cargo/core/compiler/job_queue/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
//! Management of the interaction between the main `cargo` and all spawned jobs.
//!
//! ## Overview
//!
//! This module implements a job queue. A job here represents a unit of work,
//! which is roughly a rustc invocation, a build script run, or just a no-op.
//! The job queue primarily handles the following things:
//!
//! * Spawns concurrent jobs. Depending on its [`Freshness`], a job could be
//! either executed on a spawned thread or ran on the same thread to avoid
//! the threading overhead.
//! * Controls the number of concurrency. It allocates and manages [`jobserver`]
//! tokens to each spawned off rustc and build scripts.
//! * Manages the communication between the main `cargo` process and its
//! spawned jobs. Those [`Message`]s are sent over a [`Queue`] shared
//! across threads.
//! * Schedules the execution order of each [`Job`]. Priorities are determined
//! when calling [`JobQueue::enqueue`] to enqueue a job. The scheduling is
//! relatively rudimentary and could likely be improved.
//!
//! A rough outline of building a queue and executing jobs is:
//!
//! 1. [`JobQueue::new`] to simply create one queue.
//! 2. [`JobQueue::enqueue`] to add new jobs onto the queue.
//! 3. Consumes the queue and executes all jobs via [`JobQueue::execute`].
//!
//! The primary loop happens insides [`JobQueue::execute`], which is effectively
//! [`DrainState::drain_the_queue`]. [`DrainState`] is, as its name tells,
//! the running state of the job queue getting drained.
//!
//! ## Jobserver
//!
//! As of Feb. 2023, Cargo and rustc have a relatively simple jobserver
//! relationship with each other. They share a single jobserver amongst what
//! is potentially hundreds of threads of work on many-cored systems.
//! The jobserver could come from either the environment (e.g., from a `make`
//! invocation), or from Cargo creating its own jobserver server if there is no
//! jobserver to inherit from.
//!
//! Cargo wants to complete the build as quickly as possible, fully saturating
//! all cores (as constrained by the `-j=N`) parameter. Cargo also must not spawn
//! more than N threads of work: the total amount of tokens we have floating
//! around must always be limited to N.
//!
//! It is not really possible to optimally choose which crate should build
//! first or last; nor is it possible to decide whether to give an additional
//! token to rustc first or rather spawn a new crate of work. The algorithm in
//! Cargo prioritizes spawning as many crates (i.e., rustc processes) as
//! possible. In short, the jobserver relationship among Cargo and rustc
//! processes is **1 `cargo` to N `rustc`**. Cargo knows nothing beyond rustc
//! processes in terms of parallelism[^parallel-rustc].
//!
//! We integrate with the [jobserver] crate, originating from GNU make
//! [POSIX jobserver], to make sure that build scripts which use make to
//! build C code can cooperate with us on the number of used tokens and
//! avoid overfilling the system we're on.
//!
//! ## Scheduling
//!
//! The current scheduling algorithm is not really polished. It is simply based
//! on a dependency graph [`DependencyQueue`]. We continue adding nodes onto
//! the graph until we finalize it. When the graph gets finalized, it finds the
//! sum of the cost of each dependencies of each node, including transitively.
//! The sum of dependency cost turns out to be the cost of each given node.
//!
//! At the time being, the cost is just passed as a fixed placeholder in
//! [`JobQueue::enqueue`]. In the future, we could explore more possibilities
//! around it. For instance, we start persisting timing information for each
//! build somewhere. For a subsequent build, we can look into the historical
//! data and perform a PGO-like optimization to prioritize jobs, making a build
//! fully pipelined.
//!
//! ## Message queue
//!
//! Each spawned thread running a process uses the message queue [`Queue`] to
//! send messages back to the main thread (the one running `cargo`).
//! The main thread coordinates everything, and handles printing output.
//!
//! It is important to be careful which messages use [`push`] vs [`push_bounded`].
//! `push` is for priority messages (like tokens, or "finished") where the
//! sender shouldn't block. We want to handle those so real work can proceed
//! ASAP.
//!
//! `push_bounded` is only for messages being printed to stdout/stderr. Being
//! bounded prevents a flood of messages causing a large amount of memory
//! being used.
//!
//! `push` also avoids blocking which helps avoid deadlocks. For example, when
//! the diagnostic server thread is dropped, it waits for the thread to exit.
//! But if the thread is blocked on a full queue, and there is a critical
//! error, the drop will deadlock. This should be fixed at some point in the
//! future. The jobserver thread has a similar problem, though it will time
//! out after 1 second.
//!
//! To access the message queue, each running `Job` is given its own [`JobState`],
//! containing everything it needs to communicate with the main thread.
//!
//! See [`Message`] for all available message kinds.
//!
//! [^parallel-rustc]: In fact, `jobserver` that Cargo uses also manages the
//! allocation of tokens to rustc beyond the implicit token each rustc owns
//! (i.e., the ones used for parallel LLVM work and parallel rustc threads).
//! See also ["Rust Compiler Development Guide: Parallel Compilation"]
//! and [this comment][rustc-codegen] in rust-lang/rust.
//!
//! ["Rust Compiler Development Guide: Parallel Compilation"]: https://rustc-dev-guide.rust-lang.org/parallel-rustc.html
//! [rustc-codegen]: https://github.com/rust-lang/rust/blob/5423745db8b434fcde54888b35f518f00cce00e4/compiler/rustc_codegen_ssa/src/back/write.rs#L1204-L1217
//! [jobserver]: https://docs.rs/jobserver
//! [POSIX jobserver]: https://www.gnu.org/software/make/manual/html_node/POSIX-Jobserver.html
//! [`push`]: Queue::push
//! [`push_bounded`]: Queue::push_bounded
mod job;
mod job_state;
use std::cell::RefCell;
use std::collections::{HashMap, HashSet};
use std::fmt::Write as _;
use std::io;
use std::path::{Path, PathBuf};
use std::sync::Arc;
use std::thread::{self, Scope};
use std::time::Duration;
use anyhow::{format_err, Context as _};
use cargo_util::ProcessBuilder;
use jobserver::{Acquired, HelperThread};
use semver::Version;
use tracing::{debug, trace};
pub use self::job::Freshness::{self, Dirty, Fresh};
pub use self::job::{Job, Work};
pub use self::job_state::JobState;
use super::build_runner::OutputFile;
use super::custom_build::Severity;
use super::timings::Timings;
use super::{BuildContext, BuildPlan, BuildRunner, CompileMode, Unit};
use crate::core::compiler::descriptive_pkg_name;
use crate::core::compiler::future_incompat::{
self, FutureBreakageItem, FutureIncompatReportPackage,
};
use crate::core::resolver::ResolveBehavior;
use crate::core::{PackageId, Shell, TargetKind};
use crate::util::context::WarningHandling;
use crate::util::diagnostic_server::{self, DiagnosticPrinter};
use crate::util::errors::AlreadyPrintedError;
use crate::util::machine_message::{self, Message as _};
use crate::util::CargoResult;
use crate::util::{self, internal};
use crate::util::{DependencyQueue, GlobalContext, Progress, ProgressStyle, Queue};
/// This structure is backed by the `DependencyQueue` type and manages the
/// queueing of compilation steps for each package. Packages enqueue units of
/// work and then later on the entire graph is converted to DrainState and
/// executed.
pub struct JobQueue<'gctx> {
queue: DependencyQueue<Unit, Artifact, Job>,
counts: HashMap<PackageId, usize>,
timings: Timings<'gctx>,
}
/// This structure is backed by the `DependencyQueue` type and manages the
/// actual compilation step of each package. Packages enqueue units of work and
/// then later on the entire graph is processed and compiled.
///
/// It is created from JobQueue when we have fully assembled the crate graph
/// (i.e., all package dependencies are known).
struct DrainState<'gctx> {
// This is the length of the DependencyQueue when starting out
total_units: usize,
queue: DependencyQueue<Unit, Artifact, Job>,
messages: Arc<Queue<Message>>,
/// Diagnostic deduplication support.
diag_dedupe: DiagDedupe<'gctx>,
/// Count of warnings, used to print a summary after the job succeeds
warning_count: HashMap<JobId, WarningCount>,
active: HashMap<JobId, Unit>,
compiled: HashSet<PackageId>,
documented: HashSet<PackageId>,
scraped: HashSet<PackageId>,
counts: HashMap<PackageId, usize>,
progress: Progress<'gctx>,
next_id: u32,
timings: Timings<'gctx>,
/// Tokens that are currently owned by this Cargo, and may be "associated"
/// with a rustc process. They may also be unused, though if so will be
/// dropped on the next loop iteration.
///
/// Note that the length of this may be zero, but we will still spawn work,
/// as we share the implicit token given to this Cargo process with a
/// single rustc process.
tokens: Vec<Acquired>,
/// The list of jobs that we have not yet started executing, but have
/// retrieved from the `queue`. We eagerly pull jobs off the main queue to
/// allow us to request jobserver tokens pretty early.
pending_queue: Vec<(Unit, Job, usize)>,
print: DiagnosticPrinter<'gctx>,
/// How many jobs we've finished
finished: usize,
per_package_future_incompat_reports: Vec<FutureIncompatReportPackage>,
}
/// Count of warnings, used to print a summary after the job succeeds
#[derive(Default)]
pub struct WarningCount {
/// total number of warnings
pub total: usize,
/// number of warnings that were suppressed because they
/// were duplicates of a previous warning
pub duplicates: usize,
/// number of fixable warnings set to `NotAllowed`
/// if any errors have been seen ofr the current
/// target
pub fixable: FixableWarnings,
}
impl WarningCount {
/// If an error is seen this should be called
/// to set `fixable` to `NotAllowed`
fn disallow_fixable(&mut self) {
self.fixable = FixableWarnings::NotAllowed;
}
/// Checks fixable if warnings are allowed
/// fixable warnings are allowed if no
/// errors have been seen for the current
/// target. If an error was seen `fixable`
/// will be `NotAllowed`.
fn fixable_allowed(&self) -> bool {
match &self.fixable {
FixableWarnings::NotAllowed => false,
_ => true,
}
}
}
/// Used to keep track of how many fixable warnings there are
/// and if fixable warnings are allowed
#[derive(Default)]
pub enum FixableWarnings {
NotAllowed,
#[default]
Zero,
Positive(usize),
}
pub struct ErrorsDuringDrain {
pub count: usize,
}
struct ErrorToHandle {
error: anyhow::Error,
/// This field is true for "interesting" errors and false for "mundane"
/// errors. If false, we print the above error only if it's the first one
/// encountered so far while draining the job queue.
///
/// At most places that an error is propagated, we set this to false to
/// avoid scenarios where Cargo might end up spewing tons of redundant error
/// messages. For example if an i/o stream got closed somewhere, we don't
/// care about individually reporting every thread that it broke; just the
/// first is enough.
///
/// The exception where print_always is true is that we do report every
/// instance of a rustc invocation that failed with diagnostics. This
/// corresponds to errors from Message::Finish.
print_always: bool,
}
impl<E> From<E> for ErrorToHandle
where
anyhow::Error: From<E>,
{
fn from(error: E) -> Self {
ErrorToHandle {
error: anyhow::Error::from(error),
print_always: false,
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct JobId(pub u32);
impl std::fmt::Display for JobId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
/// Handler for deduplicating diagnostics.
struct DiagDedupe<'gctx> {
seen: RefCell<HashSet<u64>>,
gctx: &'gctx GlobalContext,
}
impl<'gctx> DiagDedupe<'gctx> {
fn new(gctx: &'gctx GlobalContext) -> Self {
DiagDedupe {
seen: RefCell::new(HashSet::new()),
gctx,
}
}
/// Emits a diagnostic message.
///
/// Returns `true` if the message was emitted, or `false` if it was
/// suppressed for being a duplicate.
fn emit_diag(&self, diag: &str) -> CargoResult<bool> {
let h = util::hash_u64(diag);
if !self.seen.borrow_mut().insert(h) {
return Ok(false);
}
let mut shell = self.gctx.shell();
shell.print_ansi_stderr(diag.as_bytes())?;
shell.err().write_all(b"\n")?;
Ok(true)
}
}
/// Possible artifacts that can be produced by compilations, used as edge values
/// in the dependency graph.
///
/// As edge values we can have multiple kinds of edges depending on one node,
/// for example some units may only depend on the metadata for an rlib while
/// others depend on the full rlib. This `Artifact` enum is used to distinguish
/// this case and track the progress of compilations as they proceed.
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
enum Artifact {
/// A generic placeholder for "depends on everything run by a step" and
/// means that we can't start the next compilation until the previous has
/// finished entirely.
All,
/// A node indicating that we only depend on the metadata of a compilation,
/// but the compilation is typically also producing an rlib. We can start
/// our step, however, before the full rlib is available.
Metadata,
}
enum Message {
Run(JobId, String),
BuildPlanMsg(String, ProcessBuilder, Arc<Vec<OutputFile>>),
Stdout(String),
Stderr(String),
// This is for general stderr output from subprocesses
Diagnostic {
id: JobId,
level: String,
diag: String,
fixable: bool,
},
// This handles duplicate output that is suppressed, for showing
// only a count of duplicate messages instead
WarningCount {
id: JobId,
emitted: bool,
fixable: bool,
},
// This is for warnings generated by Cargo's interpretation of the
// subprocess output, e.g. scrape-examples prints a warning if a
// unit fails to be scraped
Warning {
id: JobId,
warning: String,
},
FixDiagnostic(diagnostic_server::Message),
Token(io::Result<Acquired>),
Finish(JobId, Artifact, CargoResult<()>),
FutureIncompatReport(JobId, Vec<FutureBreakageItem>),
}
impl<'gctx> JobQueue<'gctx> {
pub fn new(bcx: &BuildContext<'_, 'gctx>) -> JobQueue<'gctx> {
JobQueue {
queue: DependencyQueue::new(),
counts: HashMap::new(),
timings: Timings::new(bcx, &bcx.roots),
}
}
pub fn enqueue(
&mut self,
build_runner: &BuildRunner<'_, 'gctx>,
unit: &Unit,
job: Job,
) -> CargoResult<()> {
let dependencies = build_runner.unit_deps(unit);
let mut queue_deps = dependencies
.iter()
.filter(|dep| {
// Binaries aren't actually needed to *compile* tests, just to run
// them, so we don't include this dependency edge in the job graph.
// But we shouldn't filter out dependencies being scraped for Rustdoc.
(!dep.unit.target.is_test() && !dep.unit.target.is_bin())
|| dep.unit.artifact.is_true()
|| dep.unit.mode.is_doc_scrape()
})
.map(|dep| {
// Handle the case here where our `unit -> dep` dependency may
// only require the metadata, not the full compilation to
// finish. Use the tables in `build_runner` to figure out what
// kind of artifact is associated with this dependency.
let artifact = if build_runner.only_requires_rmeta(unit, &dep.unit) {
Artifact::Metadata
} else {
Artifact::All
};
(dep.unit.clone(), artifact)
})
.collect::<HashMap<_, _>>();
// This is somewhat tricky, but we may need to synthesize some
// dependencies for this target if it requires full upstream
// compilations to have completed. Because of pipelining, some
// dependency edges may be `Metadata` due to the above clause (as
// opposed to everything being `All`). For example consider:
//
// a (binary)
// └ b (lib)
// └ c (lib)
//
// Here the dependency edge from B to C will be `Metadata`, and the
// dependency edge from A to B will be `All`. For A to be compiled,
// however, it currently actually needs the full rlib of C. This means
// that we need to synthesize a dependency edge for the dependency graph
// from A to C. That's done here.
//
// This will walk all dependencies of the current target, and if any of
// *their* dependencies are `Metadata` then we depend on the `All` of
// the target as well. This should ensure that edges changed to
// `Metadata` propagate upwards `All` dependencies to anything that
// transitively contains the `Metadata` edge.
if unit.requires_upstream_objects() {
for dep in dependencies {
depend_on_deps_of_deps(build_runner, &mut queue_deps, dep.unit.clone());
}
fn depend_on_deps_of_deps(
build_runner: &BuildRunner<'_, '_>,
deps: &mut HashMap<Unit, Artifact>,
unit: Unit,
) {
for dep in build_runner.unit_deps(&unit) {
if deps.insert(dep.unit.clone(), Artifact::All).is_none() {
depend_on_deps_of_deps(build_runner, deps, dep.unit.clone());
}
}
}
}
// For now we use a fixed placeholder value for the cost of each unit, but
// in the future this could be used to allow users to provide hints about
// relative expected costs of units, or this could be automatically set in
// a smarter way using timing data from a previous compilation.
self.queue.queue(unit.clone(), job, queue_deps, 100);
*self.counts.entry(unit.pkg.package_id()).or_insert(0) += 1;
Ok(())
}
/// Executes all jobs necessary to build the dependency graph.
///
/// This function will spawn off `config.jobs()` workers to build all of the
/// necessary dependencies, in order. Freshness is propagated as far as
/// possible along each dependency chain.
#[tracing::instrument(skip_all)]
pub fn execute(
mut self,
build_runner: &mut BuildRunner<'_, '_>,
plan: &mut BuildPlan,
) -> CargoResult<()> {
self.queue.queue_finished();
let progress =
Progress::with_style("Building", ProgressStyle::Ratio, build_runner.bcx.gctx);
let state = DrainState {
total_units: self.queue.len(),
queue: self.queue,
// 100 here is somewhat arbitrary. It is a few screenfulls of
// output, and hopefully at most a few megabytes of memory for
// typical messages. If you change this, please update the test
// caching_large_output, too.
messages: Arc::new(Queue::new(100)),
diag_dedupe: DiagDedupe::new(build_runner.bcx.gctx),
warning_count: HashMap::new(),
active: HashMap::new(),
compiled: HashSet::new(),
documented: HashSet::new(),
scraped: HashSet::new(),
counts: self.counts,
progress,
next_id: 0,
timings: self.timings,
tokens: Vec::new(),
pending_queue: Vec::new(),
print: DiagnosticPrinter::new(
build_runner.bcx.gctx,
&build_runner.bcx.rustc().workspace_wrapper,
),
finished: 0,
per_package_future_incompat_reports: Vec::new(),
};
// Create a helper thread for acquiring jobserver tokens
let messages = state.messages.clone();
let helper = build_runner
.jobserver
.clone()
.into_helper_thread(move |token| {
messages.push(Message::Token(token));
})
.context("failed to create helper thread for jobserver management")?;
// Create a helper thread to manage the diagnostics for rustfix if
// necessary.
let messages = state.messages.clone();
// It is important that this uses `push` instead of `push_bounded` for
// now. If someone wants to fix this to be bounded, the `drop`
// implementation needs to be changed to avoid possible deadlocks.
let _diagnostic_server = build_runner
.bcx
.build_config
.rustfix_diagnostic_server
.borrow_mut()
.take()
.map(move |srv| srv.start(move |msg| messages.push(Message::FixDiagnostic(msg))));
thread::scope(move |scope| {
match state.drain_the_queue(build_runner, plan, scope, &helper) {
Some(err) => Err(err),
None => Ok(()),
}
})
}
}
impl<'gctx> DrainState<'gctx> {
fn spawn_work_if_possible<'s>(
&mut self,
build_runner: &mut BuildRunner<'_, '_>,
jobserver_helper: &HelperThread,
scope: &'s Scope<'s, '_>,
) -> CargoResult<()> {
// Dequeue as much work as we can, learning about everything
// possible that can run. Note that this is also the point where we
// start requesting job tokens. Each job after the first needs to
// request a token.
while let Some((unit, job, priority)) = self.queue.dequeue() {
// We want to keep the pieces of work in the `pending_queue` sorted
// by their priorities, and insert the current job at its correctly
// sorted position: following the lower priority jobs, and the ones
// with the same priority (since they were dequeued before the
// current one, we also keep that relation).
let idx = self
.pending_queue
.partition_point(|&(_, _, p)| p <= priority);
self.pending_queue.insert(idx, (unit, job, priority));
if self.active.len() + self.pending_queue.len() > 1 {
jobserver_helper.request_token();
}
}
// Now that we've learned of all possible work that we can execute
// try to spawn it so long as we've got a jobserver token which says
// we're able to perform some parallel work.
// The `pending_queue` is sorted in ascending priority order, and we
// remove items from its end to schedule the highest priority items
// sooner.
while self.has_extra_tokens() && !self.pending_queue.is_empty() {
let (unit, job, _) = self.pending_queue.pop().unwrap();
*self.counts.get_mut(&unit.pkg.package_id()).unwrap() -= 1;
if !build_runner.bcx.build_config.build_plan {
// Print out some nice progress information.
// NOTE: An error here will drop the job without starting it.
// That should be OK, since we want to exit as soon as
// possible during an error.
self.note_working_on(
build_runner.bcx.gctx,
build_runner.bcx.ws.root(),
&unit,
job.freshness(),
)?;
}
self.run(&unit, job, build_runner, scope);
}
Ok(())
}
fn has_extra_tokens(&self) -> bool {
self.active.len() < self.tokens.len() + 1
}
fn handle_event(
&mut self,
build_runner: &mut BuildRunner<'_, '_>,
plan: &mut BuildPlan,
event: Message,
) -> Result<(), ErrorToHandle> {
let warning_handling = build_runner.bcx.gctx.warning_handling()?;
match event {
Message::Run(id, cmd) => {
build_runner
.bcx
.gctx
.shell()
.verbose(|c| c.status("Running", &cmd))?;
self.timings.unit_start(id, self.active[&id].clone());
}
Message::BuildPlanMsg(module_name, cmd, filenames) => {
plan.update(&module_name, &cmd, &filenames)?;
}
Message::Stdout(out) => {
writeln!(build_runner.bcx.gctx.shell().out(), "{}", out)?;
}
Message::Stderr(err) => {
let mut shell = build_runner.bcx.gctx.shell();
shell.print_ansi_stderr(err.as_bytes())?;
shell.err().write_all(b"\n")?;
}
Message::Diagnostic {
id,
level,
diag,
fixable,
} => {
let emitted = self.diag_dedupe.emit_diag(&diag)?;
if level == "warning" {
self.bump_warning_count(id, emitted, fixable);
}
if level == "error" {
let cnts = self.warning_count.entry(id).or_default();
// If there is an error, the `cargo fix` message should not show
cnts.disallow_fixable();
}
}
Message::Warning { id, warning } => {
if warning_handling != WarningHandling::Allow {
build_runner.bcx.gctx.shell().warn(warning)?;
}
self.bump_warning_count(id, true, false);
}
Message::WarningCount {
id,
emitted,
fixable,
} => {
self.bump_warning_count(id, emitted, fixable);
}
Message::FixDiagnostic(msg) => {
self.print.print(&msg)?;
}
Message::Finish(id, artifact, result) => {
let unit = match artifact {
// If `id` has completely finished we remove it
// from the `active` map ...
Artifact::All => {
trace!("end: {:?}", id);
self.finished += 1;
self.report_warning_count(
build_runner,
id,
&build_runner.bcx.rustc().workspace_wrapper,
);
self.active.remove(&id).unwrap()
}
// ... otherwise if it hasn't finished we leave it
// in there as we'll get another `Finish` later on.
Artifact::Metadata => {
trace!("end (meta): {:?}", id);
self.active[&id].clone()
}
};
debug!("end ({:?}): {:?}", unit, result);
match result {
Ok(()) => self.finish(id, &unit, artifact, build_runner)?,
Err(_) if build_runner.bcx.unit_can_fail_for_docscraping(&unit) => {
build_runner
.failed_scrape_units
.lock()
.unwrap()
.insert(build_runner.files().metadata(&unit));
self.queue.finish(&unit, &artifact);
}
Err(error) => {
let show_warnings = true;
self.emit_log_messages(&unit, build_runner, show_warnings)?;
self.back_compat_notice(build_runner, &unit)?;
return Err(ErrorToHandle {
error,
print_always: true,
});
}
}
}
Message::FutureIncompatReport(id, items) => {
let package_id = self.active[&id].pkg.package_id();
self.per_package_future_incompat_reports
.push(FutureIncompatReportPackage { package_id, items });
}
Message::Token(acquired_token) => {
let token = acquired_token.context("failed to acquire jobserver token")?;
self.tokens.push(token);
}
}
Ok(())
}
// This will also tick the progress bar as appropriate
fn wait_for_events(&mut self) -> Vec<Message> {
// Drain all events at once to avoid displaying the progress bar
// unnecessarily. If there's no events we actually block waiting for
// an event, but we keep a "heartbeat" going to allow `record_cpu`
// to run above to calculate CPU usage over time. To do this we
// listen for a message with a timeout, and on timeout we run the
// previous parts of the loop again.
let mut events = self.messages.try_pop_all();
if events.is_empty() {
loop {
self.tick_progress();
self.tokens.truncate(self.active.len() - 1);
match self.messages.pop(Duration::from_millis(500)) {
Some(message) => {
events.push(message);
break;
}
None => continue,
}
}
}
events
}
/// This is the "main" loop, where Cargo does all work to run the
/// compiler.
///
/// This returns an Option to prevent the use of `?` on `Result` types
/// because it is important for the loop to carefully handle errors.
fn drain_the_queue<'s>(
mut self,
build_runner: &mut BuildRunner<'_, '_>,
plan: &mut BuildPlan,
scope: &'s Scope<'s, '_>,
jobserver_helper: &HelperThread,
) -> Option<anyhow::Error> {
trace!("queue: {:#?}", self.queue);
// Iteratively execute the entire dependency graph. Each turn of the
// loop starts out by scheduling as much work as possible (up to the
// maximum number of parallel jobs we have tokens for). A local queue
// is maintained separately from the main dependency queue as one
// dequeue may actually dequeue quite a bit of work (e.g., 10 binaries
// in one package).
//
// After a job has finished we update our internal state if it was
// successful and otherwise wait for pending work to finish if it failed
// and then immediately return (or keep going, if requested by the build
// config).
let mut errors = ErrorsDuringDrain { count: 0 };
// CAUTION! Do not use `?` or break out of the loop early. Every error
// must be handled in such a way that the loop is still allowed to
// drain event messages.
loop {
if errors.count == 0 || build_runner.bcx.build_config.keep_going {
if let Err(e) = self.spawn_work_if_possible(build_runner, jobserver_helper, scope) {
self.handle_error(&mut build_runner.bcx.gctx.shell(), &mut errors, e);
}
}
// If after all that we're not actually running anything then we're
// done!
if self.active.is_empty() {
break;
}
// And finally, before we block waiting for the next event, drop any
// excess tokens we may have accidentally acquired. Due to how our
// jobserver interface is architected we may acquire a token that we
// don't actually use, and if this happens just relinquish it back
// to the jobserver itself.
for event in self.wait_for_events() {
if let Err(event_err) = self.handle_event(build_runner, plan, event) {
self.handle_error(&mut build_runner.bcx.gctx.shell(), &mut errors, event_err);
}
}
}
self.progress.clear();
let profile_name = build_runner.bcx.build_config.requested_profile;
// NOTE: this may be a bit inaccurate, since this may not display the
// profile for what was actually built. Profile overrides can change
// these settings, and in some cases different targets are built with
// different profiles. To be accurate, it would need to collect a
// list of Units built, and maybe display a list of the different
// profiles used. However, to keep it simple and compatible with old
// behavior, we just display what the base profile is.
let profile = build_runner.bcx.profiles.base_profile();
let mut opt_type = String::from(if profile.opt_level.as_str() == "0" {
"unoptimized"
} else {
"optimized"
});
if profile.debuginfo.is_turned_on() {
opt_type += " + debuginfo";
}
let time_elapsed = util::elapsed(build_runner.bcx.gctx.creation_time().elapsed());
if let Err(e) = self.timings.finished(build_runner, &errors.to_error()) {
self.handle_error(&mut build_runner.bcx.gctx.shell(), &mut errors, e);
}
if build_runner.bcx.build_config.emit_json() {
let mut shell = build_runner.bcx.gctx.shell();
let msg = machine_message::BuildFinished {
success: errors.count == 0,
}
.to_json_string();
if let Err(e) = writeln!(shell.out(), "{}", msg) {
self.handle_error(&mut shell, &mut errors, e);
}
}
if let Some(error) = errors.to_error() {
// Any errors up to this point have already been printed via the
// `display_error` inside `handle_error`.
Some(anyhow::Error::new(AlreadyPrintedError::new(error)))
} else if self.queue.is_empty() && self.pending_queue.is_empty() {
let profile_link = build_runner.bcx.gctx.shell().err_hyperlink(
"https://doc.rust-lang.org/cargo/reference/profiles.html#default-profiles",
);
let message = format!(
"{profile_link}`{profile_name}` profile [{opt_type}]{profile_link:#} target(s) in {time_elapsed}",
);
if !build_runner.bcx.build_config.build_plan {
// It doesn't really matter if this fails.
let _ = build_runner.bcx.gctx.shell().status("Finished", message);
future_incompat::save_and_display_report(
build_runner.bcx,
&self.per_package_future_incompat_reports,
);
}
None
} else {
debug!("queue: {:#?}", self.queue);
Some(internal("finished with jobs still left in the queue"))
}
}
fn handle_error(
&self,
shell: &mut Shell,
err_state: &mut ErrorsDuringDrain,
new_err: impl Into<ErrorToHandle>,
) {
let new_err = new_err.into();
if new_err.print_always || err_state.count == 0 {
crate::display_error(&new_err.error, shell);
if err_state.count == 0 && !self.active.is_empty() {
let _ = shell.warn("build failed, waiting for other jobs to finish...");
}
err_state.count += 1;
} else {
tracing::warn!("{:?}", new_err.error);
}
}
// This also records CPU usage and marks concurrency; we roughly want to do
// this as often as we spin on the events receiver (at least every 500ms or
// so).
fn tick_progress(&mut self) {
// Record some timing information if `--timings` is enabled, and
// this'll end up being a noop if we're not recording this
// information.
self.timings.mark_concurrency(
self.active.len(),
self.pending_queue.len(),
self.queue.len(),
);
self.timings.record_cpu();
let active_names = self
.active
.values()
.map(|u| self.name_for_progress(u))
.collect::<Vec<_>>();
let _ = self.progress.tick_now(
self.finished,
self.total_units,
&format!(": {}", active_names.join(", ")),
);
}
fn name_for_progress(&self, unit: &Unit) -> String {
let pkg_name = unit.pkg.name();
let target_name = unit.target.name();
match unit.mode {
CompileMode::Doc { .. } => format!("{}(doc)", pkg_name),
CompileMode::RunCustomBuild => format!("{}(build)", pkg_name),
CompileMode::Test | CompileMode::Check { test: true } => match unit.target.kind() {
TargetKind::Lib(_) => format!("{}(test)", target_name),
TargetKind::CustomBuild => panic!("cannot test build script"),
TargetKind::Bin => format!("{}(bin test)", target_name),
TargetKind::Test => format!("{}(test)", target_name),
TargetKind::Bench => format!("{}(bench)", target_name),
TargetKind::ExampleBin | TargetKind::ExampleLib(_) => {
format!("{}(example test)", target_name)
}
},
_ => match unit.target.kind() {
TargetKind::Lib(_) => pkg_name.to_string(),
TargetKind::CustomBuild => format!("{}(build.rs)", pkg_name),
TargetKind::Bin => format!("{}(bin)", target_name),
TargetKind::Test => format!("{}(test)", target_name),
TargetKind::Bench => format!("{}(bench)", target_name),
TargetKind::ExampleBin | TargetKind::ExampleLib(_) => {
format!("{}(example)", target_name)
}
},
}
}
/// Executes a job.
///
/// Fresh jobs block until finished (which should be very fast!), Dirty
/// jobs will spawn a thread in the background and return immediately.
fn run<'s>(
&mut self,
unit: &Unit,
job: Job,
build_runner: &BuildRunner<'_, '_>,
scope: &'s Scope<'s, '_>,
) {
let id = JobId(self.next_id);
self.next_id = self.next_id.checked_add(1).unwrap();
debug!("start {}: {:?}", id, unit);
assert!(self.active.insert(id, unit.clone()).is_none());
let messages = self.messages.clone();
let is_fresh = job.freshness().is_fresh();
let rmeta_required = build_runner.rmeta_required(unit);
let doit = move |diag_dedupe| {
let state = JobState::new(id, messages, diag_dedupe, rmeta_required);
state.run_to_finish(job);
};
match is_fresh {
true => {
self.timings.add_fresh();
// Running a fresh job on the same thread is often much faster than spawning a new
// thread to run the job.
doit(Some(&self.diag_dedupe));
}
false => {
self.timings.add_dirty();
scope.spawn(move || doit(None));
}
}
}
fn emit_log_messages(
&self,
unit: &Unit,
build_runner: &mut BuildRunner<'_, '_>,
show_warnings: bool,
) -> CargoResult<()> {
let outputs = build_runner.build_script_outputs.lock().unwrap();
let Some(metadata) = build_runner.find_build_script_metadata(unit) else {
return Ok(());
};
let bcx = &mut build_runner.bcx;
if let Some(output) = outputs.get(metadata) {
if !output.log_messages.is_empty()
&& (show_warnings
|| output
.log_messages
.iter()
.any(|(severity, _)| *severity == Severity::Error))
{
let msg_with_package =
|msg: &str| format!("{}@{}: {}", unit.pkg.name(), unit.pkg.version(), msg);
for (severity, message) in output.log_messages.iter() {
match severity {
Severity::Error => {
bcx.gctx.shell().error(msg_with_package(message))?;
}
Severity::Warning => {
bcx.gctx.shell().warn(msg_with_package(message))?;
}
}
}
}
}
Ok(())
}
fn bump_warning_count(&mut self, id: JobId, emitted: bool, fixable: bool) {
let cnts = self.warning_count.entry(id).or_default();
cnts.total += 1;
if !emitted {
cnts.duplicates += 1;
// Don't add to fixable if it's already been emitted
} else if fixable {
// Do not add anything to the fixable warning count if
// is `NotAllowed` since that indicates there was an
// error while building this `Unit`
if cnts.fixable_allowed() {
cnts.fixable = match cnts.fixable {
FixableWarnings::NotAllowed => FixableWarnings::NotAllowed,
FixableWarnings::Zero => FixableWarnings::Positive(1),
FixableWarnings::Positive(fixable) => FixableWarnings::Positive(fixable + 1),
};
}
}
}
/// Displays a final report of the warnings emitted by a particular job.
fn report_warning_count(
&mut self,
runner: &mut BuildRunner<'_, '_>,
id: JobId,
rustc_workspace_wrapper: &Option<PathBuf>,
) {
let gctx = runner.bcx.gctx;
let count = match self.warning_count.get(&id) {
// An error could add an entry for a `Unit`
// with 0 warnings but having fixable
// warnings be disallowed
Some(count) if count.total > 0 => count,
None | Some(_) => return,
};
runner.compilation.warning_count += count.total;
let unit = &self.active[&id];
let mut message = descriptive_pkg_name(&unit.pkg.name(), &unit.target, &unit.mode);
message.push_str(" generated ");
match count.total {
1 => message.push_str("1 warning"),
n => {
let _ = write!(message, "{} warnings", n);
}
};
match count.duplicates {
0 => {}
1 => message.push_str(" (1 duplicate)"),
n => {
let _ = write!(message, " ({} duplicates)", n);
}
}
// Only show the `cargo fix` message if its a local `Unit`
if unit.is_local() {
// Do not show this if there are any errors or no fixable warnings
if let FixableWarnings::Positive(fixable) = count.fixable {
// `cargo fix` doesn't have an option for custom builds
if !unit.target.is_custom_build() {
// To make sure the correct command is shown for `clippy` we
// check if `RUSTC_WORKSPACE_WRAPPER` is set and pointing towards
// `clippy-driver`.
let clippy = std::ffi::OsStr::new("clippy-driver");
let command = match rustc_workspace_wrapper.as_ref().and_then(|x| x.file_stem())
{
Some(wrapper) if wrapper == clippy => "cargo clippy --fix",
_ => "cargo fix",
};
let mut args = {
let named = unit.target.description_named();
// if its a lib we need to add the package to fix
if unit.target.is_lib() {
format!("{} -p {}", named, unit.pkg.name())
} else {
named
}
};
if unit.mode.is_rustc_test()
&& !(unit.target.is_test() || unit.target.is_bench())
{
args.push_str(" --tests");
}
let mut suggestions = format!("{} suggestion", fixable);
if fixable > 1 {
suggestions.push_str("s")
}
let _ = write!(
message,
" (run `{command} --{args}` to apply {suggestions})"
);
}
}
}
// Errors are ignored here because it is tricky to handle them
// correctly, and they aren't important.
let _ = gctx.shell().warn(message);
}
fn finish(
&mut self,
id: JobId,
unit: &Unit,
artifact: Artifact,
build_runner: &mut BuildRunner<'_, '_>,
) -> CargoResult<()> {
if unit.mode.is_run_custom_build() {
self.emit_log_messages(
unit,
build_runner,
unit.show_warnings(build_runner.bcx.gctx),
)?;
}
let unlocked = self.queue.finish(unit, &artifact);
match artifact {
Artifact::All => self.timings.unit_finished(id, unlocked),
Artifact::Metadata => self.timings.unit_rmeta_finished(id, unlocked),
}
Ok(())
}
// This isn't super trivial because we don't want to print loads and
// loads of information to the console, but we also want to produce a
// faithful representation of what's happening. This is somewhat nuanced
// as a package can start compiling *very* early on because of custom
// build commands and such.
//
// In general, we try to print "Compiling" for the first nontrivial task
// run for a package, regardless of when that is. We then don't print
// out any more information for a package after we've printed it once.
fn note_working_on(
&mut self,
gctx: &GlobalContext,
ws_root: &Path,
unit: &Unit,
fresh: &Freshness,
) -> CargoResult<()> {
if (self.compiled.contains(&unit.pkg.package_id())
&& !unit.mode.is_doc()
&& !unit.mode.is_doc_scrape())
|| (self.documented.contains(&unit.pkg.package_id()) && unit.mode.is_doc())
|| (self.scraped.contains(&unit.pkg.package_id()) && unit.mode.is_doc_scrape())
{
return Ok(());
}
match fresh {
// Any dirty stage which runs at least one command gets printed as
// being a compiled package.
Dirty(dirty_reason) => {
if !dirty_reason.is_fresh_build() {
gctx.shell()
.verbose(|shell| dirty_reason.present_to(shell, unit, ws_root))?;
}
if unit.mode.is_doc() {
self.documented.insert(unit.pkg.package_id());
gctx.shell().status("Documenting", &unit.pkg)?;
} else if unit.mode.is_doc_test() {
// Skip doc test.
} else if unit.mode.is_doc_scrape() {
self.scraped.insert(unit.pkg.package_id());
gctx.shell().status("Scraping", &unit.pkg)?;
} else {
self.compiled.insert(unit.pkg.package_id());
if unit.mode.is_check() {
gctx.shell().status("Checking", &unit.pkg)?;
} else {
gctx.shell().status("Compiling", &unit.pkg)?;
}
}
}
Fresh => {
// If doc test are last, only print "Fresh" if nothing has been printed.
if self.counts[&unit.pkg.package_id()] == 0
&& !(unit.mode.is_doc_test() && self.compiled.contains(&unit.pkg.package_id()))
{
self.compiled.insert(unit.pkg.package_id());
gctx.shell().verbose(|c| c.status("Fresh", &unit.pkg))?;
}
}
}
Ok(())
}
fn back_compat_notice(
&self,
build_runner: &BuildRunner<'_, '_>,
unit: &Unit,
) -> CargoResult<()> {
if unit.pkg.name() != "diesel"
|| unit.pkg.version() >= &Version::new(1, 4, 8)
|| build_runner.bcx.ws.resolve_behavior() == ResolveBehavior::V1
|| !unit.pkg.package_id().source_id().is_registry()
|| !unit.features.is_empty()
{
return Ok(());
}
if !build_runner
.bcx
.unit_graph
.keys()
.any(|unit| unit.pkg.name() == "diesel" && !unit.features.is_empty())
{
return Ok(());
}
build_runner.bcx.gctx.shell().note(
"\
This error may be due to an interaction between diesel and Cargo's new
feature resolver. Try updating to diesel 1.4.8 to fix this error.
",
)?;
Ok(())
}
}
impl ErrorsDuringDrain {
fn to_error(&self) -> Option<anyhow::Error> {
match self.count {
0 => None,
1 => Some(format_err!("1 job failed")),
n => Some(format_err!("{} jobs failed", n)),
}
}
}