rustc_resolve/
lib.rs

1//! This crate is responsible for the part of name resolution that doesn't require type checker.
2//!
3//! Module structure of the crate is built here.
4//! Paths in macros, imports, expressions, types, patterns are resolved here.
5//! Label and lifetime names are resolved here as well.
6//!
7//! Type-relative name resolution (methods, fields, associated items) happens in `rustc_hir_analysis`.
8
9// tidy-alphabetical-start
10#![allow(internal_features)]
11#![allow(rustc::diagnostic_outside_of_impl)]
12#![allow(rustc::untranslatable_diagnostic)]
13#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
14#![doc(rust_logo)]
15#![feature(arbitrary_self_types)]
16#![feature(assert_matches)]
17#![feature(box_patterns)]
18#![feature(decl_macro)]
19#![feature(if_let_guard)]
20#![feature(iter_intersperse)]
21#![feature(rustc_attrs)]
22#![feature(rustdoc_internals)]
23#![recursion_limit = "256"]
24// tidy-alphabetical-end
25
26use std::cell::{Cell, Ref, RefCell};
27use std::collections::BTreeSet;
28use std::fmt;
29use std::sync::Arc;
30
31use diagnostics::{ImportSuggestion, LabelSuggestion, Suggestion};
32use effective_visibilities::EffectiveVisibilitiesVisitor;
33use errors::{ParamKindInEnumDiscriminant, ParamKindInNonTrivialAnonConst};
34use imports::{Import, ImportData, ImportKind, NameResolution};
35use late::{
36    ForwardGenericParamBanReason, HasGenericParams, PathSource, PatternSource,
37    UnnecessaryQualification,
38};
39use macros::{MacroRulesBinding, MacroRulesScope, MacroRulesScopeRef};
40use rustc_arena::{DroplessArena, TypedArena};
41use rustc_ast::node_id::NodeMap;
42use rustc_ast::{
43    self as ast, AngleBracketedArg, CRATE_NODE_ID, Crate, Expr, ExprKind, GenericArg, GenericArgs,
44    LitKind, NodeId, Path, attr,
45};
46use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet};
47use rustc_data_structures::intern::Interned;
48use rustc_data_structures::steal::Steal;
49use rustc_data_structures::sync::{FreezeReadGuard, FreezeWriteGuard};
50use rustc_data_structures::unord::{UnordMap, UnordSet};
51use rustc_errors::{Applicability, Diag, ErrCode, ErrorGuaranteed};
52use rustc_expand::base::{DeriveResolution, SyntaxExtension, SyntaxExtensionKind};
53use rustc_feature::BUILTIN_ATTRIBUTES;
54use rustc_hir::attrs::StrippedCfgItem;
55use rustc_hir::def::Namespace::{self, *};
56use rustc_hir::def::{
57    self, CtorOf, DefKind, DocLinkResMap, LifetimeRes, MacroKinds, NonMacroAttrKind, PartialRes,
58    PerNS,
59};
60use rustc_hir::def_id::{CRATE_DEF_ID, CrateNum, DefId, LOCAL_CRATE, LocalDefId, LocalDefIdMap};
61use rustc_hir::definitions::DisambiguatorState;
62use rustc_hir::{PrimTy, TraitCandidate};
63use rustc_index::bit_set::DenseBitSet;
64use rustc_metadata::creader::CStore;
65use rustc_middle::metadata::ModChild;
66use rustc_middle::middle::privacy::EffectiveVisibilities;
67use rustc_middle::query::Providers;
68use rustc_middle::span_bug;
69use rustc_middle::ty::{
70    self, DelegationFnSig, Feed, MainDefinition, RegisteredTools, ResolverAstLowering,
71    ResolverGlobalCtxt, TyCtxt, TyCtxtFeed, Visibility,
72};
73use rustc_query_system::ich::StableHashingContext;
74use rustc_session::lint::builtin::PRIVATE_MACRO_USE;
75use rustc_session::lint::{BuiltinLintDiag, LintBuffer};
76use rustc_span::hygiene::{ExpnId, LocalExpnId, MacroKind, SyntaxContext, Transparency};
77use rustc_span::{DUMMY_SP, Ident, Macros20NormalizedIdent, Span, Symbol, kw, sym};
78use smallvec::{SmallVec, smallvec};
79use tracing::debug;
80
81type Res = def::Res<NodeId>;
82
83mod build_reduced_graph;
84mod check_unused;
85mod def_collector;
86mod diagnostics;
87mod effective_visibilities;
88mod errors;
89mod ident;
90mod imports;
91mod late;
92mod macros;
93pub mod rustdoc;
94
95pub use macros::registered_tools_ast;
96
97rustc_fluent_macro::fluent_messages! { "../messages.ftl" }
98
99#[derive(Debug)]
100enum Weak {
101    Yes,
102    No,
103}
104
105#[derive(Copy, Clone, PartialEq, Debug)]
106enum Determinacy {
107    Determined,
108    Undetermined,
109}
110
111impl Determinacy {
112    fn determined(determined: bool) -> Determinacy {
113        if determined { Determinacy::Determined } else { Determinacy::Undetermined }
114    }
115}
116
117/// A specific scope in which a name can be looked up.
118#[derive(Clone, Copy, Debug)]
119enum Scope<'ra> {
120    /// Inert attributes registered by derive macros.
121    DeriveHelpers(LocalExpnId),
122    /// Inert attributes registered by derive macros, but used before they are actually declared.
123    /// This scope will exist until the compatibility lint `LEGACY_DERIVE_HELPERS`
124    /// is turned into a hard error.
125    DeriveHelpersCompat,
126    /// Textual `let`-like scopes introduced by `macro_rules!` items.
127    MacroRules(MacroRulesScopeRef<'ra>),
128    /// Names declared in the given module.
129    /// The node ID is for reporting the `PROC_MACRO_DERIVE_RESOLUTION_FALLBACK`
130    /// lint if it should be reported.
131    Module(Module<'ra>, Option<NodeId>),
132    /// Names introduced by `#[macro_use]` attributes on `extern crate` items.
133    MacroUsePrelude,
134    /// Built-in attributes.
135    BuiltinAttrs,
136    /// Extern prelude names introduced by `extern crate` items.
137    ExternPreludeItems,
138    /// Extern prelude names introduced by `--extern` flags.
139    ExternPreludeFlags,
140    /// Tool modules introduced with `#![register_tool]`.
141    ToolPrelude,
142    /// Standard library prelude introduced with an internal `#[prelude_import]` import.
143    StdLibPrelude,
144    /// Built-in types.
145    BuiltinTypes,
146}
147
148/// Names from different contexts may want to visit different subsets of all specific scopes
149/// with different restrictions when looking up the resolution.
150#[derive(Clone, Copy, Debug)]
151enum ScopeSet<'ra> {
152    /// All scopes with the given namespace.
153    All(Namespace),
154    /// A module, then extern prelude (used for mixed 2015-2018 mode in macros).
155    ModuleAndExternPrelude(Namespace, Module<'ra>),
156    /// Just two extern prelude scopes.
157    ExternPrelude,
158    /// All scopes with macro namespace and the given macro kind restriction.
159    Macro(MacroKind),
160    /// All scopes with the given namespace, used for partially performing late resolution.
161    /// The node id enables lints and is used for reporting them.
162    Late(Namespace, Module<'ra>, Option<NodeId>),
163}
164
165/// Everything you need to know about a name's location to resolve it.
166/// Serves as a starting point for the scope visitor.
167/// This struct is currently used only for early resolution (imports and macros),
168/// but not for late resolution yet.
169#[derive(Clone, Copy, Debug)]
170struct ParentScope<'ra> {
171    module: Module<'ra>,
172    expansion: LocalExpnId,
173    macro_rules: MacroRulesScopeRef<'ra>,
174    derives: &'ra [ast::Path],
175}
176
177impl<'ra> ParentScope<'ra> {
178    /// Creates a parent scope with the passed argument used as the module scope component,
179    /// and other scope components set to default empty values.
180    fn module(module: Module<'ra>, arenas: &'ra ResolverArenas<'ra>) -> ParentScope<'ra> {
181        ParentScope {
182            module,
183            expansion: LocalExpnId::ROOT,
184            macro_rules: arenas.alloc_macro_rules_scope(MacroRulesScope::Empty),
185            derives: &[],
186        }
187    }
188}
189
190#[derive(Copy, Debug, Clone)]
191struct InvocationParent {
192    parent_def: LocalDefId,
193    impl_trait_context: ImplTraitContext,
194    in_attr: bool,
195}
196
197impl InvocationParent {
198    const ROOT: Self = Self {
199        parent_def: CRATE_DEF_ID,
200        impl_trait_context: ImplTraitContext::Existential,
201        in_attr: false,
202    };
203}
204
205#[derive(Copy, Debug, Clone)]
206enum ImplTraitContext {
207    Existential,
208    Universal,
209    InBinding,
210}
211
212/// Used for tracking import use types which will be used for redundant import checking.
213///
214/// ### Used::Scope Example
215///
216/// ```rust,compile_fail
217/// #![deny(redundant_imports)]
218/// use std::mem::drop;
219/// fn main() {
220///     let s = Box::new(32);
221///     drop(s);
222/// }
223/// ```
224///
225/// Used::Other is for other situations like module-relative uses.
226#[derive(Clone, Copy, PartialEq, PartialOrd, Debug)]
227enum Used {
228    Scope,
229    Other,
230}
231
232#[derive(Debug)]
233struct BindingError {
234    name: Ident,
235    origin: BTreeSet<Span>,
236    target: BTreeSet<Span>,
237    could_be_path: bool,
238}
239
240#[derive(Debug)]
241enum ResolutionError<'ra> {
242    /// Error E0401: can't use type or const parameters from outer item.
243    GenericParamsFromOuterItem(Res, HasGenericParams, DefKind),
244    /// Error E0403: the name is already used for a type or const parameter in this generic
245    /// parameter list.
246    NameAlreadyUsedInParameterList(Ident, Span),
247    /// Error E0407: method is not a member of trait.
248    MethodNotMemberOfTrait(Ident, String, Option<Symbol>),
249    /// Error E0437: type is not a member of trait.
250    TypeNotMemberOfTrait(Ident, String, Option<Symbol>),
251    /// Error E0438: const is not a member of trait.
252    ConstNotMemberOfTrait(Ident, String, Option<Symbol>),
253    /// Error E0408: variable `{}` is not bound in all patterns.
254    VariableNotBoundInPattern(BindingError, ParentScope<'ra>),
255    /// Error E0409: variable `{}` is bound in inconsistent ways within the same match arm.
256    VariableBoundWithDifferentMode(Ident, Span),
257    /// Error E0415: identifier is bound more than once in this parameter list.
258    IdentifierBoundMoreThanOnceInParameterList(Ident),
259    /// Error E0416: identifier is bound more than once in the same pattern.
260    IdentifierBoundMoreThanOnceInSamePattern(Ident),
261    /// Error E0426: use of undeclared label.
262    UndeclaredLabel { name: Symbol, suggestion: Option<LabelSuggestion> },
263    /// Error E0429: `self` imports are only allowed within a `{ }` list.
264    SelfImportsOnlyAllowedWithin { root: bool, span_with_rename: Span },
265    /// Error E0430: `self` import can only appear once in the list.
266    SelfImportCanOnlyAppearOnceInTheList,
267    /// Error E0431: `self` import can only appear in an import list with a non-empty prefix.
268    SelfImportOnlyInImportListWithNonEmptyPrefix,
269    /// Error E0433: failed to resolve.
270    FailedToResolve {
271        segment: Option<Symbol>,
272        label: String,
273        suggestion: Option<Suggestion>,
274        module: Option<ModuleOrUniformRoot<'ra>>,
275    },
276    /// Error E0434: can't capture dynamic environment in a fn item.
277    CannotCaptureDynamicEnvironmentInFnItem,
278    /// Error E0435: attempt to use a non-constant value in a constant.
279    AttemptToUseNonConstantValueInConstant {
280        ident: Ident,
281        suggestion: &'static str,
282        current: &'static str,
283        type_span: Option<Span>,
284    },
285    /// Error E0530: `X` bindings cannot shadow `Y`s.
286    BindingShadowsSomethingUnacceptable {
287        shadowing_binding: PatternSource,
288        name: Symbol,
289        participle: &'static str,
290        article: &'static str,
291        shadowed_binding: Res,
292        shadowed_binding_span: Span,
293    },
294    /// Error E0128: generic parameters with a default cannot use forward-declared identifiers.
295    ForwardDeclaredGenericParam(Symbol, ForwardGenericParamBanReason),
296    // FIXME(generic_const_parameter_types): This should give custom output specifying it's only
297    // problematic to use *forward declared* parameters when the feature is enabled.
298    /// ERROR E0770: the type of const parameters must not depend on other generic parameters.
299    ParamInTyOfConstParam { name: Symbol },
300    /// generic parameters must not be used inside const evaluations.
301    ///
302    /// This error is only emitted when using `min_const_generics`.
303    ParamInNonTrivialAnonConst { name: Symbol, param_kind: ParamKindInNonTrivialAnonConst },
304    /// generic parameters must not be used inside enum discriminants.
305    ///
306    /// This error is emitted even with `generic_const_exprs`.
307    ParamInEnumDiscriminant { name: Symbol, param_kind: ParamKindInEnumDiscriminant },
308    /// Error E0735: generic parameters with a default cannot use `Self`
309    ForwardDeclaredSelf(ForwardGenericParamBanReason),
310    /// Error E0767: use of unreachable label
311    UnreachableLabel { name: Symbol, definition_span: Span, suggestion: Option<LabelSuggestion> },
312    /// Error E0323, E0324, E0325: mismatch between trait item and impl item.
313    TraitImplMismatch {
314        name: Ident,
315        kind: &'static str,
316        trait_path: String,
317        trait_item_span: Span,
318        code: ErrCode,
319    },
320    /// Error E0201: multiple impl items for the same trait item.
321    TraitImplDuplicate { name: Ident, trait_item_span: Span, old_span: Span },
322    /// Inline asm `sym` operand must refer to a `fn` or `static`.
323    InvalidAsmSym,
324    /// `self` used instead of `Self` in a generic parameter
325    LowercaseSelf,
326    /// A never pattern has a binding.
327    BindingInNeverPattern,
328}
329
330enum VisResolutionError<'a> {
331    Relative2018(Span, &'a ast::Path),
332    AncestorOnly(Span),
333    FailedToResolve(Span, String, Option<Suggestion>),
334    ExpectedFound(Span, String, Res),
335    Indeterminate(Span),
336    ModuleOnly(Span),
337}
338
339/// A minimal representation of a path segment. We use this in resolve because we synthesize 'path
340/// segments' which don't have the rest of an AST or HIR `PathSegment`.
341#[derive(Clone, Copy, Debug)]
342struct Segment {
343    ident: Ident,
344    id: Option<NodeId>,
345    /// Signals whether this `PathSegment` has generic arguments. Used to avoid providing
346    /// nonsensical suggestions.
347    has_generic_args: bool,
348    /// Signals whether this `PathSegment` has lifetime arguments.
349    has_lifetime_args: bool,
350    args_span: Span,
351}
352
353impl Segment {
354    fn from_path(path: &Path) -> Vec<Segment> {
355        path.segments.iter().map(|s| s.into()).collect()
356    }
357
358    fn from_ident(ident: Ident) -> Segment {
359        Segment {
360            ident,
361            id: None,
362            has_generic_args: false,
363            has_lifetime_args: false,
364            args_span: DUMMY_SP,
365        }
366    }
367
368    fn from_ident_and_id(ident: Ident, id: NodeId) -> Segment {
369        Segment {
370            ident,
371            id: Some(id),
372            has_generic_args: false,
373            has_lifetime_args: false,
374            args_span: DUMMY_SP,
375        }
376    }
377
378    fn names_to_string(segments: &[Segment]) -> String {
379        names_to_string(segments.iter().map(|seg| seg.ident.name))
380    }
381}
382
383impl<'a> From<&'a ast::PathSegment> for Segment {
384    fn from(seg: &'a ast::PathSegment) -> Segment {
385        let has_generic_args = seg.args.is_some();
386        let (args_span, has_lifetime_args) = if let Some(args) = seg.args.as_deref() {
387            match args {
388                GenericArgs::AngleBracketed(args) => {
389                    let found_lifetimes = args
390                        .args
391                        .iter()
392                        .any(|arg| matches!(arg, AngleBracketedArg::Arg(GenericArg::Lifetime(_))));
393                    (args.span, found_lifetimes)
394                }
395                GenericArgs::Parenthesized(args) => (args.span, true),
396                GenericArgs::ParenthesizedElided(span) => (*span, true),
397            }
398        } else {
399            (DUMMY_SP, false)
400        };
401        Segment {
402            ident: seg.ident,
403            id: Some(seg.id),
404            has_generic_args,
405            has_lifetime_args,
406            args_span,
407        }
408    }
409}
410
411/// An intermediate resolution result.
412///
413/// This refers to the thing referred by a name. The difference between `Res` and `Item` is that
414/// items are visible in their whole block, while `Res`es only from the place they are defined
415/// forward.
416#[derive(Debug, Copy, Clone)]
417enum LexicalScopeBinding<'ra> {
418    Item(NameBinding<'ra>),
419    Res(Res),
420}
421
422impl<'ra> LexicalScopeBinding<'ra> {
423    fn res(self) -> Res {
424        match self {
425            LexicalScopeBinding::Item(binding) => binding.res(),
426            LexicalScopeBinding::Res(res) => res,
427        }
428    }
429}
430
431#[derive(Copy, Clone, PartialEq, Debug)]
432enum ModuleOrUniformRoot<'ra> {
433    /// Regular module.
434    Module(Module<'ra>),
435
436    /// Virtual module that denotes resolution in a module with fallback to extern prelude.
437    /// Used for paths starting with `::` coming from 2015 edition macros
438    /// used in 2018+ edition crates.
439    ModuleAndExternPrelude(Module<'ra>),
440
441    /// Virtual module that denotes resolution in extern prelude.
442    /// Used for paths starting with `::` on 2018 edition.
443    ExternPrelude,
444
445    /// Virtual module that denotes resolution in current scope.
446    /// Used only for resolving single-segment imports. The reason it exists is that import paths
447    /// are always split into two parts, the first of which should be some kind of module.
448    CurrentScope,
449}
450
451#[derive(Debug)]
452enum PathResult<'ra> {
453    Module(ModuleOrUniformRoot<'ra>),
454    NonModule(PartialRes),
455    Indeterminate,
456    Failed {
457        span: Span,
458        label: String,
459        suggestion: Option<Suggestion>,
460        is_error_from_last_segment: bool,
461        /// The final module being resolved, for instance:
462        ///
463        /// ```compile_fail
464        /// mod a {
465        ///     mod b {
466        ///         mod c {}
467        ///     }
468        /// }
469        ///
470        /// use a::not_exist::c;
471        /// ```
472        ///
473        /// In this case, `module` will point to `a`.
474        module: Option<ModuleOrUniformRoot<'ra>>,
475        /// The segment name of target
476        segment_name: Symbol,
477        error_implied_by_parse_error: bool,
478    },
479}
480
481impl<'ra> PathResult<'ra> {
482    fn failed(
483        ident: Ident,
484        is_error_from_last_segment: bool,
485        finalize: bool,
486        error_implied_by_parse_error: bool,
487        module: Option<ModuleOrUniformRoot<'ra>>,
488        label_and_suggestion: impl FnOnce() -> (String, Option<Suggestion>),
489    ) -> PathResult<'ra> {
490        let (label, suggestion) =
491            if finalize { label_and_suggestion() } else { (String::new(), None) };
492        PathResult::Failed {
493            span: ident.span,
494            segment_name: ident.name,
495            label,
496            suggestion,
497            is_error_from_last_segment,
498            module,
499            error_implied_by_parse_error,
500        }
501    }
502}
503
504#[derive(Debug)]
505enum ModuleKind {
506    /// An anonymous module; e.g., just a block.
507    ///
508    /// ```
509    /// fn main() {
510    ///     fn f() {} // (1)
511    ///     { // This is an anonymous module
512    ///         f(); // This resolves to (2) as we are inside the block.
513    ///         fn f() {} // (2)
514    ///     }
515    ///     f(); // Resolves to (1)
516    /// }
517    /// ```
518    Block,
519    /// Any module with a name.
520    ///
521    /// This could be:
522    ///
523    /// * A normal module – either `mod from_file;` or `mod from_block { }` –
524    ///   or the crate root (which is conceptually a top-level module).
525    ///   The crate root will have `None` for the symbol.
526    /// * A trait or an enum (it implicitly contains associated types, methods and variant
527    ///   constructors).
528    Def(DefKind, DefId, Option<Symbol>),
529}
530
531impl ModuleKind {
532    /// Get name of the module.
533    fn name(&self) -> Option<Symbol> {
534        match *self {
535            ModuleKind::Block => None,
536            ModuleKind::Def(.., name) => name,
537        }
538    }
539}
540
541/// A key that identifies a binding in a given `Module`.
542///
543/// Multiple bindings in the same module can have the same key (in a valid
544/// program) if all but one of them come from glob imports.
545#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
546struct BindingKey {
547    /// The identifier for the binding, always the `normalize_to_macros_2_0` version of the
548    /// identifier.
549    ident: Macros20NormalizedIdent,
550    ns: Namespace,
551    /// When we add an underscore binding (with ident `_`) to some module, this field has
552    /// a non-zero value that uniquely identifies this binding in that module.
553    /// For non-underscore bindings this field is zero.
554    /// When a key is constructed for name lookup (as opposed to name definition), this field is
555    /// also zero, even for underscore names, so for underscores the lookup will never succeed.
556    disambiguator: u32,
557}
558
559impl BindingKey {
560    fn new(ident: Ident, ns: Namespace) -> Self {
561        BindingKey { ident: Macros20NormalizedIdent::new(ident), ns, disambiguator: 0 }
562    }
563
564    fn new_disambiguated(
565        ident: Ident,
566        ns: Namespace,
567        disambiguator: impl FnOnce() -> u32,
568    ) -> BindingKey {
569        let disambiguator = if ident.name == kw::Underscore { disambiguator() } else { 0 };
570        BindingKey { ident: Macros20NormalizedIdent::new(ident), ns, disambiguator }
571    }
572}
573
574type Resolutions<'ra> = RefCell<FxIndexMap<BindingKey, &'ra RefCell<NameResolution<'ra>>>>;
575
576/// One node in the tree of modules.
577///
578/// Note that a "module" in resolve is broader than a `mod` that you declare in Rust code. It may be one of these:
579///
580/// * `mod`
581/// * crate root (aka, top-level anonymous module)
582/// * `enum`
583/// * `trait`
584/// * curly-braced block with statements
585///
586/// You can use [`ModuleData::kind`] to determine the kind of module this is.
587struct ModuleData<'ra> {
588    /// The direct parent module (it may not be a `mod`, however).
589    parent: Option<Module<'ra>>,
590    /// What kind of module this is, because this may not be a `mod`.
591    kind: ModuleKind,
592
593    /// Mapping between names and their (possibly in-progress) resolutions in this module.
594    /// Resolutions in modules from other crates are not populated until accessed.
595    lazy_resolutions: Resolutions<'ra>,
596    /// True if this is a module from other crate that needs to be populated on access.
597    populate_on_access: Cell<bool>,
598    /// Used to disambiguate underscore items (`const _: T = ...`) in the module.
599    underscore_disambiguator: Cell<u32>,
600
601    /// Macro invocations that can expand into items in this module.
602    unexpanded_invocations: RefCell<FxHashSet<LocalExpnId>>,
603
604    /// Whether `#[no_implicit_prelude]` is active.
605    no_implicit_prelude: bool,
606
607    glob_importers: RefCell<Vec<Import<'ra>>>,
608    globs: RefCell<Vec<Import<'ra>>>,
609
610    /// Used to memoize the traits in this module for faster searches through all traits in scope.
611    traits:
612        RefCell<Option<Box<[(Macros20NormalizedIdent, NameBinding<'ra>, Option<Module<'ra>>)]>>>,
613
614    /// Span of the module itself. Used for error reporting.
615    span: Span,
616
617    expansion: ExpnId,
618
619    /// Binding for implicitly declared names that come with a module,
620    /// like `self` (not yet used), or `crate`/`$crate` (for root modules).
621    self_binding: Option<NameBinding<'ra>>,
622}
623
624/// All modules are unique and allocated on a same arena,
625/// so we can use referential equality to compare them.
626#[derive(Clone, Copy, PartialEq, Eq, Hash)]
627#[rustc_pass_by_value]
628struct Module<'ra>(Interned<'ra, ModuleData<'ra>>);
629
630// Allows us to use Interned without actually enforcing (via Hash/PartialEq/...) uniqueness of the
631// contained data.
632// FIXME: We may wish to actually have at least debug-level assertions that Interned's guarantees
633// are upheld.
634impl std::hash::Hash for ModuleData<'_> {
635    fn hash<H>(&self, _: &mut H)
636    where
637        H: std::hash::Hasher,
638    {
639        unreachable!()
640    }
641}
642
643impl<'ra> ModuleData<'ra> {
644    fn new(
645        parent: Option<Module<'ra>>,
646        kind: ModuleKind,
647        expansion: ExpnId,
648        span: Span,
649        no_implicit_prelude: bool,
650        self_binding: Option<NameBinding<'ra>>,
651    ) -> Self {
652        let is_foreign = match kind {
653            ModuleKind::Def(_, def_id, _) => !def_id.is_local(),
654            ModuleKind::Block => false,
655        };
656        ModuleData {
657            parent,
658            kind,
659            lazy_resolutions: Default::default(),
660            populate_on_access: Cell::new(is_foreign),
661            underscore_disambiguator: Cell::new(0),
662            unexpanded_invocations: Default::default(),
663            no_implicit_prelude,
664            glob_importers: RefCell::new(Vec::new()),
665            globs: RefCell::new(Vec::new()),
666            traits: RefCell::new(None),
667            span,
668            expansion,
669            self_binding,
670        }
671    }
672}
673
674impl<'ra> Module<'ra> {
675    fn for_each_child<'tcx, R: AsRef<Resolver<'ra, 'tcx>>>(
676        self,
677        resolver: &R,
678        mut f: impl FnMut(&R, Macros20NormalizedIdent, Namespace, NameBinding<'ra>),
679    ) {
680        for (key, name_resolution) in resolver.as_ref().resolutions(self).borrow().iter() {
681            if let Some(binding) = name_resolution.borrow().best_binding() {
682                f(resolver, key.ident, key.ns, binding);
683            }
684        }
685    }
686
687    fn for_each_child_mut<'tcx, R: AsMut<Resolver<'ra, 'tcx>>>(
688        self,
689        resolver: &mut R,
690        mut f: impl FnMut(&mut R, Macros20NormalizedIdent, Namespace, NameBinding<'ra>),
691    ) {
692        for (key, name_resolution) in resolver.as_mut().resolutions(self).borrow().iter() {
693            if let Some(binding) = name_resolution.borrow().best_binding() {
694                f(resolver, key.ident, key.ns, binding);
695            }
696        }
697    }
698
699    /// This modifies `self` in place. The traits will be stored in `self.traits`.
700    fn ensure_traits<'tcx>(self, resolver: &impl AsRef<Resolver<'ra, 'tcx>>) {
701        let mut traits = self.traits.borrow_mut();
702        if traits.is_none() {
703            let mut collected_traits = Vec::new();
704            self.for_each_child(resolver, |r, name, ns, binding| {
705                if ns != TypeNS {
706                    return;
707                }
708                if let Res::Def(DefKind::Trait | DefKind::TraitAlias, def_id) = binding.res() {
709                    collected_traits.push((name, binding, r.as_ref().get_module(def_id)))
710                }
711            });
712            *traits = Some(collected_traits.into_boxed_slice());
713        }
714    }
715
716    fn res(self) -> Option<Res> {
717        match self.kind {
718            ModuleKind::Def(kind, def_id, _) => Some(Res::Def(kind, def_id)),
719            _ => None,
720        }
721    }
722
723    fn def_id(self) -> DefId {
724        self.opt_def_id().expect("`ModuleData::def_id` is called on a block module")
725    }
726
727    fn opt_def_id(self) -> Option<DefId> {
728        match self.kind {
729            ModuleKind::Def(_, def_id, _) => Some(def_id),
730            _ => None,
731        }
732    }
733
734    // `self` resolves to the first module ancestor that `is_normal`.
735    fn is_normal(self) -> bool {
736        matches!(self.kind, ModuleKind::Def(DefKind::Mod, _, _))
737    }
738
739    fn is_trait(self) -> bool {
740        matches!(self.kind, ModuleKind::Def(DefKind::Trait, _, _))
741    }
742
743    fn nearest_item_scope(self) -> Module<'ra> {
744        match self.kind {
745            ModuleKind::Def(DefKind::Enum | DefKind::Trait, ..) => {
746                self.parent.expect("enum or trait module without a parent")
747            }
748            _ => self,
749        }
750    }
751
752    /// The [`DefId`] of the nearest `mod` item ancestor (which may be this module).
753    /// This may be the crate root.
754    fn nearest_parent_mod(self) -> DefId {
755        match self.kind {
756            ModuleKind::Def(DefKind::Mod, def_id, _) => def_id,
757            _ => self.parent.expect("non-root module without parent").nearest_parent_mod(),
758        }
759    }
760
761    fn is_ancestor_of(self, mut other: Self) -> bool {
762        while self != other {
763            if let Some(parent) = other.parent {
764                other = parent;
765            } else {
766                return false;
767            }
768        }
769        true
770    }
771}
772
773impl<'ra> std::ops::Deref for Module<'ra> {
774    type Target = ModuleData<'ra>;
775
776    fn deref(&self) -> &Self::Target {
777        &self.0
778    }
779}
780
781impl<'ra> fmt::Debug for Module<'ra> {
782    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
783        write!(f, "{:?}", self.res())
784    }
785}
786
787/// Records a possibly-private value, type, or module definition.
788#[derive(Clone, Copy, Debug)]
789struct NameBindingData<'ra> {
790    kind: NameBindingKind<'ra>,
791    ambiguity: Option<(NameBinding<'ra>, AmbiguityKind)>,
792    /// Produce a warning instead of an error when reporting ambiguities inside this binding.
793    /// May apply to indirect ambiguities under imports, so `ambiguity.is_some()` is not required.
794    warn_ambiguity: bool,
795    expansion: LocalExpnId,
796    span: Span,
797    vis: Visibility<DefId>,
798}
799
800/// All name bindings are unique and allocated on a same arena,
801/// so we can use referential equality to compare them.
802type NameBinding<'ra> = Interned<'ra, NameBindingData<'ra>>;
803
804// Allows us to use Interned without actually enforcing (via Hash/PartialEq/...) uniqueness of the
805// contained data.
806// FIXME: We may wish to actually have at least debug-level assertions that Interned's guarantees
807// are upheld.
808impl std::hash::Hash for NameBindingData<'_> {
809    fn hash<H>(&self, _: &mut H)
810    where
811        H: std::hash::Hasher,
812    {
813        unreachable!()
814    }
815}
816
817#[derive(Clone, Copy, Debug)]
818enum NameBindingKind<'ra> {
819    Res(Res),
820    Import { binding: NameBinding<'ra>, import: Import<'ra> },
821}
822
823impl<'ra> NameBindingKind<'ra> {
824    /// Is this a name binding of an import?
825    fn is_import(&self) -> bool {
826        matches!(*self, NameBindingKind::Import { .. })
827    }
828}
829
830#[derive(Debug)]
831struct PrivacyError<'ra> {
832    ident: Ident,
833    binding: NameBinding<'ra>,
834    dedup_span: Span,
835    outermost_res: Option<(Res, Ident)>,
836    parent_scope: ParentScope<'ra>,
837    /// Is the format `use a::{b,c}`?
838    single_nested: bool,
839    source: Option<ast::Expr>,
840}
841
842#[derive(Debug)]
843struct UseError<'a> {
844    err: Diag<'a>,
845    /// Candidates which user could `use` to access the missing type.
846    candidates: Vec<ImportSuggestion>,
847    /// The `DefId` of the module to place the use-statements in.
848    def_id: DefId,
849    /// Whether the diagnostic should say "instead" (as in `consider importing ... instead`).
850    instead: bool,
851    /// Extra free-form suggestion.
852    suggestion: Option<(Span, &'static str, String, Applicability)>,
853    /// Path `Segment`s at the place of use that failed. Used for accurate suggestion after telling
854    /// the user to import the item directly.
855    path: Vec<Segment>,
856    /// Whether the expected source is a call
857    is_call: bool,
858}
859
860#[derive(Clone, Copy, PartialEq, Debug)]
861enum AmbiguityKind {
862    BuiltinAttr,
863    DeriveHelper,
864    MacroRulesVsModularized,
865    GlobVsOuter,
866    GlobVsGlob,
867    GlobVsExpanded,
868    MoreExpandedVsOuter,
869}
870
871impl AmbiguityKind {
872    fn descr(self) -> &'static str {
873        match self {
874            AmbiguityKind::BuiltinAttr => "a name conflict with a builtin attribute",
875            AmbiguityKind::DeriveHelper => "a name conflict with a derive helper attribute",
876            AmbiguityKind::MacroRulesVsModularized => {
877                "a conflict between a `macro_rules` name and a non-`macro_rules` name from another module"
878            }
879            AmbiguityKind::GlobVsOuter => {
880                "a conflict between a name from a glob import and an outer scope during import or macro resolution"
881            }
882            AmbiguityKind::GlobVsGlob => "multiple glob imports of a name in the same module",
883            AmbiguityKind::GlobVsExpanded => {
884                "a conflict between a name from a glob import and a macro-expanded name in the same module during import or macro resolution"
885            }
886            AmbiguityKind::MoreExpandedVsOuter => {
887                "a conflict between a macro-expanded name and a less macro-expanded name from outer scope during import or macro resolution"
888            }
889        }
890    }
891}
892
893/// Miscellaneous bits of metadata for better ambiguity error reporting.
894#[derive(Clone, Copy, PartialEq)]
895enum AmbiguityErrorMisc {
896    SuggestCrate,
897    SuggestSelf,
898    FromPrelude,
899    None,
900}
901
902struct AmbiguityError<'ra> {
903    kind: AmbiguityKind,
904    ident: Ident,
905    b1: NameBinding<'ra>,
906    b2: NameBinding<'ra>,
907    misc1: AmbiguityErrorMisc,
908    misc2: AmbiguityErrorMisc,
909    warning: bool,
910}
911
912impl<'ra> NameBindingData<'ra> {
913    fn res(&self) -> Res {
914        match self.kind {
915            NameBindingKind::Res(res) => res,
916            NameBindingKind::Import { binding, .. } => binding.res(),
917        }
918    }
919
920    fn import_source(&self) -> NameBinding<'ra> {
921        match self.kind {
922            NameBindingKind::Import { binding, .. } => binding,
923            _ => unreachable!(),
924        }
925    }
926
927    fn is_ambiguity_recursive(&self) -> bool {
928        self.ambiguity.is_some()
929            || match self.kind {
930                NameBindingKind::Import { binding, .. } => binding.is_ambiguity_recursive(),
931                _ => false,
932            }
933    }
934
935    fn warn_ambiguity_recursive(&self) -> bool {
936        self.warn_ambiguity
937            || match self.kind {
938                NameBindingKind::Import { binding, .. } => binding.warn_ambiguity_recursive(),
939                _ => false,
940            }
941    }
942
943    fn is_possibly_imported_variant(&self) -> bool {
944        match self.kind {
945            NameBindingKind::Import { binding, .. } => binding.is_possibly_imported_variant(),
946            NameBindingKind::Res(Res::Def(
947                DefKind::Variant | DefKind::Ctor(CtorOf::Variant, ..),
948                _,
949            )) => true,
950            NameBindingKind::Res(..) => false,
951        }
952    }
953
954    fn is_extern_crate(&self) -> bool {
955        match self.kind {
956            NameBindingKind::Import { import, .. } => {
957                matches!(import.kind, ImportKind::ExternCrate { .. })
958            }
959            NameBindingKind::Res(Res::Def(_, def_id)) => def_id.is_crate_root(),
960            _ => false,
961        }
962    }
963
964    fn is_import(&self) -> bool {
965        matches!(self.kind, NameBindingKind::Import { .. })
966    }
967
968    /// The binding introduced by `#[macro_export] macro_rules` is a public import, but it might
969    /// not be perceived as such by users, so treat it as a non-import in some diagnostics.
970    fn is_import_user_facing(&self) -> bool {
971        matches!(self.kind, NameBindingKind::Import { import, .. }
972            if !matches!(import.kind, ImportKind::MacroExport))
973    }
974
975    fn is_glob_import(&self) -> bool {
976        match self.kind {
977            NameBindingKind::Import { import, .. } => import.is_glob(),
978            _ => false,
979        }
980    }
981
982    fn is_assoc_item(&self) -> bool {
983        matches!(self.res(), Res::Def(DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy, _))
984    }
985
986    fn macro_kinds(&self) -> Option<MacroKinds> {
987        self.res().macro_kinds()
988    }
989
990    // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
991    // at some expansion round `max(invoc, binding)` when they both emerged from macros.
992    // Then this function returns `true` if `self` may emerge from a macro *after* that
993    // in some later round and screw up our previously found resolution.
994    // See more detailed explanation in
995    // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
996    fn may_appear_after(
997        &self,
998        invoc_parent_expansion: LocalExpnId,
999        binding: NameBinding<'_>,
1000    ) -> bool {
1001        // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1002        // Expansions are partially ordered, so "may appear after" is an inversion of
1003        // "certainly appears before or simultaneously" and includes unordered cases.
1004        let self_parent_expansion = self.expansion;
1005        let other_parent_expansion = binding.expansion;
1006        let certainly_before_other_or_simultaneously =
1007            other_parent_expansion.is_descendant_of(self_parent_expansion);
1008        let certainly_before_invoc_or_simultaneously =
1009            invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1010        !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1011    }
1012
1013    // Its purpose is to postpone the determination of a single binding because
1014    // we can't predict whether it will be overwritten by recently expanded macros.
1015    // FIXME: How can we integrate it with the `update_resolution`?
1016    fn determined(&self) -> bool {
1017        match &self.kind {
1018            NameBindingKind::Import { binding, import, .. } if import.is_glob() => {
1019                import.parent_scope.module.unexpanded_invocations.borrow().is_empty()
1020                    && binding.determined()
1021            }
1022            _ => true,
1023        }
1024    }
1025}
1026
1027#[derive(Default, Clone)]
1028struct ExternPreludeEntry<'ra> {
1029    /// Binding from an `extern crate` item.
1030    item_binding: Option<NameBinding<'ra>>,
1031    /// Binding from an `--extern` flag, lazily populated on first use.
1032    flag_binding: Cell<Option<NameBinding<'ra>>>,
1033    /// There was no `--extern` flag introducing this name,
1034    /// `flag_binding` doesn't need to be populated.
1035    only_item: bool,
1036    /// `item_binding` is non-redundant, happens either when `only_item` is true,
1037    /// or when `extern crate` introducing `item_binding` used renaming.
1038    introduced_by_item: bool,
1039}
1040
1041struct DeriveData {
1042    resolutions: Vec<DeriveResolution>,
1043    helper_attrs: Vec<(usize, Ident)>,
1044    has_derive_copy: bool,
1045}
1046
1047struct MacroData {
1048    ext: Arc<SyntaxExtension>,
1049    nrules: usize,
1050    macro_rules: bool,
1051}
1052
1053impl MacroData {
1054    fn new(ext: Arc<SyntaxExtension>) -> MacroData {
1055        MacroData { ext, nrules: 0, macro_rules: false }
1056    }
1057}
1058
1059pub struct ResolverOutputs {
1060    pub global_ctxt: ResolverGlobalCtxt,
1061    pub ast_lowering: ResolverAstLowering,
1062}
1063
1064/// The main resolver class.
1065///
1066/// This is the visitor that walks the whole crate.
1067pub struct Resolver<'ra, 'tcx> {
1068    tcx: TyCtxt<'tcx>,
1069
1070    /// Item with a given `LocalDefId` was defined during macro expansion with ID `ExpnId`.
1071    expn_that_defined: UnordMap<LocalDefId, ExpnId>,
1072
1073    graph_root: Module<'ra>,
1074
1075    /// Assert that we are in speculative resolution mode.
1076    assert_speculative: bool,
1077
1078    prelude: Option<Module<'ra>>,
1079    extern_prelude: FxIndexMap<Macros20NormalizedIdent, ExternPreludeEntry<'ra>>,
1080
1081    /// N.B., this is used only for better diagnostics, not name resolution itself.
1082    field_names: LocalDefIdMap<Vec<Ident>>,
1083    field_defaults: LocalDefIdMap<Vec<Symbol>>,
1084
1085    /// Span of the privacy modifier in fields of an item `DefId` accessible with dot syntax.
1086    /// Used for hints during error reporting.
1087    field_visibility_spans: FxHashMap<DefId, Vec<Span>>,
1088
1089    /// All imports known to succeed or fail.
1090    determined_imports: Vec<Import<'ra>>,
1091
1092    /// All non-determined imports.
1093    indeterminate_imports: Vec<Import<'ra>>,
1094
1095    // Spans for local variables found during pattern resolution.
1096    // Used for suggestions during error reporting.
1097    pat_span_map: NodeMap<Span>,
1098
1099    /// Resolutions for nodes that have a single resolution.
1100    partial_res_map: NodeMap<PartialRes>,
1101    /// Resolutions for import nodes, which have multiple resolutions in different namespaces.
1102    import_res_map: NodeMap<PerNS<Option<Res>>>,
1103    /// An import will be inserted into this map if it has been used.
1104    import_use_map: FxHashMap<Import<'ra>, Used>,
1105    /// Resolutions for labels (node IDs of their corresponding blocks or loops).
1106    label_res_map: NodeMap<NodeId>,
1107    /// Resolutions for lifetimes.
1108    lifetimes_res_map: NodeMap<LifetimeRes>,
1109    /// Lifetime parameters that lowering will have to introduce.
1110    extra_lifetime_params_map: NodeMap<Vec<(Ident, NodeId, LifetimeRes)>>,
1111
1112    /// `CrateNum` resolutions of `extern crate` items.
1113    extern_crate_map: UnordMap<LocalDefId, CrateNum>,
1114    module_children: LocalDefIdMap<Vec<ModChild>>,
1115    trait_map: NodeMap<Vec<TraitCandidate>>,
1116
1117    /// A map from nodes to anonymous modules.
1118    /// Anonymous modules are pseudo-modules that are implicitly created around items
1119    /// contained within blocks.
1120    ///
1121    /// For example, if we have this:
1122    ///
1123    ///  fn f() {
1124    ///      fn g() {
1125    ///          ...
1126    ///      }
1127    ///  }
1128    ///
1129    /// There will be an anonymous module created around `g` with the ID of the
1130    /// entry block for `f`.
1131    block_map: NodeMap<Module<'ra>>,
1132    /// A fake module that contains no definition and no prelude. Used so that
1133    /// some AST passes can generate identifiers that only resolve to local or
1134    /// lang items.
1135    empty_module: Module<'ra>,
1136    /// Eagerly populated map of all local non-block modules.
1137    local_module_map: FxIndexMap<LocalDefId, Module<'ra>>,
1138    /// Lazily populated cache of modules loaded from external crates.
1139    extern_module_map: RefCell<FxIndexMap<DefId, Module<'ra>>>,
1140    binding_parent_modules: FxHashMap<NameBinding<'ra>, Module<'ra>>,
1141
1142    /// Maps glob imports to the names of items actually imported.
1143    glob_map: FxIndexMap<LocalDefId, FxIndexSet<Symbol>>,
1144    glob_error: Option<ErrorGuaranteed>,
1145    visibilities_for_hashing: Vec<(LocalDefId, Visibility)>,
1146    used_imports: FxHashSet<NodeId>,
1147    maybe_unused_trait_imports: FxIndexSet<LocalDefId>,
1148
1149    /// Privacy errors are delayed until the end in order to deduplicate them.
1150    privacy_errors: Vec<PrivacyError<'ra>>,
1151    /// Ambiguity errors are delayed for deduplication.
1152    ambiguity_errors: Vec<AmbiguityError<'ra>>,
1153    /// `use` injections are delayed for better placement and deduplication.
1154    use_injections: Vec<UseError<'tcx>>,
1155    /// Crate-local macro expanded `macro_export` referred to by a module-relative path.
1156    macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>,
1157
1158    arenas: &'ra ResolverArenas<'ra>,
1159    dummy_binding: NameBinding<'ra>,
1160    builtin_types_bindings: FxHashMap<Symbol, NameBinding<'ra>>,
1161    builtin_attrs_bindings: FxHashMap<Symbol, NameBinding<'ra>>,
1162    registered_tool_bindings: FxHashMap<Ident, NameBinding<'ra>>,
1163    macro_names: FxHashSet<Ident>,
1164    builtin_macros: FxHashMap<Symbol, SyntaxExtensionKind>,
1165    registered_tools: &'tcx RegisteredTools,
1166    macro_use_prelude: FxIndexMap<Symbol, NameBinding<'ra>>,
1167    /// Eagerly populated map of all local macro definitions.
1168    local_macro_map: FxHashMap<LocalDefId, &'ra MacroData>,
1169    /// Lazily populated cache of macro definitions loaded from external crates.
1170    extern_macro_map: RefCell<FxHashMap<DefId, &'ra MacroData>>,
1171    dummy_ext_bang: Arc<SyntaxExtension>,
1172    dummy_ext_derive: Arc<SyntaxExtension>,
1173    non_macro_attr: &'ra MacroData,
1174    local_macro_def_scopes: FxHashMap<LocalDefId, Module<'ra>>,
1175    ast_transform_scopes: FxHashMap<LocalExpnId, Module<'ra>>,
1176    unused_macros: FxIndexMap<LocalDefId, (NodeId, Ident)>,
1177    /// A map from the macro to all its potentially unused arms.
1178    unused_macro_rules: FxIndexMap<NodeId, DenseBitSet<usize>>,
1179    proc_macro_stubs: FxHashSet<LocalDefId>,
1180    /// Traces collected during macro resolution and validated when it's complete.
1181    // FIXME: Remove interior mutability when speculative resolution produces these as outputs.
1182    single_segment_macro_resolutions:
1183        RefCell<Vec<(Ident, MacroKind, ParentScope<'ra>, Option<NameBinding<'ra>>, Option<Span>)>>,
1184    multi_segment_macro_resolutions:
1185        RefCell<Vec<(Vec<Segment>, Span, MacroKind, ParentScope<'ra>, Option<Res>, Namespace)>>,
1186    builtin_attrs: Vec<(Ident, ParentScope<'ra>)>,
1187    /// `derive(Copy)` marks items they are applied to so they are treated specially later.
1188    /// Derive macros cannot modify the item themselves and have to store the markers in the global
1189    /// context, so they attach the markers to derive container IDs using this resolver table.
1190    containers_deriving_copy: FxHashSet<LocalExpnId>,
1191    /// Parent scopes in which the macros were invoked.
1192    /// FIXME: `derives` are missing in these parent scopes and need to be taken from elsewhere.
1193    invocation_parent_scopes: FxHashMap<LocalExpnId, ParentScope<'ra>>,
1194    /// `macro_rules` scopes *produced* by expanding the macro invocations,
1195    /// include all the `macro_rules` items and other invocations generated by them.
1196    output_macro_rules_scopes: FxHashMap<LocalExpnId, MacroRulesScopeRef<'ra>>,
1197    /// `macro_rules` scopes produced by `macro_rules` item definitions.
1198    macro_rules_scopes: FxHashMap<LocalDefId, MacroRulesScopeRef<'ra>>,
1199    /// Helper attributes that are in scope for the given expansion.
1200    helper_attrs: FxHashMap<LocalExpnId, Vec<(Ident, NameBinding<'ra>)>>,
1201    /// Ready or in-progress results of resolving paths inside the `#[derive(...)]` attribute
1202    /// with the given `ExpnId`.
1203    derive_data: FxHashMap<LocalExpnId, DeriveData>,
1204
1205    /// Avoid duplicated errors for "name already defined".
1206    name_already_seen: FxHashMap<Symbol, Span>,
1207
1208    potentially_unused_imports: Vec<Import<'ra>>,
1209
1210    potentially_unnecessary_qualifications: Vec<UnnecessaryQualification<'ra>>,
1211
1212    /// Table for mapping struct IDs into struct constructor IDs,
1213    /// it's not used during normal resolution, only for better error reporting.
1214    /// Also includes of list of each fields visibility
1215    struct_constructors: LocalDefIdMap<(Res, Visibility<DefId>, Vec<Visibility<DefId>>)>,
1216
1217    lint_buffer: LintBuffer,
1218
1219    next_node_id: NodeId,
1220
1221    node_id_to_def_id: NodeMap<Feed<'tcx, LocalDefId>>,
1222
1223    disambiguator: DisambiguatorState,
1224
1225    /// Indices of unnamed struct or variant fields with unresolved attributes.
1226    placeholder_field_indices: FxHashMap<NodeId, usize>,
1227    /// When collecting definitions from an AST fragment produced by a macro invocation `ExpnId`
1228    /// we know what parent node that fragment should be attached to thanks to this table,
1229    /// and how the `impl Trait` fragments were introduced.
1230    invocation_parents: FxHashMap<LocalExpnId, InvocationParent>,
1231
1232    legacy_const_generic_args: FxHashMap<DefId, Option<Vec<usize>>>,
1233    /// Amount of lifetime parameters for each item in the crate.
1234    item_generics_num_lifetimes: FxHashMap<LocalDefId, usize>,
1235    delegation_fn_sigs: LocalDefIdMap<DelegationFnSig>,
1236
1237    main_def: Option<MainDefinition>,
1238    trait_impls: FxIndexMap<DefId, Vec<LocalDefId>>,
1239    /// A list of proc macro LocalDefIds, written out in the order in which
1240    /// they are declared in the static array generated by proc_macro_harness.
1241    proc_macros: Vec<LocalDefId>,
1242    confused_type_with_std_module: FxIndexMap<Span, Span>,
1243    /// Whether lifetime elision was successful.
1244    lifetime_elision_allowed: FxHashSet<NodeId>,
1245
1246    /// Names of items that were stripped out via cfg with their corresponding cfg meta item.
1247    stripped_cfg_items: Vec<StrippedCfgItem<NodeId>>,
1248
1249    effective_visibilities: EffectiveVisibilities,
1250    doc_link_resolutions: FxIndexMap<LocalDefId, DocLinkResMap>,
1251    doc_link_traits_in_scope: FxIndexMap<LocalDefId, Vec<DefId>>,
1252    all_macro_rules: UnordSet<Symbol>,
1253
1254    /// Invocation ids of all glob delegations.
1255    glob_delegation_invoc_ids: FxHashSet<LocalExpnId>,
1256    /// Analogue of module `unexpanded_invocations` but in trait impls, excluding glob delegations.
1257    /// Needed because glob delegations wait for all other neighboring macros to expand.
1258    impl_unexpanded_invocations: FxHashMap<LocalDefId, FxHashSet<LocalExpnId>>,
1259    /// Simplified analogue of module `resolutions` but in trait impls, excluding glob delegations.
1260    /// Needed because glob delegations exclude explicitly defined names.
1261    impl_binding_keys: FxHashMap<LocalDefId, FxHashSet<BindingKey>>,
1262
1263    /// This is the `Span` where an `extern crate foo;` suggestion would be inserted, if `foo`
1264    /// could be a crate that wasn't imported. For diagnostics use only.
1265    current_crate_outer_attr_insert_span: Span,
1266
1267    mods_with_parse_errors: FxHashSet<DefId>,
1268
1269    // Stores pre-expansion and pre-placeholder-fragment-insertion names for `impl Trait` types
1270    // that were encountered during resolution. These names are used to generate item names
1271    // for APITs, so we don't want to leak details of resolution into these names.
1272    impl_trait_names: FxHashMap<NodeId, Symbol>,
1273}
1274
1275/// This provides memory for the rest of the crate. The `'ra` lifetime that is
1276/// used by many types in this crate is an abbreviation of `ResolverArenas`.
1277#[derive(Default)]
1278pub struct ResolverArenas<'ra> {
1279    modules: TypedArena<ModuleData<'ra>>,
1280    local_modules: RefCell<Vec<Module<'ra>>>,
1281    imports: TypedArena<ImportData<'ra>>,
1282    name_resolutions: TypedArena<RefCell<NameResolution<'ra>>>,
1283    ast_paths: TypedArena<ast::Path>,
1284    macros: TypedArena<MacroData>,
1285    dropless: DroplessArena,
1286}
1287
1288impl<'ra> ResolverArenas<'ra> {
1289    fn new_res_binding(
1290        &'ra self,
1291        res: Res,
1292        vis: Visibility<DefId>,
1293        span: Span,
1294        expansion: LocalExpnId,
1295    ) -> NameBinding<'ra> {
1296        self.alloc_name_binding(NameBindingData {
1297            kind: NameBindingKind::Res(res),
1298            ambiguity: None,
1299            warn_ambiguity: false,
1300            vis,
1301            span,
1302            expansion,
1303        })
1304    }
1305
1306    fn new_pub_res_binding(
1307        &'ra self,
1308        res: Res,
1309        span: Span,
1310        expn_id: LocalExpnId,
1311    ) -> NameBinding<'ra> {
1312        self.new_res_binding(res, Visibility::Public, span, expn_id)
1313    }
1314
1315    fn new_module(
1316        &'ra self,
1317        parent: Option<Module<'ra>>,
1318        kind: ModuleKind,
1319        expn_id: ExpnId,
1320        span: Span,
1321        no_implicit_prelude: bool,
1322    ) -> Module<'ra> {
1323        let (def_id, self_binding) = match kind {
1324            ModuleKind::Def(def_kind, def_id, _) => (
1325                Some(def_id),
1326                Some(self.new_pub_res_binding(Res::Def(def_kind, def_id), span, LocalExpnId::ROOT)),
1327            ),
1328            ModuleKind::Block => (None, None),
1329        };
1330        let module = Module(Interned::new_unchecked(self.modules.alloc(ModuleData::new(
1331            parent,
1332            kind,
1333            expn_id,
1334            span,
1335            no_implicit_prelude,
1336            self_binding,
1337        ))));
1338        if def_id.is_none_or(|def_id| def_id.is_local()) {
1339            self.local_modules.borrow_mut().push(module);
1340        }
1341        module
1342    }
1343    fn local_modules(&'ra self) -> std::cell::Ref<'ra, Vec<Module<'ra>>> {
1344        self.local_modules.borrow()
1345    }
1346    fn alloc_name_binding(&'ra self, name_binding: NameBindingData<'ra>) -> NameBinding<'ra> {
1347        Interned::new_unchecked(self.dropless.alloc(name_binding))
1348    }
1349    fn alloc_import(&'ra self, import: ImportData<'ra>) -> Import<'ra> {
1350        Interned::new_unchecked(self.imports.alloc(import))
1351    }
1352    fn alloc_name_resolution(&'ra self) -> &'ra RefCell<NameResolution<'ra>> {
1353        self.name_resolutions.alloc(Default::default())
1354    }
1355    fn alloc_macro_rules_scope(&'ra self, scope: MacroRulesScope<'ra>) -> MacroRulesScopeRef<'ra> {
1356        self.dropless.alloc(Cell::new(scope))
1357    }
1358    fn alloc_macro_rules_binding(
1359        &'ra self,
1360        binding: MacroRulesBinding<'ra>,
1361    ) -> &'ra MacroRulesBinding<'ra> {
1362        self.dropless.alloc(binding)
1363    }
1364    fn alloc_ast_paths(&'ra self, paths: &[ast::Path]) -> &'ra [ast::Path] {
1365        self.ast_paths.alloc_from_iter(paths.iter().cloned())
1366    }
1367    fn alloc_macro(&'ra self, macro_data: MacroData) -> &'ra MacroData {
1368        self.macros.alloc(macro_data)
1369    }
1370    fn alloc_pattern_spans(&'ra self, spans: impl Iterator<Item = Span>) -> &'ra [Span] {
1371        self.dropless.alloc_from_iter(spans)
1372    }
1373}
1374
1375impl<'ra, 'tcx> AsMut<Resolver<'ra, 'tcx>> for Resolver<'ra, 'tcx> {
1376    fn as_mut(&mut self) -> &mut Resolver<'ra, 'tcx> {
1377        self
1378    }
1379}
1380
1381impl<'ra, 'tcx> AsRef<Resolver<'ra, 'tcx>> for Resolver<'ra, 'tcx> {
1382    fn as_ref(&self) -> &Resolver<'ra, 'tcx> {
1383        self
1384    }
1385}
1386
1387impl<'tcx> Resolver<'_, 'tcx> {
1388    fn opt_local_def_id(&self, node: NodeId) -> Option<LocalDefId> {
1389        self.opt_feed(node).map(|f| f.key())
1390    }
1391
1392    fn local_def_id(&self, node: NodeId) -> LocalDefId {
1393        self.feed(node).key()
1394    }
1395
1396    fn opt_feed(&self, node: NodeId) -> Option<Feed<'tcx, LocalDefId>> {
1397        self.node_id_to_def_id.get(&node).copied()
1398    }
1399
1400    fn feed(&self, node: NodeId) -> Feed<'tcx, LocalDefId> {
1401        self.opt_feed(node).unwrap_or_else(|| panic!("no entry for node id: `{node:?}`"))
1402    }
1403
1404    fn local_def_kind(&self, node: NodeId) -> DefKind {
1405        self.tcx.def_kind(self.local_def_id(node))
1406    }
1407
1408    /// Adds a definition with a parent definition.
1409    fn create_def(
1410        &mut self,
1411        parent: LocalDefId,
1412        node_id: ast::NodeId,
1413        name: Option<Symbol>,
1414        def_kind: DefKind,
1415        expn_id: ExpnId,
1416        span: Span,
1417    ) -> TyCtxtFeed<'tcx, LocalDefId> {
1418        assert!(
1419            !self.node_id_to_def_id.contains_key(&node_id),
1420            "adding a def for node-id {:?}, name {:?}, data {:?} but a previous def exists: {:?}",
1421            node_id,
1422            name,
1423            def_kind,
1424            self.tcx.definitions_untracked().def_key(self.node_id_to_def_id[&node_id].key()),
1425        );
1426
1427        // FIXME: remove `def_span` body, pass in the right spans here and call `tcx.at().create_def()`
1428        let feed = self.tcx.create_def(parent, name, def_kind, None, &mut self.disambiguator);
1429        let def_id = feed.def_id();
1430
1431        // Create the definition.
1432        if expn_id != ExpnId::root() {
1433            self.expn_that_defined.insert(def_id, expn_id);
1434        }
1435
1436        // A relative span's parent must be an absolute span.
1437        debug_assert_eq!(span.data_untracked().parent, None);
1438        let _id = self.tcx.untracked().source_span.push(span);
1439        debug_assert_eq!(_id, def_id);
1440
1441        // Some things for which we allocate `LocalDefId`s don't correspond to
1442        // anything in the AST, so they don't have a `NodeId`. For these cases
1443        // we don't need a mapping from `NodeId` to `LocalDefId`.
1444        if node_id != ast::DUMMY_NODE_ID {
1445            debug!("create_def: def_id_to_node_id[{:?}] <-> {:?}", def_id, node_id);
1446            self.node_id_to_def_id.insert(node_id, feed.downgrade());
1447        }
1448
1449        feed
1450    }
1451
1452    fn item_generics_num_lifetimes(&self, def_id: DefId) -> usize {
1453        if let Some(def_id) = def_id.as_local() {
1454            self.item_generics_num_lifetimes[&def_id]
1455        } else {
1456            self.tcx.generics_of(def_id).own_counts().lifetimes
1457        }
1458    }
1459
1460    pub fn tcx(&self) -> TyCtxt<'tcx> {
1461        self.tcx
1462    }
1463
1464    /// This function is very slow, as it iterates over the entire
1465    /// [Resolver::node_id_to_def_id] map just to find the [NodeId]
1466    /// that corresponds to the given [LocalDefId]. Only use this in
1467    /// diagnostics code paths.
1468    fn def_id_to_node_id(&self, def_id: LocalDefId) -> NodeId {
1469        self.node_id_to_def_id
1470            .items()
1471            .filter(|(_, v)| v.key() == def_id)
1472            .map(|(k, _)| *k)
1473            .get_only()
1474            .unwrap()
1475    }
1476}
1477
1478impl<'ra, 'tcx> Resolver<'ra, 'tcx> {
1479    pub fn new(
1480        tcx: TyCtxt<'tcx>,
1481        attrs: &[ast::Attribute],
1482        crate_span: Span,
1483        current_crate_outer_attr_insert_span: Span,
1484        arenas: &'ra ResolverArenas<'ra>,
1485    ) -> Resolver<'ra, 'tcx> {
1486        let root_def_id = CRATE_DEF_ID.to_def_id();
1487        let mut local_module_map = FxIndexMap::default();
1488        let graph_root = arenas.new_module(
1489            None,
1490            ModuleKind::Def(DefKind::Mod, root_def_id, None),
1491            ExpnId::root(),
1492            crate_span,
1493            attr::contains_name(attrs, sym::no_implicit_prelude),
1494        );
1495        local_module_map.insert(CRATE_DEF_ID, graph_root);
1496        let empty_module = arenas.new_module(
1497            None,
1498            ModuleKind::Def(DefKind::Mod, root_def_id, None),
1499            ExpnId::root(),
1500            DUMMY_SP,
1501            true,
1502        );
1503
1504        let mut node_id_to_def_id = NodeMap::default();
1505        let crate_feed = tcx.create_local_crate_def_id(crate_span);
1506
1507        crate_feed.def_kind(DefKind::Mod);
1508        let crate_feed = crate_feed.downgrade();
1509        node_id_to_def_id.insert(CRATE_NODE_ID, crate_feed);
1510
1511        let mut invocation_parents = FxHashMap::default();
1512        invocation_parents.insert(LocalExpnId::ROOT, InvocationParent::ROOT);
1513
1514        let mut extern_prelude: FxIndexMap<_, _> = tcx
1515            .sess
1516            .opts
1517            .externs
1518            .iter()
1519            .filter_map(|(name, entry)| {
1520                // Make sure `self`, `super`, `_` etc do not get into extern prelude.
1521                // FIXME: reject `--extern self` and similar in option parsing instead.
1522                if entry.add_prelude
1523                    && let name = Symbol::intern(name)
1524                    && name.can_be_raw()
1525                {
1526                    Some((Macros20NormalizedIdent::with_dummy_span(name), Default::default()))
1527                } else {
1528                    None
1529                }
1530            })
1531            .collect();
1532
1533        if !attr::contains_name(attrs, sym::no_core) {
1534            extern_prelude
1535                .insert(Macros20NormalizedIdent::with_dummy_span(sym::core), Default::default());
1536            if !attr::contains_name(attrs, sym::no_std) {
1537                extern_prelude
1538                    .insert(Macros20NormalizedIdent::with_dummy_span(sym::std), Default::default());
1539            }
1540        }
1541
1542        let registered_tools = tcx.registered_tools(());
1543        let edition = tcx.sess.edition();
1544
1545        let mut resolver = Resolver {
1546            tcx,
1547
1548            expn_that_defined: Default::default(),
1549
1550            // The outermost module has def ID 0; this is not reflected in the
1551            // AST.
1552            graph_root,
1553            assert_speculative: false, // Only set/cleared in Resolver::resolve_imports for now
1554            prelude: None,
1555            extern_prelude,
1556
1557            field_names: Default::default(),
1558            field_defaults: Default::default(),
1559            field_visibility_spans: FxHashMap::default(),
1560
1561            determined_imports: Vec::new(),
1562            indeterminate_imports: Vec::new(),
1563
1564            pat_span_map: Default::default(),
1565            partial_res_map: Default::default(),
1566            import_res_map: Default::default(),
1567            import_use_map: Default::default(),
1568            label_res_map: Default::default(),
1569            lifetimes_res_map: Default::default(),
1570            extra_lifetime_params_map: Default::default(),
1571            extern_crate_map: Default::default(),
1572            module_children: Default::default(),
1573            trait_map: NodeMap::default(),
1574            empty_module,
1575            local_module_map,
1576            extern_module_map: Default::default(),
1577            block_map: Default::default(),
1578            binding_parent_modules: FxHashMap::default(),
1579            ast_transform_scopes: FxHashMap::default(),
1580
1581            glob_map: Default::default(),
1582            glob_error: None,
1583            visibilities_for_hashing: Default::default(),
1584            used_imports: FxHashSet::default(),
1585            maybe_unused_trait_imports: Default::default(),
1586
1587            privacy_errors: Vec::new(),
1588            ambiguity_errors: Vec::new(),
1589            use_injections: Vec::new(),
1590            macro_expanded_macro_export_errors: BTreeSet::new(),
1591
1592            arenas,
1593            dummy_binding: arenas.new_pub_res_binding(Res::Err, DUMMY_SP, LocalExpnId::ROOT),
1594            builtin_types_bindings: PrimTy::ALL
1595                .iter()
1596                .map(|prim_ty| {
1597                    let res = Res::PrimTy(*prim_ty);
1598                    let binding = arenas.new_pub_res_binding(res, DUMMY_SP, LocalExpnId::ROOT);
1599                    (prim_ty.name(), binding)
1600                })
1601                .collect(),
1602            builtin_attrs_bindings: BUILTIN_ATTRIBUTES
1603                .iter()
1604                .map(|builtin_attr| {
1605                    let res = Res::NonMacroAttr(NonMacroAttrKind::Builtin(builtin_attr.name));
1606                    let binding = arenas.new_pub_res_binding(res, DUMMY_SP, LocalExpnId::ROOT);
1607                    (builtin_attr.name, binding)
1608                })
1609                .collect(),
1610            registered_tool_bindings: registered_tools
1611                .iter()
1612                .map(|ident| {
1613                    let res = Res::ToolMod;
1614                    let binding = arenas.new_pub_res_binding(res, ident.span, LocalExpnId::ROOT);
1615                    (*ident, binding)
1616                })
1617                .collect(),
1618            macro_names: FxHashSet::default(),
1619            builtin_macros: Default::default(),
1620            registered_tools,
1621            macro_use_prelude: Default::default(),
1622            local_macro_map: Default::default(),
1623            extern_macro_map: Default::default(),
1624            dummy_ext_bang: Arc::new(SyntaxExtension::dummy_bang(edition)),
1625            dummy_ext_derive: Arc::new(SyntaxExtension::dummy_derive(edition)),
1626            non_macro_attr: arenas
1627                .alloc_macro(MacroData::new(Arc::new(SyntaxExtension::non_macro_attr(edition)))),
1628            invocation_parent_scopes: Default::default(),
1629            output_macro_rules_scopes: Default::default(),
1630            macro_rules_scopes: Default::default(),
1631            helper_attrs: Default::default(),
1632            derive_data: Default::default(),
1633            local_macro_def_scopes: FxHashMap::default(),
1634            name_already_seen: FxHashMap::default(),
1635            potentially_unused_imports: Vec::new(),
1636            potentially_unnecessary_qualifications: Default::default(),
1637            struct_constructors: Default::default(),
1638            unused_macros: Default::default(),
1639            unused_macro_rules: Default::default(),
1640            proc_macro_stubs: Default::default(),
1641            single_segment_macro_resolutions: Default::default(),
1642            multi_segment_macro_resolutions: Default::default(),
1643            builtin_attrs: Default::default(),
1644            containers_deriving_copy: Default::default(),
1645            lint_buffer: LintBuffer::default(),
1646            next_node_id: CRATE_NODE_ID,
1647            node_id_to_def_id,
1648            disambiguator: DisambiguatorState::new(),
1649            placeholder_field_indices: Default::default(),
1650            invocation_parents,
1651            legacy_const_generic_args: Default::default(),
1652            item_generics_num_lifetimes: Default::default(),
1653            main_def: Default::default(),
1654            trait_impls: Default::default(),
1655            proc_macros: Default::default(),
1656            confused_type_with_std_module: Default::default(),
1657            lifetime_elision_allowed: Default::default(),
1658            stripped_cfg_items: Default::default(),
1659            effective_visibilities: Default::default(),
1660            doc_link_resolutions: Default::default(),
1661            doc_link_traits_in_scope: Default::default(),
1662            all_macro_rules: Default::default(),
1663            delegation_fn_sigs: Default::default(),
1664            glob_delegation_invoc_ids: Default::default(),
1665            impl_unexpanded_invocations: Default::default(),
1666            impl_binding_keys: Default::default(),
1667            current_crate_outer_attr_insert_span,
1668            mods_with_parse_errors: Default::default(),
1669            impl_trait_names: Default::default(),
1670        };
1671
1672        let root_parent_scope = ParentScope::module(graph_root, resolver.arenas);
1673        resolver.invocation_parent_scopes.insert(LocalExpnId::ROOT, root_parent_scope);
1674        resolver.feed_visibility(crate_feed, Visibility::Public);
1675
1676        resolver
1677    }
1678
1679    fn new_local_module(
1680        &mut self,
1681        parent: Option<Module<'ra>>,
1682        kind: ModuleKind,
1683        expn_id: ExpnId,
1684        span: Span,
1685        no_implicit_prelude: bool,
1686    ) -> Module<'ra> {
1687        let module = self.arenas.new_module(parent, kind, expn_id, span, no_implicit_prelude);
1688        if let Some(def_id) = module.opt_def_id() {
1689            self.local_module_map.insert(def_id.expect_local(), module);
1690        }
1691        module
1692    }
1693
1694    fn new_extern_module(
1695        &self,
1696        parent: Option<Module<'ra>>,
1697        kind: ModuleKind,
1698        expn_id: ExpnId,
1699        span: Span,
1700        no_implicit_prelude: bool,
1701    ) -> Module<'ra> {
1702        let module = self.arenas.new_module(parent, kind, expn_id, span, no_implicit_prelude);
1703        self.extern_module_map.borrow_mut().insert(module.def_id(), module);
1704        module
1705    }
1706
1707    fn new_local_macro(&mut self, def_id: LocalDefId, macro_data: MacroData) -> &'ra MacroData {
1708        let mac = self.arenas.alloc_macro(macro_data);
1709        self.local_macro_map.insert(def_id, mac);
1710        mac
1711    }
1712
1713    fn next_node_id(&mut self) -> NodeId {
1714        let start = self.next_node_id;
1715        let next = start.as_u32().checked_add(1).expect("input too large; ran out of NodeIds");
1716        self.next_node_id = ast::NodeId::from_u32(next);
1717        start
1718    }
1719
1720    fn next_node_ids(&mut self, count: usize) -> std::ops::Range<NodeId> {
1721        let start = self.next_node_id;
1722        let end = start.as_usize().checked_add(count).expect("input too large; ran out of NodeIds");
1723        self.next_node_id = ast::NodeId::from_usize(end);
1724        start..self.next_node_id
1725    }
1726
1727    pub fn lint_buffer(&mut self) -> &mut LintBuffer {
1728        &mut self.lint_buffer
1729    }
1730
1731    pub fn arenas() -> ResolverArenas<'ra> {
1732        Default::default()
1733    }
1734
1735    fn feed_visibility(&mut self, feed: Feed<'tcx, LocalDefId>, vis: Visibility) {
1736        let feed = feed.upgrade(self.tcx);
1737        feed.visibility(vis.to_def_id());
1738        self.visibilities_for_hashing.push((feed.def_id(), vis));
1739    }
1740
1741    pub fn into_outputs(self) -> ResolverOutputs {
1742        let proc_macros = self.proc_macros;
1743        let expn_that_defined = self.expn_that_defined;
1744        let extern_crate_map = self.extern_crate_map;
1745        let maybe_unused_trait_imports = self.maybe_unused_trait_imports;
1746        let glob_map = self.glob_map;
1747        let main_def = self.main_def;
1748        let confused_type_with_std_module = self.confused_type_with_std_module;
1749        let effective_visibilities = self.effective_visibilities;
1750
1751        let stripped_cfg_items = self
1752            .stripped_cfg_items
1753            .into_iter()
1754            .filter_map(|item| {
1755                let parent_module =
1756                    self.node_id_to_def_id.get(&item.parent_module)?.key().to_def_id();
1757                Some(StrippedCfgItem { parent_module, ident: item.ident, cfg: item.cfg })
1758            })
1759            .collect();
1760
1761        let global_ctxt = ResolverGlobalCtxt {
1762            expn_that_defined,
1763            visibilities_for_hashing: self.visibilities_for_hashing,
1764            effective_visibilities,
1765            extern_crate_map,
1766            module_children: self.module_children,
1767            glob_map,
1768            maybe_unused_trait_imports,
1769            main_def,
1770            trait_impls: self.trait_impls,
1771            proc_macros,
1772            confused_type_with_std_module,
1773            doc_link_resolutions: self.doc_link_resolutions,
1774            doc_link_traits_in_scope: self.doc_link_traits_in_scope,
1775            all_macro_rules: self.all_macro_rules,
1776            stripped_cfg_items,
1777        };
1778        let ast_lowering = ty::ResolverAstLowering {
1779            legacy_const_generic_args: self.legacy_const_generic_args,
1780            partial_res_map: self.partial_res_map,
1781            import_res_map: self.import_res_map,
1782            label_res_map: self.label_res_map,
1783            lifetimes_res_map: self.lifetimes_res_map,
1784            extra_lifetime_params_map: self.extra_lifetime_params_map,
1785            next_node_id: self.next_node_id,
1786            node_id_to_def_id: self
1787                .node_id_to_def_id
1788                .into_items()
1789                .map(|(k, f)| (k, f.key()))
1790                .collect(),
1791            disambiguator: self.disambiguator,
1792            trait_map: self.trait_map,
1793            lifetime_elision_allowed: self.lifetime_elision_allowed,
1794            lint_buffer: Steal::new(self.lint_buffer),
1795            delegation_fn_sigs: self.delegation_fn_sigs,
1796        };
1797        ResolverOutputs { global_ctxt, ast_lowering }
1798    }
1799
1800    fn create_stable_hashing_context(&self) -> StableHashingContext<'_> {
1801        StableHashingContext::new(self.tcx.sess, self.tcx.untracked())
1802    }
1803
1804    fn cstore(&self) -> FreezeReadGuard<'_, CStore> {
1805        CStore::from_tcx(self.tcx)
1806    }
1807
1808    fn cstore_mut(&self) -> FreezeWriteGuard<'_, CStore> {
1809        CStore::from_tcx_mut(self.tcx)
1810    }
1811
1812    fn dummy_ext(&self, macro_kind: MacroKind) -> Arc<SyntaxExtension> {
1813        match macro_kind {
1814            MacroKind::Bang => Arc::clone(&self.dummy_ext_bang),
1815            MacroKind::Derive => Arc::clone(&self.dummy_ext_derive),
1816            MacroKind::Attr => Arc::clone(&self.non_macro_attr.ext),
1817        }
1818    }
1819
1820    /// Returns a conditionally mutable resolver.
1821    ///
1822    /// Currently only dependent on `assert_speculative`, if `assert_speculative` is false,
1823    /// the resolver will allow mutation; otherwise, it will be immutable.
1824    fn cm(&mut self) -> CmResolver<'_, 'ra, 'tcx> {
1825        CmResolver::new(self, !self.assert_speculative)
1826    }
1827
1828    /// Runs the function on each namespace.
1829    fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1830        f(self, TypeNS);
1831        f(self, ValueNS);
1832        f(self, MacroNS);
1833    }
1834
1835    fn per_ns_cm<'r, F: FnMut(&mut CmResolver<'r, 'ra, 'tcx>, Namespace)>(
1836        mut self: CmResolver<'r, 'ra, 'tcx>,
1837        mut f: F,
1838    ) {
1839        f(&mut self, TypeNS);
1840        f(&mut self, ValueNS);
1841        f(&mut self, MacroNS);
1842    }
1843
1844    fn is_builtin_macro(&self, res: Res) -> bool {
1845        self.get_macro(res).is_some_and(|macro_data| macro_data.ext.builtin_name.is_some())
1846    }
1847
1848    fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1849        loop {
1850            match ctxt.outer_expn_data().macro_def_id {
1851                Some(def_id) => return def_id,
1852                None => ctxt.remove_mark(),
1853            };
1854        }
1855    }
1856
1857    /// Entry point to crate resolution.
1858    pub fn resolve_crate(&mut self, krate: &Crate) {
1859        self.tcx.sess.time("resolve_crate", || {
1860            self.tcx.sess.time("finalize_imports", || self.finalize_imports());
1861            let exported_ambiguities = self.tcx.sess.time("compute_effective_visibilities", || {
1862                EffectiveVisibilitiesVisitor::compute_effective_visibilities(self, krate)
1863            });
1864            self.tcx.sess.time("lint_reexports", || self.lint_reexports(exported_ambiguities));
1865            self.tcx
1866                .sess
1867                .time("finalize_macro_resolutions", || self.finalize_macro_resolutions(krate));
1868            self.tcx.sess.time("late_resolve_crate", || self.late_resolve_crate(krate));
1869            self.tcx.sess.time("resolve_main", || self.resolve_main());
1870            self.tcx.sess.time("resolve_check_unused", || self.check_unused(krate));
1871            self.tcx.sess.time("resolve_report_errors", || self.report_errors(krate));
1872            self.tcx
1873                .sess
1874                .time("resolve_postprocess", || self.cstore_mut().postprocess(self.tcx, krate));
1875        });
1876
1877        // Make sure we don't mutate the cstore from here on.
1878        self.tcx.untracked().cstore.freeze();
1879    }
1880
1881    fn traits_in_scope(
1882        &mut self,
1883        current_trait: Option<Module<'ra>>,
1884        parent_scope: &ParentScope<'ra>,
1885        ctxt: SyntaxContext,
1886        assoc_item: Option<(Symbol, Namespace)>,
1887    ) -> Vec<TraitCandidate> {
1888        let mut found_traits = Vec::new();
1889
1890        if let Some(module) = current_trait {
1891            if self.trait_may_have_item(Some(module), assoc_item) {
1892                let def_id = module.def_id();
1893                found_traits.push(TraitCandidate { def_id, import_ids: smallvec![] });
1894            }
1895        }
1896
1897        self.cm().visit_scopes(ScopeSet::All(TypeNS), parent_scope, ctxt, |this, scope, _, _| {
1898            match scope {
1899                Scope::Module(module, _) => {
1900                    this.get_mut().traits_in_module(module, assoc_item, &mut found_traits);
1901                }
1902                Scope::StdLibPrelude => {
1903                    if let Some(module) = this.prelude {
1904                        this.get_mut().traits_in_module(module, assoc_item, &mut found_traits);
1905                    }
1906                }
1907                Scope::ExternPreludeItems
1908                | Scope::ExternPreludeFlags
1909                | Scope::ToolPrelude
1910                | Scope::BuiltinTypes => {}
1911                _ => unreachable!(),
1912            }
1913            None::<()>
1914        });
1915
1916        found_traits
1917    }
1918
1919    fn traits_in_module(
1920        &mut self,
1921        module: Module<'ra>,
1922        assoc_item: Option<(Symbol, Namespace)>,
1923        found_traits: &mut Vec<TraitCandidate>,
1924    ) {
1925        module.ensure_traits(self);
1926        let traits = module.traits.borrow();
1927        for &(trait_name, trait_binding, trait_module) in traits.as_ref().unwrap().iter() {
1928            if self.trait_may_have_item(trait_module, assoc_item) {
1929                let def_id = trait_binding.res().def_id();
1930                let import_ids = self.find_transitive_imports(&trait_binding.kind, trait_name.0);
1931                found_traits.push(TraitCandidate { def_id, import_ids });
1932            }
1933        }
1934    }
1935
1936    // List of traits in scope is pruned on best effort basis. We reject traits not having an
1937    // associated item with the given name and namespace (if specified). This is a conservative
1938    // optimization, proper hygienic type-based resolution of associated items is done in typeck.
1939    // We don't reject trait aliases (`trait_module == None`) because we don't have access to their
1940    // associated items.
1941    fn trait_may_have_item(
1942        &self,
1943        trait_module: Option<Module<'ra>>,
1944        assoc_item: Option<(Symbol, Namespace)>,
1945    ) -> bool {
1946        match (trait_module, assoc_item) {
1947            (Some(trait_module), Some((name, ns))) => self
1948                .resolutions(trait_module)
1949                .borrow()
1950                .iter()
1951                .any(|(key, _name_resolution)| key.ns == ns && key.ident.name == name),
1952            _ => true,
1953        }
1954    }
1955
1956    fn find_transitive_imports(
1957        &mut self,
1958        mut kind: &NameBindingKind<'_>,
1959        trait_name: Ident,
1960    ) -> SmallVec<[LocalDefId; 1]> {
1961        let mut import_ids = smallvec![];
1962        while let NameBindingKind::Import { import, binding, .. } = kind {
1963            if let Some(node_id) = import.id() {
1964                let def_id = self.local_def_id(node_id);
1965                self.maybe_unused_trait_imports.insert(def_id);
1966                import_ids.push(def_id);
1967            }
1968            self.add_to_glob_map(*import, trait_name);
1969            kind = &binding.kind;
1970        }
1971        import_ids
1972    }
1973
1974    fn resolutions(&self, module: Module<'ra>) -> &'ra Resolutions<'ra> {
1975        if module.populate_on_access.get() {
1976            module.populate_on_access.set(false);
1977            self.build_reduced_graph_external(module);
1978        }
1979        &module.0.0.lazy_resolutions
1980    }
1981
1982    fn resolution(
1983        &self,
1984        module: Module<'ra>,
1985        key: BindingKey,
1986    ) -> Option<Ref<'ra, NameResolution<'ra>>> {
1987        self.resolutions(module).borrow().get(&key).map(|resolution| resolution.borrow())
1988    }
1989
1990    fn resolution_or_default(
1991        &self,
1992        module: Module<'ra>,
1993        key: BindingKey,
1994    ) -> &'ra RefCell<NameResolution<'ra>> {
1995        self.resolutions(module)
1996            .borrow_mut()
1997            .entry(key)
1998            .or_insert_with(|| self.arenas.alloc_name_resolution())
1999    }
2000
2001    /// Test if AmbiguityError ambi is any identical to any one inside ambiguity_errors
2002    fn matches_previous_ambiguity_error(&self, ambi: &AmbiguityError<'_>) -> bool {
2003        for ambiguity_error in &self.ambiguity_errors {
2004            // if the span location and ident as well as its span are the same
2005            if ambiguity_error.kind == ambi.kind
2006                && ambiguity_error.ident == ambi.ident
2007                && ambiguity_error.ident.span == ambi.ident.span
2008                && ambiguity_error.b1.span == ambi.b1.span
2009                && ambiguity_error.b2.span == ambi.b2.span
2010                && ambiguity_error.misc1 == ambi.misc1
2011                && ambiguity_error.misc2 == ambi.misc2
2012            {
2013                return true;
2014            }
2015        }
2016        false
2017    }
2018
2019    fn record_use(&mut self, ident: Ident, used_binding: NameBinding<'ra>, used: Used) {
2020        self.record_use_inner(ident, used_binding, used, used_binding.warn_ambiguity);
2021    }
2022
2023    fn record_use_inner(
2024        &mut self,
2025        ident: Ident,
2026        used_binding: NameBinding<'ra>,
2027        used: Used,
2028        warn_ambiguity: bool,
2029    ) {
2030        if let Some((b2, kind)) = used_binding.ambiguity {
2031            let ambiguity_error = AmbiguityError {
2032                kind,
2033                ident,
2034                b1: used_binding,
2035                b2,
2036                misc1: AmbiguityErrorMisc::None,
2037                misc2: AmbiguityErrorMisc::None,
2038                warning: warn_ambiguity,
2039            };
2040            if !self.matches_previous_ambiguity_error(&ambiguity_error) {
2041                // avoid duplicated span information to be emit out
2042                self.ambiguity_errors.push(ambiguity_error);
2043            }
2044        }
2045        if let NameBindingKind::Import { import, binding } = used_binding.kind {
2046            if let ImportKind::MacroUse { warn_private: true } = import.kind {
2047                // Do not report the lint if the macro name resolves in stdlib prelude
2048                // even without the problematic `macro_use` import.
2049                let found_in_stdlib_prelude = self.prelude.is_some_and(|prelude| {
2050                    let empty_module = self.empty_module;
2051                    let arenas = self.arenas;
2052                    self.cm()
2053                        .maybe_resolve_ident_in_module(
2054                            ModuleOrUniformRoot::Module(prelude),
2055                            ident,
2056                            MacroNS,
2057                            &ParentScope::module(empty_module, arenas),
2058                            None,
2059                        )
2060                        .is_ok()
2061                });
2062                if !found_in_stdlib_prelude {
2063                    self.lint_buffer().buffer_lint(
2064                        PRIVATE_MACRO_USE,
2065                        import.root_id,
2066                        ident.span,
2067                        BuiltinLintDiag::MacroIsPrivate(ident),
2068                    );
2069                }
2070            }
2071            // Avoid marking `extern crate` items that refer to a name from extern prelude,
2072            // but not introduce it, as used if they are accessed from lexical scope.
2073            if used == Used::Scope {
2074                if let Some(entry) = self.extern_prelude.get(&Macros20NormalizedIdent::new(ident)) {
2075                    if !entry.introduced_by_item && entry.item_binding == Some(used_binding) {
2076                        return;
2077                    }
2078                }
2079            }
2080            let old_used = self.import_use_map.entry(import).or_insert(used);
2081            if *old_used < used {
2082                *old_used = used;
2083            }
2084            if let Some(id) = import.id() {
2085                self.used_imports.insert(id);
2086            }
2087            self.add_to_glob_map(import, ident);
2088            self.record_use_inner(
2089                ident,
2090                binding,
2091                Used::Other,
2092                warn_ambiguity || binding.warn_ambiguity,
2093            );
2094        }
2095    }
2096
2097    #[inline]
2098    fn add_to_glob_map(&mut self, import: Import<'_>, ident: Ident) {
2099        if let ImportKind::Glob { id, .. } = import.kind {
2100            let def_id = self.local_def_id(id);
2101            self.glob_map.entry(def_id).or_default().insert(ident.name);
2102        }
2103    }
2104
2105    fn resolve_crate_root(&self, ident: Ident) -> Module<'ra> {
2106        debug!("resolve_crate_root({:?})", ident);
2107        let mut ctxt = ident.span.ctxt();
2108        let mark = if ident.name == kw::DollarCrate {
2109            // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2110            // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2111            // as described in `SyntaxContext::apply_mark`, so we ignore prepended opaque marks.
2112            // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2113            // definitions actually produced by `macro` and `macro` definitions produced by
2114            // `macro_rules!`, but at least such configurations are not stable yet.
2115            ctxt = ctxt.normalize_to_macro_rules();
2116            debug!(
2117                "resolve_crate_root: marks={:?}",
2118                ctxt.marks().into_iter().map(|(i, t)| (i.expn_data(), t)).collect::<Vec<_>>()
2119            );
2120            let mut iter = ctxt.marks().into_iter().rev().peekable();
2121            let mut result = None;
2122            // Find the last opaque mark from the end if it exists.
2123            while let Some(&(mark, transparency)) = iter.peek() {
2124                if transparency == Transparency::Opaque {
2125                    result = Some(mark);
2126                    iter.next();
2127                } else {
2128                    break;
2129                }
2130            }
2131            debug!(
2132                "resolve_crate_root: found opaque mark {:?} {:?}",
2133                result,
2134                result.map(|r| r.expn_data())
2135            );
2136            // Then find the last semi-opaque mark from the end if it exists.
2137            for (mark, transparency) in iter {
2138                if transparency == Transparency::SemiOpaque {
2139                    result = Some(mark);
2140                } else {
2141                    break;
2142                }
2143            }
2144            debug!(
2145                "resolve_crate_root: found semi-opaque mark {:?} {:?}",
2146                result,
2147                result.map(|r| r.expn_data())
2148            );
2149            result
2150        } else {
2151            debug!("resolve_crate_root: not DollarCrate");
2152            ctxt = ctxt.normalize_to_macros_2_0();
2153            ctxt.adjust(ExpnId::root())
2154        };
2155        let module = match mark {
2156            Some(def) => self.expn_def_scope(def),
2157            None => {
2158                debug!(
2159                    "resolve_crate_root({:?}): found no mark (ident.span = {:?})",
2160                    ident, ident.span
2161                );
2162                return self.graph_root;
2163            }
2164        };
2165        let module = self.expect_module(
2166            module.opt_def_id().map_or(LOCAL_CRATE, |def_id| def_id.krate).as_def_id(),
2167        );
2168        debug!(
2169            "resolve_crate_root({:?}): got module {:?} ({:?}) (ident.span = {:?})",
2170            ident,
2171            module,
2172            module.kind.name(),
2173            ident.span
2174        );
2175        module
2176    }
2177
2178    fn resolve_self(&self, ctxt: &mut SyntaxContext, module: Module<'ra>) -> Module<'ra> {
2179        let mut module = self.expect_module(module.nearest_parent_mod());
2180        while module.span.ctxt().normalize_to_macros_2_0() != *ctxt {
2181            let parent = module.parent.unwrap_or_else(|| self.expn_def_scope(ctxt.remove_mark()));
2182            module = self.expect_module(parent.nearest_parent_mod());
2183        }
2184        module
2185    }
2186
2187    fn record_partial_res(&mut self, node_id: NodeId, resolution: PartialRes) {
2188        debug!("(recording res) recording {:?} for {}", resolution, node_id);
2189        if let Some(prev_res) = self.partial_res_map.insert(node_id, resolution) {
2190            panic!("path resolved multiple times ({prev_res:?} before, {resolution:?} now)");
2191        }
2192    }
2193
2194    fn record_pat_span(&mut self, node: NodeId, span: Span) {
2195        debug!("(recording pat) recording {:?} for {:?}", node, span);
2196        self.pat_span_map.insert(node, span);
2197    }
2198
2199    fn is_accessible_from(&self, vis: Visibility<impl Into<DefId>>, module: Module<'ra>) -> bool {
2200        vis.is_accessible_from(module.nearest_parent_mod(), self.tcx)
2201    }
2202
2203    fn set_binding_parent_module(&mut self, binding: NameBinding<'ra>, module: Module<'ra>) {
2204        if let Some(old_module) = self.binding_parent_modules.insert(binding, module) {
2205            if module != old_module {
2206                span_bug!(binding.span, "parent module is reset for binding");
2207            }
2208        }
2209    }
2210
2211    fn disambiguate_macro_rules_vs_modularized(
2212        &self,
2213        macro_rules: NameBinding<'ra>,
2214        modularized: NameBinding<'ra>,
2215    ) -> bool {
2216        // Some non-controversial subset of ambiguities "modularized macro name" vs "macro_rules"
2217        // is disambiguated to mitigate regressions from macro modularization.
2218        // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
2219        match (
2220            self.binding_parent_modules.get(&macro_rules),
2221            self.binding_parent_modules.get(&modularized),
2222        ) {
2223            (Some(macro_rules), Some(modularized)) => {
2224                macro_rules.nearest_parent_mod() == modularized.nearest_parent_mod()
2225                    && modularized.is_ancestor_of(*macro_rules)
2226            }
2227            _ => false,
2228        }
2229    }
2230
2231    fn extern_prelude_get_item<'r>(
2232        mut self: CmResolver<'r, 'ra, 'tcx>,
2233        ident: Ident,
2234        finalize: bool,
2235    ) -> Option<NameBinding<'ra>> {
2236        let entry = self.extern_prelude.get(&Macros20NormalizedIdent::new(ident));
2237        entry.and_then(|entry| entry.item_binding).map(|binding| {
2238            if finalize {
2239                self.get_mut().record_use(ident, binding, Used::Scope);
2240            }
2241            binding
2242        })
2243    }
2244
2245    fn extern_prelude_get_flag(&self, ident: Ident, finalize: bool) -> Option<NameBinding<'ra>> {
2246        let entry = self.extern_prelude.get(&Macros20NormalizedIdent::new(ident));
2247        entry.and_then(|entry| match entry.flag_binding.get() {
2248            Some(binding) => {
2249                if finalize {
2250                    self.cstore_mut().process_path_extern(self.tcx, ident.name, ident.span);
2251                }
2252                Some(binding)
2253            }
2254            None if entry.only_item => None,
2255            None => {
2256                let crate_id = if finalize {
2257                    self.cstore_mut().process_path_extern(self.tcx, ident.name, ident.span)
2258                } else {
2259                    self.cstore_mut().maybe_process_path_extern(self.tcx, ident.name)
2260                };
2261                match crate_id {
2262                    Some(crate_id) => {
2263                        let res = Res::Def(DefKind::Mod, crate_id.as_def_id());
2264                        let binding =
2265                            self.arenas.new_pub_res_binding(res, DUMMY_SP, LocalExpnId::ROOT);
2266                        entry.flag_binding.set(Some(binding));
2267                        Some(binding)
2268                    }
2269                    None => finalize.then_some(self.dummy_binding),
2270                }
2271            }
2272        })
2273    }
2274
2275    /// Rustdoc uses this to resolve doc link paths in a recoverable way. `PathResult<'a>`
2276    /// isn't something that can be returned because it can't be made to live that long,
2277    /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
2278    /// just that an error occurred.
2279    fn resolve_rustdoc_path(
2280        &mut self,
2281        path_str: &str,
2282        ns: Namespace,
2283        parent_scope: ParentScope<'ra>,
2284    ) -> Option<Res> {
2285        let segments: Result<Vec<_>, ()> = path_str
2286            .split("::")
2287            .enumerate()
2288            .map(|(i, s)| {
2289                let sym = if s.is_empty() {
2290                    if i == 0 {
2291                        // For a path like `::a::b`, use `kw::PathRoot` as the leading segment.
2292                        kw::PathRoot
2293                    } else {
2294                        return Err(()); // occurs in cases like `String::`
2295                    }
2296                } else {
2297                    Symbol::intern(s)
2298                };
2299                Ok(Segment::from_ident(Ident::with_dummy_span(sym)))
2300            })
2301            .collect();
2302        let Ok(segments) = segments else { return None };
2303
2304        match self.cm().maybe_resolve_path(&segments, Some(ns), &parent_scope, None) {
2305            PathResult::Module(ModuleOrUniformRoot::Module(module)) => Some(module.res().unwrap()),
2306            PathResult::NonModule(path_res) => {
2307                path_res.full_res().filter(|res| !matches!(res, Res::Def(DefKind::Ctor(..), _)))
2308            }
2309            PathResult::Module(ModuleOrUniformRoot::ExternPrelude) | PathResult::Failed { .. } => {
2310                None
2311            }
2312            PathResult::Module(..) | PathResult::Indeterminate => unreachable!(),
2313        }
2314    }
2315
2316    /// Retrieves definition span of the given `DefId`.
2317    fn def_span(&self, def_id: DefId) -> Span {
2318        match def_id.as_local() {
2319            Some(def_id) => self.tcx.source_span(def_id),
2320            // Query `def_span` is not used because hashing its result span is expensive.
2321            None => self.cstore().def_span_untracked(def_id, self.tcx.sess),
2322        }
2323    }
2324
2325    fn field_idents(&self, def_id: DefId) -> Option<Vec<Ident>> {
2326        match def_id.as_local() {
2327            Some(def_id) => self.field_names.get(&def_id).cloned(),
2328            None => Some(
2329                self.tcx
2330                    .associated_item_def_ids(def_id)
2331                    .iter()
2332                    .map(|&def_id| {
2333                        Ident::new(self.tcx.item_name(def_id), self.tcx.def_span(def_id))
2334                    })
2335                    .collect(),
2336            ),
2337        }
2338    }
2339
2340    fn field_defaults(&self, def_id: DefId) -> Option<Vec<Symbol>> {
2341        match def_id.as_local() {
2342            Some(def_id) => self.field_defaults.get(&def_id).cloned(),
2343            None => Some(
2344                self.tcx
2345                    .associated_item_def_ids(def_id)
2346                    .iter()
2347                    .filter_map(|&def_id| {
2348                        self.tcx.default_field(def_id).map(|_| self.tcx.item_name(def_id))
2349                    })
2350                    .collect(),
2351            ),
2352        }
2353    }
2354
2355    /// Checks if an expression refers to a function marked with
2356    /// `#[rustc_legacy_const_generics]` and returns the argument index list
2357    /// from the attribute.
2358    fn legacy_const_generic_args(&mut self, expr: &Expr) -> Option<Vec<usize>> {
2359        if let ExprKind::Path(None, path) = &expr.kind {
2360            // Don't perform legacy const generics rewriting if the path already
2361            // has generic arguments.
2362            if path.segments.last().unwrap().args.is_some() {
2363                return None;
2364            }
2365
2366            let res = self.partial_res_map.get(&expr.id)?.full_res()?;
2367            if let Res::Def(def::DefKind::Fn, def_id) = res {
2368                // We only support cross-crate argument rewriting. Uses
2369                // within the same crate should be updated to use the new
2370                // const generics style.
2371                if def_id.is_local() {
2372                    return None;
2373                }
2374
2375                if let Some(v) = self.legacy_const_generic_args.get(&def_id) {
2376                    return v.clone();
2377                }
2378
2379                let attr = self.tcx.get_attr(def_id, sym::rustc_legacy_const_generics)?;
2380                let mut ret = Vec::new();
2381                for meta in attr.meta_item_list()? {
2382                    match meta.lit()?.kind {
2383                        LitKind::Int(a, _) => ret.push(a.get() as usize),
2384                        _ => panic!("invalid arg index"),
2385                    }
2386                }
2387                // Cache the lookup to avoid parsing attributes for an item multiple times.
2388                self.legacy_const_generic_args.insert(def_id, Some(ret.clone()));
2389                return Some(ret);
2390            }
2391        }
2392        None
2393    }
2394
2395    fn resolve_main(&mut self) {
2396        let module = self.graph_root;
2397        let ident = Ident::with_dummy_span(sym::main);
2398        let parent_scope = &ParentScope::module(module, self.arenas);
2399
2400        let Ok(name_binding) = self.cm().maybe_resolve_ident_in_module(
2401            ModuleOrUniformRoot::Module(module),
2402            ident,
2403            ValueNS,
2404            parent_scope,
2405            None,
2406        ) else {
2407            return;
2408        };
2409
2410        let res = name_binding.res();
2411        let is_import = name_binding.is_import();
2412        let span = name_binding.span;
2413        if let Res::Def(DefKind::Fn, _) = res {
2414            self.record_use(ident, name_binding, Used::Other);
2415        }
2416        self.main_def = Some(MainDefinition { res, is_import, span });
2417    }
2418}
2419
2420fn names_to_string(names: impl Iterator<Item = Symbol>) -> String {
2421    let mut result = String::new();
2422    for (i, name) in names.filter(|name| *name != kw::PathRoot).enumerate() {
2423        if i > 0 {
2424            result.push_str("::");
2425        }
2426        if Ident::with_dummy_span(name).is_raw_guess() {
2427            result.push_str("r#");
2428        }
2429        result.push_str(name.as_str());
2430    }
2431    result
2432}
2433
2434fn path_names_to_string(path: &Path) -> String {
2435    names_to_string(path.segments.iter().map(|seg| seg.ident.name))
2436}
2437
2438/// A somewhat inefficient routine to obtain the name of a module.
2439fn module_to_string(mut module: Module<'_>) -> Option<String> {
2440    let mut names = Vec::new();
2441    loop {
2442        if let ModuleKind::Def(.., name) = module.kind {
2443            if let Some(parent) = module.parent {
2444                // `unwrap` is safe: the presence of a parent means it's not the crate root.
2445                names.push(name.unwrap());
2446                module = parent
2447            } else {
2448                break;
2449            }
2450        } else {
2451            names.push(sym::opaque_module_name_placeholder);
2452            let Some(parent) = module.parent else {
2453                return None;
2454            };
2455            module = parent;
2456        }
2457    }
2458    if names.is_empty() {
2459        return None;
2460    }
2461    Some(names_to_string(names.iter().rev().copied()))
2462}
2463
2464#[derive(Copy, Clone, Debug)]
2465struct Finalize {
2466    /// Node ID for linting.
2467    node_id: NodeId,
2468    /// Span of the whole path or some its characteristic fragment.
2469    /// E.g. span of `b` in `foo::{a, b, c}`, or full span for regular paths.
2470    path_span: Span,
2471    /// Span of the path start, suitable for prepending something to it.
2472    /// E.g. span of `foo` in `foo::{a, b, c}`, or full span for regular paths.
2473    root_span: Span,
2474    /// Whether to report privacy errors or silently return "no resolution" for them,
2475    /// similarly to speculative resolution.
2476    report_private: bool,
2477    /// Tracks whether an item is used in scope or used relatively to a module.
2478    used: Used,
2479}
2480
2481impl Finalize {
2482    fn new(node_id: NodeId, path_span: Span) -> Finalize {
2483        Finalize::with_root_span(node_id, path_span, path_span)
2484    }
2485
2486    fn with_root_span(node_id: NodeId, path_span: Span, root_span: Span) -> Finalize {
2487        Finalize { node_id, path_span, root_span, report_private: true, used: Used::Other }
2488    }
2489}
2490
2491pub fn provide(providers: &mut Providers) {
2492    providers.registered_tools = macros::registered_tools;
2493}
2494
2495mod ref_mut {
2496    use std::ops::Deref;
2497
2498    /// A wrapper around a mutable reference that conditionally allows mutable access.
2499    pub(crate) struct RefOrMut<'a, T> {
2500        p: &'a mut T,
2501        mutable: bool,
2502    }
2503
2504    impl<'a, T> Deref for RefOrMut<'a, T> {
2505        type Target = T;
2506
2507        fn deref(&self) -> &Self::Target {
2508            self.p
2509        }
2510    }
2511
2512    impl<'a, T> AsRef<T> for RefOrMut<'a, T> {
2513        fn as_ref(&self) -> &T {
2514            self.p
2515        }
2516    }
2517
2518    impl<'a, T> RefOrMut<'a, T> {
2519        pub(crate) fn new(p: &'a mut T, mutable: bool) -> Self {
2520            RefOrMut { p, mutable }
2521        }
2522
2523        /// This is needed because this wraps a `&mut T` and is therefore not `Copy`.
2524        pub(crate) fn reborrow(&mut self) -> RefOrMut<'_, T> {
2525            RefOrMut { p: self.p, mutable: self.mutable }
2526        }
2527
2528        /// Returns a mutable reference to the inner value if allowed.
2529        ///
2530        /// # Panics
2531        /// Panics if the `mutable` flag is false.
2532        #[track_caller]
2533        pub(crate) fn get_mut(&mut self) -> &mut T {
2534            match self.mutable {
2535                false => panic!("Can't mutably borrow speculative resolver"),
2536                true => self.p,
2537            }
2538        }
2539
2540        /// Returns a mutable reference to the inner value without checking if
2541        /// it's in a mutable state.
2542        pub(crate) fn get_mut_unchecked(&mut self) -> &mut T {
2543            self.p
2544        }
2545    }
2546}
2547
2548/// A wrapper around `&mut Resolver` that may be mutable or immutable, depending on a conditions.
2549///
2550/// `Cm` stands for "conditionally mutable".
2551///
2552/// Prefer constructing it through [`Resolver::cm`] to ensure correctness.
2553type CmResolver<'r, 'ra, 'tcx> = ref_mut::RefOrMut<'r, Resolver<'ra, 'tcx>>;