_middle::ty::layout::FnAbiOf;
use rustc_middle::ty::{self, Instance, Ty};
use rustc_middle::{bug, mir, span_bug};
use rustc_span::source_map::Spanned;
use rustc_target::callconv::FnAbi;
use tracing::{info, instrument, trace};
use super::{
FnArg, FnVal, ImmTy, Immediate, InterpCx, InterpResult, Machine, MemPlaceMeta, PlaceTy,
Projectable, Scalar, interp_ok, throw_ub,
};
use crate::util;
struct EvaluatedCalleeAndArgs<'tcx, M: Machine<'tcx>> {
callee: FnVal<'tcx, M::ExtraFnVal>,
args: Vec<FnArg<'tcx, M::Provenance>>,
fn_sig: ty::FnSig<'tcx>,
fn_abi: &'tcx FnAbi<'tcx, Ty<'tcx>>,
/// True if the function is marked as `#[track_caller]` ([`ty::InstanceKind::requires_caller_location`])
with_caller_location: bool,
}
impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
/// Returns `true` as long as there are more things to do.
///
/// This is used by [priroda](https://github.com/oli-obk/priroda)
///
/// This is marked `#inline(always)` to work around adversarial codegen when `opt-level = 3`
#[inline(always)]
pub fn step(&mut self) -> InterpResult<'tcx, bool> {
if self.stack().is_empty() {
return interp_ok(false);
}
let Either::Left(loc) = self.frame().loc else {
// We are unwinding and this fn has no cleanup code.
// Just go on unwinding.
trace!("unwinding: skipping frame");
self.return_from_current_stack_frame(/* unwinding */ true)?;
return interp_ok(true);
};
let basic_block = &self.body().basic_blocks[loc.block];
if let Some(stmt) = basic_block.statements.get(loc.statement_index) {
let old_frames = self.frame_idx();
self.eval_statement(stmt)?;
// Make sure we are not updating `statement_index` of the wrong frame.
assert_eq!(old_frames, self.frame_idx());
// Advance the program counter.
self.frame_mut().loc.as_mut().left().unwrap().statement_index += 1;
return interp_ok(true);
}
M::before_terminator(self)?;
let terminator = basic_block.terminator();
self.eval_terminator(terminator)?;
if !self.stack().is_empty() {
if let Either::Left(loc) = self.frame().loc {
info!("// executing {:?}", loc.block);
}
}
interp_ok(true)
}
/// Runs the interpretation logic for the given `mir::Statement` at the current frame and
/// statement counter.
///
/// This does NOT move the statement counter forward, the caller has to do that!
pub fn eval_statement(&mut self, stmt: &mir::Statement<'tcx>) -> InterpResult<'tcx> {
info!("{:?}", stmt);
use rustc_middle::mir::StatementKind::*;
match &stmt.kind {
Assign(box (place, rvalue)) => self.eval_rvalue_into_place(rvalue, *place)?,
SetDiscriminant { place, variant_index } => {
let dest = self.eval_place(**place)?;
self.write_discriminant(*variant_index, &dest)?;
}
Deinit(place) => {
let dest = self.eval_place(**place)?;
self.write_uninit(&dest)?;
}
// Mark locals as alive
StorageLive(local) => {
self.storage_live(*local)?;
}
// Mark locals as dead
StorageDead(local) => {
self.storage_dead(*local)?;
}
// No dynamic semantics attached to `FakeRead`; MIR
// interpreter is solely intended for borrowck'ed code.
FakeRead(..) => {}
// Stacked Borrows.
Retag(kind, place) => {
let dest = self.eval_place(**place)?;
M::retag_place_contents(self, *kind, &dest)?;
}
Intrinsic(box intrinsic) => self.eval_nondiverging_intrinsic(intrinsic)?,
// Evaluate the place expression, without reading from it.
PlaceMention(box place) => {
let _ = self.eval_place(*place)?;
}
// This exists purely to guide borrowck lifetime inference, and does not have
// an operational effect.
AscribeUserType(..) => {}
// Currently, Miri discards Coverage statements. Coverage statements are only injected
// via an optional compile time MIR pass and have no side effects. Since Coverage
// statements don't exist at the source level, it is safe for Miri to ignore them, even
// for undefined behavior (UB) checks.
//
// A coverage counter inside a const expression (for example, a counter injected in a
// const function) is discarded when the const is evaluated at compile time. Whether
// this should change, and/or how to implement a const eval counter, is a subject of the
// following issue:
//
// FIXME(#73156): Handle source code coverage in const eval
Coverage(..) => {}
ConstEvalCounter => {
M::increment_const_eval_counter(self)?;
}
// Defined to do nothing. These are added by optimization passes, to avoid changing the
// size of MIR constantly.
Nop => {}
}
interp_ok(())
}
/// Evaluate an assignment statement.
///
/// There is no separate `eval_rvalue` function. Instead, the code for handling each rvalue
/// type writes its results directly into the memory specified by the place.
pub fn eval_rvalue_into_place(
&mut self,
rvalue: &mir::Rvalue<'tcx>,
place: mir::Place<'tcx>,
) -> InterpResult<'tcx> {
let dest = self.eval_place(place)?;
// FIXME: ensure some kind of non-aliasing between LHS and RHS?
// Also see https://github.com/rust-lang/rust/issues/68364.
use rustc_middle::mir::Rvalue::*;
match *rvalue {
ThreadLocalRef(did) => {
let ptr = M::thread_local_static_pointer(self, did)?;
self.write_pointer(ptr, &dest)?;
}
Use(ref operand) => {
// Avoid recomputing the layout
let op = self.eval_operand(operand, Some(dest.layout))?;
self.copy_op(&op, &dest)?;
}
CopyForDeref(place) => {
let op = self.eval_place_to_op(place, Some(dest.layout))?;
self.copy_op(&op, &dest)?;
}
BinaryOp(bin_op, box (ref left, ref right)) => {
let layout = util::binop_left_homogeneous(bin_op).then_some(dest.layout);
let left = self.read_immediate(&self.eval_operand(left, layout)?)?;
let layout = util::binop_right_homogeneous(bin_op).then_some(left.layout);
let right = self.read_immediate(&self.eval_operand(right, layout)?)?;
let result = self.binary_op(bin_op, &left, &right)?;
assert_eq!(result.layout, dest.layout, "layout mismatch for result of {bin_op:?}");
self.write_immediate(*result, &dest)?;
}
UnaryOp(un_op, ref operand) => {
// The operand always has the same type as the result.
let val = self.read_immediate(&self.eval_operand(operand, Some(dest.layout))?)?;
let result = self.unary_op(un_op, &val)?;
assert_eq!(result.layout, dest.layout, "layout mismatch for result of {un_op:?}");
self.write_immediate(*result, &dest)?;
}
NullaryOp(null_op, ty) => {
let ty = self.instantiate_from_current_frame_and_normalize_erasing_regions(ty)?;
let val = self.nullary_op(null_op, ty)?;
self.write_immediate(*val, &dest)?;
}
Aggregate(box ref kind, ref operands) => {
self.write_aggregate(kind, operands, &dest)?;
}
Repeat(ref operand, _) => {
self.write_repeat(operand, &dest)?;
}
Len(place) => {
let src = self.eval_place(place)?;
let len = src.len(self)?;
self.write_scalar(Scalar::from_target_usize(len, self), &dest)?;
}
Ref(_, borrow_kind, place) => {
let src = self.eval_place(place)?;
let place = self.force_allocation(&src)?;
let val = ImmTy::from_immediate(place.to_ref(self), dest.layout);
// A fresh reference was created, make sure it gets retagged.
let val = M::retag_ptr_value(
self,
if borrow_kind.allows_two_phase_borrow() {
mir::RetagKind::TwoPhase
} else {
mir::RetagKind::Default
},
&val,
)?;
self.write_immediate(*val, &dest)?;
}
RawPtr(_, place) => {
// Figure out whether this is an addr_of of an already raw place.
let place_base_raw = if place.is_indirect_first_projection() {
let ty = self.frame().body.local_decls[place.local].ty;
ty.is_unsafe_ptr()
} else {
// Not a deref, and thus not raw.
false
};
let src = self.eval_place(place)?;
let place = self.force_allocation(&src)?;
let mut val = ImmTy::from_immediate(place.to_ref(self), dest.layout);
if !place_base_raw {
// If this was not already raw, it needs retagging.
val = M::retag_ptr_value(self, mir::RetagKind::Raw, &val)?;
}
self.write_immediate(*val, &dest)?;
}
ShallowInitBox(ref operand, _) => {
let src = self.eval_operand(operand, None)?;
let v = self.read_immediate(&src)?;
self.write_immediate(*v, &dest)?;
}
Cast(cast_kind, ref operand, cast_ty) => {
let src = self.eval_operand(operand, None)?;
let cast_ty =
self.instantiate_from_current_frame_and_normalize_erasing_regions(cast_ty)?;
self.cast(&src, cast_kind, cast_ty, &dest)?;
}
Discriminant(place) => {
let op = self.eval_place_to_op(place, None)?;
let variant = self.read_discriminant(&op)?;
let discr = self.discriminant_for_variant(op.layout.ty, variant)?;
self.write_immediate(*discr, &dest)?;
}
}
trace!("{:?}", self.dump_place(&dest));
interp_ok(())
}
/// Writes the aggregate to the destination.
#[instrument(skip(self), level = "trace")]
fn write_aggregate(
&mut self,
kind: &mir::AggregateKind<'tcx>,
operands: &IndexSlice<FieldIdx, mir::Operand<'tcx>>,
dest: &PlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx> {
self.write_uninit(dest)?; // make sure all the padding ends up as uninit
let (variant_index, variant_dest, active_field_index) = match *kind {
mir::AggregateKind::Adt(_, variant_index, _, _, active_field_index) => {
let variant_dest = self.project_downcast(dest, variant_index)?;
(variant_index, variant_dest, active_field_index)
}
mir::AggregateKind::RawPtr(..) => {
// Pointers don't have "fields" in the normal sense, so the
// projection-based code below would either fail in projection
// or in type mismatches. Instead, build an `Immediate` from
// the parts and write that to the destination.
let [data, meta] = &operands.raw else {
bug!("{kind:?} should have 2 operands, had {operands:?}");
};
let data = self.eval_operand(data, None)?;
let data = self.read_pointer(&data)?;
let meta = self.eval_operand(meta, None)?;
let meta = if meta.layout.is_zst() {
MemPlaceMeta::None
} else {
MemPlaceMeta::Meta(self.read_scalar(&meta)?)
};
let ptr_imm = Immediate::new_pointer_with_meta(data, meta, self);
let ptr = ImmTy::from_immediate(ptr_imm, dest.layout);
self.copy_op(&ptr, dest)?;
return interp_ok(());
}
_ => (FIRST_VARIANT, dest.clone(), None),
};
if active_field_index.is_some() {
assert_eq!(operands.len(), 1);
}
for (field_index, operand) in operands.iter_enumerated() {
let field_index = active_field_index.unwrap_or(field_index);
let field_dest = self.project_field(&variant_dest, field_index.as_usize())?;
let op = self.eval_operand(operand, Some(field_dest.layout))?;
self.copy_op(&op, &field_dest)?;
}
self.write_discriminant(variant_index, dest)
}
/// Repeats `operand` into the destination. `dest` must have array type, and that type
/// determines how often `operand` is repeated.
fn write_repeat(
&mut self,
operand: &mir::Operand<'tcx>,
dest: &PlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx> {
let src = self.eval_operand(operand, None)?;
assert!(src.layout.is_sized());
let dest = self.force_allocation(&dest)?;
let length = dest.len(self)?;
if length == 0 {
// Nothing to copy... but let's still make sure that `dest` as a place is valid.
self.get_place_alloc_mut(&dest)?;
} else {
// Write the src to the first element.
let first = self.project_index(&dest, 0)?;
self.copy_op(&src, &first)?;
// This is performance-sensitive code for big static/const arrays! So we
// avoid writing each operand individually and instead just make many copies
// of the first element.
let elem_size = first.layout.size;
let first_ptr = first.ptr();
let rest_ptr = first_ptr.wrapping_offset(elem_size, self);
// No alignment requirement since `copy_op` above already checked it.
self.mem_copy_repeatedly(
first_ptr,
rest_ptr,
elem_size,
length - 1,
/*nonoverlapping:*/ true,
)?;
}
interp_ok(())
}
/// Evaluate the arguments of a function call
fn eval_fn_call_argument(
&self,
op: &mir::Operand<'tcx>,
) -> InterpResult<'tcx, FnArg<'tcx, M::Provenance>> {
interp_ok(match op {
mir::Operand::Copy(_) | mir::Operand::Constant(_) => {
// Make a regular copy.
let op = self.eval_operand(op, None)?;
FnArg::Copy(op)
}
mir::Operand::Move(place) => {
// If this place lives in memory, preserve its location.
// We call `place_to_op` which will be an `MPlaceTy` whenever there exists
// an mplace for this place. (This is in contrast to `PlaceTy::as_mplace_or_local`
// which can return a local even if that has an mplace.)
let place = self.eval_place(*place)?;
let op = self.place_to_op(&place)?;
match op.as_mplace_or_imm() {
Either::Left(mplace) => FnArg::InPlace(mplace),
Either::Right(_imm) => {
// This argument doesn't live in memory, so there's no place
// to make inaccessible during the call.
// We rely on there not being any stray `PlaceTy` that would let the
// caller directly access this local!
// This is also crucial for tail calls, where we want the `FnArg` to
// stay valid when the old stack frame gets popped.
FnArg::Copy(op)
}
}
}
})
}
/// Shared part of `Call` and `TailCall` implementation — finding and evaluating all the
/// necessary information about callee and arguments to make a call.
fn eval_callee_and_args(
&self,
terminator: &mir::Terminator<'tcx>,
func: &mir::Operand<'tcx>,
args: &[Spanned<mir::Operand<'tcx>>],
) -> InterpResult<'tcx, EvaluatedCalleeAndArgs<'tcx, M>> {
let func = self.eval_operand(func, None)?;
let args = args
.iter()
.map(|arg| self.eval_fn_call_argument(&arg.node))
.collect::<InterpResult<'tcx, Vec<_>>>()?;
let fn_sig_binder = func.layout.ty.fn_sig(*self.tcx);
let fn_sig = self.tcx.normalize_erasing_late_bound_regions(self.param_env, fn_sig_binder);
let extra_args = &args[fn_sig.inputs().len()..];
let extra_args =
self.tcx.mk_type_list_from_iter(extra_args.iter().map(|arg| arg.layout().ty));
let (callee, fn_abi, with_caller_location) = match *func.layout.ty.kind() {
ty::FnPtr(..) => {
let fn_ptr = self.read_pointer(&func)?;
let fn_val = self.get_ptr_fn(fn_ptr)?;
(fn_val, self.fn_abi_of_fn_ptr(fn_sig_binder, extra_args)?, false)
}
ty::FnDef(def_id, args) => {
let instance = self.resolve(def_id, args)?;
(
FnVal::Instance(instance),
self.fn_abi_of_instance(instance, extra_args)?,
instance.def.requires_caller_location(*self.tcx),
)
}
_ => {
span_bug!(terminator.source_info.span, "invalid callee of type {}", func.layout.ty)
}
};
interp_ok(EvaluatedCalleeAndArgs { callee, args, fn_sig, fn_abi, with_caller_location })
}
fn eval_terminator(&mut self, terminator: &mir::Terminator<'tcx>) -> InterpResult<'tcx> {
info!("{:?}", terminator.kind);
use rustc_middle::mir::TerminatorKind::*;
match terminator.kind {
Return => {
self.return_from_current_stack_frame(/* unwinding */ false)?
}
Goto { target } => self.go_to_block(target),
SwitchInt { ref discr, ref targets } => {
let discr = self.read_immediate(&self.eval_operand(discr, None)?)?;
trace!("SwitchInt({:?})", *discr);
// Branch to the `otherwise` case by default, if no match is found.
let mut target_block = targets.otherwise();
for (const_int, target) in targets.iter() {
// Compare using MIR BinOp::Eq, to also support pointer values.
// (Avoiding `self.binary_op` as that does some redundant layout computation.)
let res = self.binary_op(
mir::BinOp::Eq,
&discr,
&ImmTy::from_uint(const_int, discr.layout),
)?;
if res.to_scalar().to_bool()? {
target_block = target;
break;
}
}
self.go_to_block(target_block);
}
Call {
ref func,
ref args,
destination,
target,
unwind,
call_source: _,
fn_span: _,
} => {
let old_stack = self.frame_idx();
let old_loc = self.frame().loc;
let EvaluatedCalleeAndArgs { callee, args, fn_sig, fn_abi, with_caller_location } =
self.eval_callee_and_args(terminator, func, args)?;
let destination = self.force_allocation(&self.eval_place(destination)?)?;
self.init_fn_call(
callee,
(fn_sig.abi, fn_abi),
&args,
with_caller_location,
&destination,
target,
if fn_abi.can_unwind { unwind } else { mir::UnwindAction::Unreachable },
)?;
// Sanity-check that `eval_fn_call` either pushed a new frame or
// did a jump to another block.
if self.frame_idx() == old_stack && self.frame().loc == old_loc {
span_bug!(terminator.source_info.span, "evaluating this call made no progress");
}
}
TailCall { ref func, ref args, fn_span: _ } => {
let old_frame_idx = self.frame_idx();
let EvaluatedCalleeAndArgs { callee, args, fn_sig, fn_abi, with_caller_location } =
self.eval_callee_and_args(terminator, func, args)?;
self.init_fn_tail_call(callee, (fn_sig.abi, fn_abi), &args, with_caller_location)?;
if self.frame_idx() != old_frame_idx {
span_bug!(
terminator.source_info.span,
"evaluating this tail call pushed a new stack frame"
);
}
}
Drop { place, target, unwind, replace: _ } => {
let place = self.eval_place(place)?;
let instance = Instance::resolve_drop_in_place(*self.tcx, place.layout.ty);
if let ty::InstanceKind::DropGlue(_, None) = instance.def {
// This is the branch we enter if and only if the dropped type has no drop glue
// whatsoever. This can happen as a result of monomorphizing a drop of a
// generic. In order to make sure that generic and non-generic code behaves
// roughly the same (and in keeping with Mir semantics) we do nothing here.
self.go_to_block(target);
return interp_ok(());
}
trace!("TerminatorKind::drop: {:?}, type {}", place, place.layout.ty);
self.init_drop_in_place_call(&place, instance, target, unwind)?;
}
Assert { ref cond, expected, ref msg, target, unwind } => {
let ignored =
M::ignore_optional_overflow_checks(self) && msg.is_optional_overflow_check();
let cond_val = self.read_scalar(&self.eval_operand(cond, None)?)?.to_bool()?;
if ignored || expected == cond_val {
self.go_to_block(target);
} else {
M::assert_panic(self, msg, unwind)?;
}
}
UnwindTerminate(reason) => {
M::unwind_terminate(self, reason)?;
}
// When we encounter Resume, we've finished unwinding
// cleanup for the current stack frame. We pop it in order
// to continue unwinding the next frame
UnwindResume => {
trace!("unwinding: resuming from cleanup");
// By definition, a Resume terminator means
// that we're unwinding
self.return_from_current_stack_frame(/* unwinding */ true)?;
return interp_ok(());
}
// It is UB to ever encounter this.
Unreachable => throw_ub!(Unreachable),
// These should never occur for MIR we actually run.
FalseEdge { .. } | FalseUnwind { .. } | Yield { .. } | CoroutineDrop => span_bug!(
terminator.source_info.span,
"{:#?} should have been eliminated by MIR pass",
terminator.kind
),
InlineAsm { template, ref operands, options, ref targets, .. } => {
M::eval_inline_asm(self, template, operands, options, targets)?;
}
}
interp_ok(())
}
}