rustc_codegen_llvm/debuginfo/
create_scope_map.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
use std::collections::hash_map::Entry;

use rustc_codegen_ssa::mir::debuginfo::{DebugScope, FunctionDebugContext};
use rustc_codegen_ssa::traits::*;
use rustc_data_structures::fx::FxHashMap;
use rustc_index::Idx;
use rustc_index::bit_set::BitSet;
use rustc_middle::mir::{Body, SourceScope};
use rustc_middle::ty::layout::FnAbiOf;
use rustc_middle::ty::{self, Instance};
use rustc_session::config::DebugInfo;
use rustc_span::BytePos;

use super::metadata::file_metadata;
use super::utils::DIB;
use crate::common::CodegenCx;
use crate::llvm;
use crate::llvm::debuginfo::{DILocation, DIScope};

/// Produces DIScope DIEs for each MIR Scope which has variables defined in it.
// FIXME(eddyb) almost all of this should be in `rustc_codegen_ssa::mir::debuginfo`.
pub(crate) fn compute_mir_scopes<'ll, 'tcx>(
    cx: &CodegenCx<'ll, 'tcx>,
    instance: Instance<'tcx>,
    mir: &Body<'tcx>,
    debug_context: &mut FunctionDebugContext<'tcx, &'ll DIScope, &'ll DILocation>,
) {
    // Find all scopes with variables defined in them.
    let variables = if cx.sess().opts.debuginfo == DebugInfo::Full {
        let mut vars = BitSet::new_empty(mir.source_scopes.len());
        // FIXME(eddyb) take into account that arguments always have debuginfo,
        // irrespective of their name (assuming full debuginfo is enabled).
        // NOTE(eddyb) actually, on second thought, those are always in the
        // function scope, which always exists.
        for var_debug_info in &mir.var_debug_info {
            vars.insert(var_debug_info.source_info.scope);
        }
        Some(vars)
    } else {
        // Nothing to emit, of course.
        None
    };
    let mut instantiated = BitSet::new_empty(mir.source_scopes.len());
    let mut discriminators = FxHashMap::default();
    // Instantiate all scopes.
    for idx in 0..mir.source_scopes.len() {
        let scope = SourceScope::new(idx);
        make_mir_scope(
            cx,
            instance,
            mir,
            &variables,
            debug_context,
            &mut instantiated,
            &mut discriminators,
            scope,
        );
    }
    assert!(instantiated.count() == mir.source_scopes.len());
}

fn make_mir_scope<'ll, 'tcx>(
    cx: &CodegenCx<'ll, 'tcx>,
    instance: Instance<'tcx>,
    mir: &Body<'tcx>,
    variables: &Option<BitSet<SourceScope>>,
    debug_context: &mut FunctionDebugContext<'tcx, &'ll DIScope, &'ll DILocation>,
    instantiated: &mut BitSet<SourceScope>,
    discriminators: &mut FxHashMap<BytePos, u32>,
    scope: SourceScope,
) {
    if instantiated.contains(scope) {
        return;
    }

    let scope_data = &mir.source_scopes[scope];
    let parent_scope = if let Some(parent) = scope_data.parent_scope {
        make_mir_scope(
            cx,
            instance,
            mir,
            variables,
            debug_context,
            instantiated,
            discriminators,
            parent,
        );
        debug_context.scopes[parent]
    } else {
        // The root is the function itself.
        let file = cx.sess().source_map().lookup_source_file(mir.span.lo());
        debug_context.scopes[scope] = DebugScope {
            file_start_pos: file.start_pos,
            file_end_pos: file.end_position(),
            ..debug_context.scopes[scope]
        };
        instantiated.insert(scope);
        return;
    };

    if let Some(vars) = variables
        && !vars.contains(scope)
        && scope_data.inlined.is_none()
    {
        // Do not create a DIScope if there are no variables defined in this
        // MIR `SourceScope`, and it's not `inlined`, to avoid debuginfo bloat.
        debug_context.scopes[scope] = parent_scope;
        instantiated.insert(scope);
        return;
    }

    let loc = cx.lookup_debug_loc(scope_data.span.lo());
    let file_metadata = file_metadata(cx, &loc.file);

    let dbg_scope = match scope_data.inlined {
        Some((callee, _)) => {
            // FIXME(eddyb) this would be `self.monomorphize(&callee)`
            // if this is moved to `rustc_codegen_ssa::mir::debuginfo`.
            let callee = cx.tcx.instantiate_and_normalize_erasing_regions(
                instance.args,
                ty::ParamEnv::reveal_all(),
                ty::EarlyBinder::bind(callee),
            );
            debug_context.inlined_function_scopes.entry(callee).or_insert_with(|| {
                let callee_fn_abi = cx.fn_abi_of_instance(callee, ty::List::empty());
                cx.dbg_scope_fn(callee, callee_fn_abi, None)
            })
        }
        None => unsafe {
            llvm::LLVMRustDIBuilderCreateLexicalBlock(
                DIB(cx),
                parent_scope.dbg_scope,
                file_metadata,
                loc.line,
                loc.col,
            )
        },
    };

    let inlined_at = scope_data.inlined.map(|(_, callsite_span)| {
        // FIXME(eddyb) this doesn't account for the macro-related
        // `Span` fixups that `rustc_codegen_ssa::mir::debuginfo` does.
        let callsite_scope = parent_scope.adjust_dbg_scope_for_span(cx, callsite_span);
        let loc = cx.dbg_loc(callsite_scope, parent_scope.inlined_at, callsite_span);

        // NB: In order to produce proper debug info for variables (particularly
        // arguments) in multiply-inline functions, LLVM expects to see a single
        // DILocalVariable with multiple different DILocations in the IR. While
        // the source information for each DILocation would be identical, their
        // inlinedAt attributes will be unique to the particular callsite.
        //
        // We generate DILocations here based on the callsite's location in the
        // source code. A single location in the source code usually can't
        // produce multiple distinct calls so this mostly works, until
        // proc-macros get involved. A proc-macro can generate multiple calls
        // at the same span, which breaks the assumption that we're going to
        // produce a unique DILocation for every scope we process here. We
        // have to explicitly add discriminators if we see inlines into the
        // same source code location.
        //
        // Note further that we can't key this hashtable on the span itself,
        // because these spans could have distinct SyntaxContexts. We have
        // to key on exactly what we're giving to LLVM.
        match discriminators.entry(callsite_span.lo()) {
            Entry::Occupied(mut o) => {
                *o.get_mut() += 1;
                unsafe { llvm::LLVMRustDILocationCloneWithBaseDiscriminator(loc, *o.get()) }
                    .expect("Failed to encode discriminator in DILocation")
            }
            Entry::Vacant(v) => {
                v.insert(0);
                loc
            }
        }
    });

    debug_context.scopes[scope] = DebugScope {
        dbg_scope,
        inlined_at: inlined_at.or(parent_scope.inlined_at),
        file_start_pos: loc.file.start_pos,
        file_end_pos: loc.file.end_position(),
    };
    instantiated.insert(scope);
}