rustc_parse/parser/path.rs
1use std::mem;
2
3use ast::token::IdentIsRaw;
4use rustc_ast::token::{self, MetaVarKind, Token, TokenKind};
5use rustc_ast::{
6 self as ast, AngleBracketedArg, AngleBracketedArgs, AnonConst, AssocItemConstraint,
7 AssocItemConstraintKind, BlockCheckMode, GenericArg, GenericArgs, Generics, ParenthesizedArgs,
8 Path, PathSegment, QSelf,
9};
10use rustc_errors::{Applicability, Diag, PResult};
11use rustc_span::{BytePos, Ident, Span, kw, sym};
12use thin_vec::ThinVec;
13use tracing::debug;
14
15use super::ty::{AllowPlus, RecoverQPath, RecoverReturnSign};
16use super::{Parser, Restrictions, TokenType};
17use crate::ast::{PatKind, TyKind};
18use crate::errors::{
19 self, AttributeOnEmptyType, AttributeOnGenericArg, FnPathFoundNamedParams,
20 PathFoundAttributeInParams, PathFoundCVariadicParams, PathSingleColon, PathTripleColon,
21};
22use crate::exp;
23use crate::parser::{CommaRecoveryMode, ExprKind, RecoverColon, RecoverComma};
24
25/// Specifies how to parse a path.
26#[derive(Copy, Clone, PartialEq)]
27pub(super) enum PathStyle {
28 /// In some contexts, notably in expressions, paths with generic arguments are ambiguous
29 /// with something else. For example, in expressions `segment < ....` can be interpreted
30 /// as a comparison and `segment ( ....` can be interpreted as a function call.
31 /// In all such contexts the non-path interpretation is preferred by default for practical
32 /// reasons, but the path interpretation can be forced by the disambiguator `::`, e.g.
33 /// `x<y>` - comparisons, `x::<y>` - unambiguously a path.
34 ///
35 /// Also, a path may never be followed by a `:`. This means that we can eagerly recover if
36 /// we encounter it.
37 Expr,
38 /// The same as `Expr`, but may be followed by a `:`.
39 /// For example, this code:
40 /// ```rust
41 /// struct S;
42 ///
43 /// let S: S;
44 /// // ^ Followed by a `:`
45 /// ```
46 Pat,
47 /// In other contexts, notably in types, no ambiguity exists and paths can be written
48 /// without the disambiguator, e.g., `x<y>` - unambiguously a path.
49 /// Paths with disambiguators are still accepted, `x::<Y>` - unambiguously a path too.
50 Type,
51 /// A path with generic arguments disallowed, e.g., `foo::bar::Baz`, used in imports,
52 /// visibilities or attributes.
53 /// Technically, this variant is unnecessary and e.g., `Expr` can be used instead
54 /// (paths in "mod" contexts have to be checked later for absence of generic arguments
55 /// anyway, due to macros), but it is used to avoid weird suggestions about expected
56 /// tokens when something goes wrong.
57 Mod,
58}
59
60impl PathStyle {
61 fn has_generic_ambiguity(&self) -> bool {
62 matches!(self, Self::Expr | Self::Pat)
63 }
64}
65
66impl<'a> Parser<'a> {
67 /// Parses a qualified path.
68 /// Assumes that the leading `<` has been parsed already.
69 ///
70 /// `qualified_path = <type [as trait_ref]>::path`
71 ///
72 /// # Examples
73 /// `<T>::default`
74 /// `<T as U>::a`
75 /// `<T as U>::F::a<S>` (without disambiguator)
76 /// `<T as U>::F::a::<S>` (with disambiguator)
77 pub(super) fn parse_qpath(&mut self, style: PathStyle) -> PResult<'a, (Box<QSelf>, Path)> {
78 let lo = self.prev_token.span;
79 let ty = self.parse_ty()?;
80
81 // `path` will contain the prefix of the path up to the `>`,
82 // if any (e.g., `U` in the `<T as U>::*` examples
83 // above). `path_span` has the span of that path, or an empty
84 // span in the case of something like `<T>::Bar`.
85 let (mut path, path_span);
86 if self.eat_keyword(exp!(As)) {
87 let path_lo = self.token.span;
88 path = self.parse_path(PathStyle::Type)?;
89 path_span = path_lo.to(self.prev_token.span);
90 } else {
91 path_span = self.token.span.to(self.token.span);
92 path = ast::Path { segments: ThinVec::new(), span: path_span, tokens: None };
93 }
94
95 // See doc comment for `unmatched_angle_bracket_count`.
96 self.expect(exp!(Gt))?;
97 if self.unmatched_angle_bracket_count > 0 {
98 self.unmatched_angle_bracket_count -= 1;
99 debug!("parse_qpath: (decrement) count={:?}", self.unmatched_angle_bracket_count);
100 }
101
102 let is_import_coupler = self.is_import_coupler();
103 if !is_import_coupler && !self.recover_colon_before_qpath_proj() {
104 self.expect(exp!(PathSep))?;
105 }
106
107 let qself = Box::new(QSelf { ty, path_span, position: path.segments.len() });
108 if !is_import_coupler {
109 self.parse_path_segments(&mut path.segments, style, None)?;
110 }
111
112 Ok((
113 qself,
114 Path { segments: path.segments, span: lo.to(self.prev_token.span), tokens: None },
115 ))
116 }
117
118 /// Recover from an invalid single colon, when the user likely meant a qualified path.
119 /// We avoid emitting this if not followed by an identifier, as our assumption that the user
120 /// intended this to be a qualified path may not be correct.
121 ///
122 /// ```ignore (diagnostics)
123 /// <Bar as Baz<T>>:Qux
124 /// ^ help: use double colon
125 /// ```
126 fn recover_colon_before_qpath_proj(&mut self) -> bool {
127 if !self.check_noexpect(&TokenKind::Colon)
128 || self.look_ahead(1, |t| !t.is_non_reserved_ident())
129 {
130 return false;
131 }
132
133 self.bump(); // colon
134
135 self.dcx()
136 .struct_span_err(
137 self.prev_token.span,
138 "found single colon before projection in qualified path",
139 )
140 .with_span_suggestion(
141 self.prev_token.span,
142 "use double colon",
143 "::",
144 Applicability::MachineApplicable,
145 )
146 .emit();
147
148 true
149 }
150
151 pub(super) fn parse_path(&mut self, style: PathStyle) -> PResult<'a, Path> {
152 self.parse_path_inner(style, None)
153 }
154
155 /// Parses simple paths.
156 ///
157 /// `path = [::] segment+`
158 /// `segment = ident | ident[::]<args> | ident[::](args) [-> type]`
159 ///
160 /// # Examples
161 /// `a::b::C<D>` (without disambiguator)
162 /// `a::b::C::<D>` (with disambiguator)
163 /// `Fn(Args)` (without disambiguator)
164 /// `Fn::(Args)` (with disambiguator)
165 pub(super) fn parse_path_inner(
166 &mut self,
167 style: PathStyle,
168 ty_generics: Option<&Generics>,
169 ) -> PResult<'a, Path> {
170 let reject_generics_if_mod_style = |parser: &Parser<'_>, path: Path| {
171 // Ensure generic arguments don't end up in attribute paths, such as:
172 //
173 // macro_rules! m {
174 // ($p:path) => { #[$p] struct S; }
175 // }
176 //
177 // m!(inline<u8>); //~ ERROR: unexpected generic arguments in path
178 //
179 if style == PathStyle::Mod && path.segments.iter().any(|segment| segment.args.is_some())
180 {
181 let span = path
182 .segments
183 .iter()
184 .filter_map(|segment| segment.args.as_ref())
185 .map(|arg| arg.span())
186 .collect::<Vec<_>>();
187 parser.dcx().emit_err(errors::GenericsInPath { span });
188 // Ignore these arguments to prevent unexpected behaviors.
189 let segments = path
190 .segments
191 .iter()
192 .map(|segment| PathSegment { ident: segment.ident, id: segment.id, args: None })
193 .collect();
194 Path { segments, ..path }
195 } else {
196 path
197 }
198 };
199
200 if let Some(path) =
201 self.eat_metavar_seq(MetaVarKind::Path, |this| this.parse_path(PathStyle::Type))
202 {
203 return Ok(reject_generics_if_mod_style(self, path));
204 }
205
206 // If we have a `ty` metavar in the form of a path, reparse it directly as a path, instead
207 // of reparsing it as a `ty` and then extracting the path.
208 if let Some(path) = self.eat_metavar_seq(MetaVarKind::Ty { is_path: true }, |this| {
209 this.parse_path(PathStyle::Type)
210 }) {
211 return Ok(reject_generics_if_mod_style(self, path));
212 }
213
214 let lo = self.token.span;
215 let mut segments = ThinVec::new();
216 let mod_sep_ctxt = self.token.span.ctxt();
217 if self.eat_path_sep() {
218 segments.push(PathSegment::path_root(lo.shrink_to_lo().with_ctxt(mod_sep_ctxt)));
219 }
220 self.parse_path_segments(&mut segments, style, ty_generics)?;
221 Ok(Path { segments, span: lo.to(self.prev_token.span), tokens: None })
222 }
223
224 pub(super) fn parse_path_segments(
225 &mut self,
226 segments: &mut ThinVec<PathSegment>,
227 style: PathStyle,
228 ty_generics: Option<&Generics>,
229 ) -> PResult<'a, ()> {
230 loop {
231 let segment = self.parse_path_segment(style, ty_generics)?;
232 if style.has_generic_ambiguity() {
233 // In order to check for trailing angle brackets, we must have finished
234 // recursing (`parse_path_segment` can indirectly call this function),
235 // that is, the next token must be the highlighted part of the below example:
236 //
237 // `Foo::<Bar as Baz<T>>::Qux`
238 // ^ here
239 //
240 // As opposed to the below highlight (if we had only finished the first
241 // recursion):
242 //
243 // `Foo::<Bar as Baz<T>>::Qux`
244 // ^ here
245 //
246 // `PathStyle::Expr` is only provided at the root invocation and never in
247 // `parse_path_segment` to recurse and therefore can be checked to maintain
248 // this invariant.
249 self.check_trailing_angle_brackets(&segment, &[exp!(PathSep)]);
250 }
251 segments.push(segment);
252
253 if self.is_import_coupler() || !self.eat_path_sep() {
254 // IMPORTANT: We can *only ever* treat single colons as typo'ed double colons in
255 // expression contexts (!) since only there paths cannot possibly be followed by
256 // a colon and still form a syntactically valid construct. In pattern contexts,
257 // a path may be followed by a type annotation. E.g., `let pat:ty`. In type
258 // contexts, a path may be followed by a list of bounds. E.g., `where ty:bound`.
259 if self.may_recover()
260 && style == PathStyle::Expr // (!)
261 && self.token == token::Colon
262 && self.look_ahead(1, |token| token.is_non_reserved_ident())
263 {
264 // Emit a special error message for `a::b:c` to help users
265 // otherwise, `a: c` might have meant to introduce a new binding
266 if self.token.span.lo() == self.prev_token.span.hi()
267 && self.look_ahead(1, |token| self.token.span.hi() == token.span.lo())
268 {
269 self.bump(); // bump past the colon
270 self.dcx().emit_err(PathSingleColon {
271 span: self.prev_token.span,
272 suggestion: self.prev_token.span.shrink_to_hi(),
273 });
274 }
275 continue;
276 }
277
278 return Ok(());
279 }
280 }
281 }
282
283 /// Eat `::` or, potentially, `:::`.
284 #[must_use]
285 pub(super) fn eat_path_sep(&mut self) -> bool {
286 let result = self.eat(exp!(PathSep));
287 if result && self.may_recover() {
288 if self.eat_noexpect(&token::Colon) {
289 self.dcx().emit_err(PathTripleColon { span: self.prev_token.span });
290 }
291 }
292 result
293 }
294
295 pub(super) fn parse_path_segment(
296 &mut self,
297 style: PathStyle,
298 ty_generics: Option<&Generics>,
299 ) -> PResult<'a, PathSegment> {
300 let ident = self.parse_path_segment_ident()?;
301 let is_args_start = |token: &Token| {
302 matches!(token.kind, token::Lt | token::Shl | token::OpenParen | token::LArrow)
303 };
304 let check_args_start = |this: &mut Self| {
305 this.expected_token_types.insert(TokenType::Lt);
306 this.expected_token_types.insert(TokenType::OpenParen);
307 is_args_start(&this.token)
308 };
309
310 Ok(
311 if style == PathStyle::Type && check_args_start(self)
312 || style != PathStyle::Mod && self.check_path_sep_and_look_ahead(is_args_start)
313 {
314 // We use `style == PathStyle::Expr` to check if this is in a recursion or not. If
315 // it isn't, then we reset the unmatched angle bracket count as we're about to start
316 // parsing a new path.
317 if style == PathStyle::Expr {
318 self.unmatched_angle_bracket_count = 0;
319 }
320
321 // Generic arguments are found - `<`, `(`, `::<` or `::(`.
322 // First, eat `::` if it exists.
323 let _ = self.eat_path_sep();
324
325 let lo = self.token.span;
326 let args = if self.eat_lt() {
327 // `<'a, T, A = U>`
328 let args = self.parse_angle_args_with_leading_angle_bracket_recovery(
329 style,
330 lo,
331 ty_generics,
332 )?;
333 self.expect_gt().map_err(|mut err| {
334 // Try to recover a `:` into a `::`
335 if self.token == token::Colon
336 && self.look_ahead(1, |token| token.is_non_reserved_ident())
337 {
338 err.cancel();
339 err = self.dcx().create_err(PathSingleColon {
340 span: self.token.span,
341 suggestion: self.prev_token.span.shrink_to_hi(),
342 });
343 }
344 // Attempt to find places where a missing `>` might belong.
345 else if let Some(arg) = args
346 .iter()
347 .rev()
348 .find(|arg| !matches!(arg, AngleBracketedArg::Constraint(_)))
349 {
350 err.span_suggestion_verbose(
351 arg.span().shrink_to_hi(),
352 "you might have meant to end the type parameters here",
353 ">",
354 Applicability::MaybeIncorrect,
355 );
356 }
357 err
358 })?;
359 let span = lo.to(self.prev_token.span);
360 AngleBracketedArgs { args, span }.into()
361 } else if self.token == token::OpenParen
362 // FIXME(return_type_notation): Could also recover `...` here.
363 && self.look_ahead(1, |t| *t == token::DotDot)
364 {
365 self.bump(); // (
366 self.bump(); // ..
367 self.expect(exp!(CloseParen))?;
368 let span = lo.to(self.prev_token.span);
369
370 self.psess.gated_spans.gate(sym::return_type_notation, span);
371
372 let prev_lo = self.prev_token.span.shrink_to_hi();
373 if self.eat_noexpect(&token::RArrow) {
374 let lo = self.prev_token.span;
375 let ty = self.parse_ty()?;
376 let span = lo.to(ty.span);
377 let suggestion = prev_lo.to(ty.span);
378 self.dcx()
379 .emit_err(errors::BadReturnTypeNotationOutput { span, suggestion });
380 }
381
382 Box::new(ast::GenericArgs::ParenthesizedElided(span))
383 } else {
384 // `(T, U) -> R`
385
386 let prev_token_before_parsing = self.prev_token;
387 let token_before_parsing = self.token;
388 let mut snapshot = None;
389 if self.may_recover()
390 && prev_token_before_parsing == token::PathSep
391 && (style == PathStyle::Expr && self.token.can_begin_expr()
392 || style == PathStyle::Pat
393 && self.token.can_begin_pattern(token::NtPatKind::PatParam {
394 inferred: false,
395 }))
396 {
397 snapshot = Some(self.create_snapshot_for_diagnostic());
398 }
399
400 let dcx = self.dcx();
401 let parse_params_result = self.parse_paren_comma_seq(|p| {
402 let param = p.parse_param_general(|_| false, false, false);
403 param.map(move |param| {
404 if !matches!(param.pat.kind, PatKind::Missing) {
405 dcx.emit_err(FnPathFoundNamedParams {
406 named_param_span: param.pat.span,
407 });
408 }
409 if matches!(param.ty.kind, TyKind::CVarArgs) {
410 dcx.emit_err(PathFoundCVariadicParams { span: param.pat.span });
411 }
412 if !param.attrs.is_empty() {
413 dcx.emit_err(PathFoundAttributeInParams {
414 span: param.attrs[0].span,
415 });
416 }
417 param.ty
418 })
419 });
420
421 let (inputs, _) = match parse_params_result {
422 Ok(output) => output,
423 Err(mut error) if prev_token_before_parsing == token::PathSep => {
424 error.span_label(
425 prev_token_before_parsing.span.to(token_before_parsing.span),
426 "while parsing this parenthesized list of type arguments starting here",
427 );
428
429 if let Some(mut snapshot) = snapshot {
430 snapshot.recover_fn_call_leading_path_sep(
431 style,
432 prev_token_before_parsing,
433 &mut error,
434 )
435 }
436
437 return Err(error);
438 }
439 Err(error) => return Err(error),
440 };
441 let inputs_span = lo.to(self.prev_token.span);
442 let output =
443 self.parse_ret_ty(AllowPlus::No, RecoverQPath::No, RecoverReturnSign::No)?;
444 let span = ident.span.to(self.prev_token.span);
445 ParenthesizedArgs { span, inputs, inputs_span, output }.into()
446 };
447
448 PathSegment { ident, args: Some(args), id: ast::DUMMY_NODE_ID }
449 } else {
450 // Generic arguments are not found.
451 PathSegment::from_ident(ident)
452 },
453 )
454 }
455
456 pub(super) fn parse_path_segment_ident(&mut self) -> PResult<'a, Ident> {
457 match self.token.ident() {
458 Some((ident, IdentIsRaw::No)) if ident.is_path_segment_keyword() => {
459 self.bump();
460 Ok(ident)
461 }
462 _ => self.parse_ident(),
463 }
464 }
465
466 /// Recover `$path::(...)` as `$path(...)`.
467 ///
468 /// ```ignore (diagnostics)
469 /// foo::(420, "bar")
470 /// ^^ remove extra separator to make the function call
471 /// // or
472 /// match x {
473 /// Foo::(420, "bar") => { ... },
474 /// ^^ remove extra separator to turn this into tuple struct pattern
475 /// _ => { ... },
476 /// }
477 /// ```
478 fn recover_fn_call_leading_path_sep(
479 &mut self,
480 style: PathStyle,
481 prev_token_before_parsing: Token,
482 error: &mut Diag<'_>,
483 ) {
484 match style {
485 PathStyle::Expr
486 if let Ok(_) = self
487 .parse_paren_comma_seq(|p| p.parse_expr())
488 .map_err(|error| error.cancel()) => {}
489 PathStyle::Pat
490 if let Ok(_) = self
491 .parse_paren_comma_seq(|p| {
492 p.parse_pat_allow_top_guard(
493 None,
494 RecoverComma::No,
495 RecoverColon::No,
496 CommaRecoveryMode::LikelyTuple,
497 )
498 })
499 .map_err(|error| error.cancel()) => {}
500 _ => {
501 return;
502 }
503 }
504
505 if let token::PathSep | token::RArrow = self.token.kind {
506 return;
507 }
508
509 error.span_suggestion_verbose(
510 prev_token_before_parsing.span,
511 format!(
512 "consider removing the `::` here to {}",
513 match style {
514 PathStyle::Expr => "call the expression",
515 PathStyle::Pat => "turn this into a tuple struct pattern",
516 _ => {
517 return;
518 }
519 }
520 ),
521 "",
522 Applicability::MaybeIncorrect,
523 );
524 }
525
526 /// Parses generic args (within a path segment) with recovery for extra leading angle brackets.
527 /// For the purposes of understanding the parsing logic of generic arguments, this function
528 /// can be thought of being the same as just calling `self.parse_angle_args()` if the source
529 /// had the correct amount of leading angle brackets.
530 ///
531 /// ```ignore (diagnostics)
532 /// bar::<<<<T as Foo>::Output>();
533 /// ^^ help: remove extra angle brackets
534 /// ```
535 fn parse_angle_args_with_leading_angle_bracket_recovery(
536 &mut self,
537 style: PathStyle,
538 lo: Span,
539 ty_generics: Option<&Generics>,
540 ) -> PResult<'a, ThinVec<AngleBracketedArg>> {
541 // We need to detect whether there are extra leading left angle brackets and produce an
542 // appropriate error and suggestion. This cannot be implemented by looking ahead at
543 // upcoming tokens for a matching `>` character - if there are unmatched `<` tokens
544 // then there won't be matching `>` tokens to find.
545 //
546 // To explain how this detection works, consider the following example:
547 //
548 // ```ignore (diagnostics)
549 // bar::<<<<T as Foo>::Output>();
550 // ^^ help: remove extra angle brackets
551 // ```
552 //
553 // Parsing of the left angle brackets starts in this function. We start by parsing the
554 // `<` token (incrementing the counter of unmatched angle brackets on `Parser` via
555 // `eat_lt`):
556 //
557 // *Upcoming tokens:* `<<<<T as Foo>::Output>;`
558 // *Unmatched count:* 1
559 // *`parse_path_segment` calls deep:* 0
560 //
561 // This has the effect of recursing as this function is called if a `<` character
562 // is found within the expected generic arguments:
563 //
564 // *Upcoming tokens:* `<<<T as Foo>::Output>;`
565 // *Unmatched count:* 2
566 // *`parse_path_segment` calls deep:* 1
567 //
568 // Eventually we will have recursed until having consumed all of the `<` tokens and
569 // this will be reflected in the count:
570 //
571 // *Upcoming tokens:* `T as Foo>::Output>;`
572 // *Unmatched count:* 4
573 // `parse_path_segment` calls deep:* 3
574 //
575 // The parser will continue until reaching the first `>` - this will decrement the
576 // unmatched angle bracket count and return to the parent invocation of this function
577 // having succeeded in parsing:
578 //
579 // *Upcoming tokens:* `::Output>;`
580 // *Unmatched count:* 3
581 // *`parse_path_segment` calls deep:* 2
582 //
583 // This will continue until the next `>` character which will also return successfully
584 // to the parent invocation of this function and decrement the count:
585 //
586 // *Upcoming tokens:* `;`
587 // *Unmatched count:* 2
588 // *`parse_path_segment` calls deep:* 1
589 //
590 // At this point, this function will expect to find another matching `>` character but
591 // won't be able to and will return an error. This will continue all the way up the
592 // call stack until the first invocation:
593 //
594 // *Upcoming tokens:* `;`
595 // *Unmatched count:* 2
596 // *`parse_path_segment` calls deep:* 0
597 //
598 // In doing this, we have managed to work out how many unmatched leading left angle
599 // brackets there are, but we cannot recover as the unmatched angle brackets have
600 // already been consumed. To remedy this, we keep a snapshot of the parser state
601 // before we do the above. We can then inspect whether we ended up with a parsing error
602 // and unmatched left angle brackets and if so, restore the parser state before we
603 // consumed any `<` characters to emit an error and consume the erroneous tokens to
604 // recover by attempting to parse again.
605 //
606 // In practice, the recursion of this function is indirect and there will be other
607 // locations that consume some `<` characters - as long as we update the count when
608 // this happens, it isn't an issue.
609
610 let is_first_invocation = style == PathStyle::Expr;
611 // Take a snapshot before attempting to parse - we can restore this later.
612 let snapshot = is_first_invocation.then(|| self.clone());
613
614 self.angle_bracket_nesting += 1;
615 debug!("parse_generic_args_with_leading_angle_bracket_recovery: (snapshotting)");
616 match self.parse_angle_args(ty_generics) {
617 Ok(args) => {
618 self.angle_bracket_nesting -= 1;
619 Ok(args)
620 }
621 Err(e) if self.angle_bracket_nesting > 10 => {
622 self.angle_bracket_nesting -= 1;
623 // When encountering severely malformed code where there are several levels of
624 // nested unclosed angle args (`f::<f::<f::<f::<...`), we avoid severe O(n^2)
625 // behavior by bailing out earlier (#117080).
626 e.emit().raise_fatal();
627 }
628 Err(e) if is_first_invocation && self.unmatched_angle_bracket_count > 0 => {
629 self.angle_bracket_nesting -= 1;
630
631 // Swap `self` with our backup of the parser state before attempting to parse
632 // generic arguments.
633 let snapshot = mem::replace(self, snapshot.unwrap());
634
635 // Eat the unmatched angle brackets.
636 let all_angle_brackets = (0..snapshot.unmatched_angle_bracket_count)
637 .fold(true, |a, _| a && self.eat_lt());
638
639 if !all_angle_brackets {
640 // If there are other tokens in between the extraneous `<`s, we cannot simply
641 // suggest to remove them. This check also prevents us from accidentally ending
642 // up in the middle of a multibyte character (issue #84104).
643 let _ = mem::replace(self, snapshot);
644 Err(e)
645 } else {
646 // Cancel error from being unable to find `>`. We know the error
647 // must have been this due to a non-zero unmatched angle bracket
648 // count.
649 e.cancel();
650
651 debug!(
652 "parse_generic_args_with_leading_angle_bracket_recovery: (snapshot failure) \
653 snapshot.count={:?}",
654 snapshot.unmatched_angle_bracket_count,
655 );
656
657 // Make a span over ${unmatched angle bracket count} characters.
658 // This is safe because `all_angle_brackets` ensures that there are only `<`s,
659 // i.e. no multibyte characters, in this range.
660 let span = lo
661 .with_hi(lo.lo() + BytePos(snapshot.unmatched_angle_bracket_count.into()));
662 self.dcx().emit_err(errors::UnmatchedAngle {
663 span,
664 plural: snapshot.unmatched_angle_bracket_count > 1,
665 });
666
667 // Try again without unmatched angle bracket characters.
668 self.parse_angle_args(ty_generics)
669 }
670 }
671 Err(e) => {
672 self.angle_bracket_nesting -= 1;
673 Err(e)
674 }
675 }
676 }
677
678 /// Parses (possibly empty) list of generic arguments / associated item constraints,
679 /// possibly including trailing comma.
680 pub(super) fn parse_angle_args(
681 &mut self,
682 ty_generics: Option<&Generics>,
683 ) -> PResult<'a, ThinVec<AngleBracketedArg>> {
684 let mut args = ThinVec::new();
685 while let Some(arg) = self.parse_angle_arg(ty_generics)? {
686 args.push(arg);
687 if !self.eat(exp!(Comma)) {
688 if self.check_noexpect(&TokenKind::Semi)
689 && self.look_ahead(1, |t| t.is_ident() || t.is_lifetime())
690 {
691 // Add `>` to the list of expected tokens.
692 self.check(exp!(Gt));
693 // Handle `,` to `;` substitution
694 let mut err = self.unexpected().unwrap_err();
695 self.bump();
696 err.span_suggestion_verbose(
697 self.prev_token.span.until(self.token.span),
698 "use a comma to separate type parameters",
699 ", ",
700 Applicability::MachineApplicable,
701 );
702 err.emit();
703 continue;
704 }
705 if !self.token.kind.should_end_const_arg()
706 && self.handle_ambiguous_unbraced_const_arg(&mut args)?
707 {
708 // We've managed to (partially) recover, so continue trying to parse
709 // arguments.
710 continue;
711 }
712 break;
713 }
714 }
715 Ok(args)
716 }
717
718 /// Parses a single argument in the angle arguments `<...>` of a path segment.
719 fn parse_angle_arg(
720 &mut self,
721 ty_generics: Option<&Generics>,
722 ) -> PResult<'a, Option<AngleBracketedArg>> {
723 let lo = self.token.span;
724 let arg = self.parse_generic_arg(ty_generics)?;
725 match arg {
726 Some(arg) => {
727 // we are using noexpect here because we first want to find out if either `=` or `:`
728 // is present and then use that info to push the other token onto the tokens list
729 let separated =
730 self.check_noexpect(&token::Colon) || self.check_noexpect(&token::Eq);
731 if separated && (self.check(exp!(Colon)) | self.check(exp!(Eq))) {
732 let arg_span = arg.span();
733 let (binder, ident, gen_args) = match self.get_ident_from_generic_arg(&arg) {
734 Ok(ident_gen_args) => ident_gen_args,
735 Err(()) => return Ok(Some(AngleBracketedArg::Arg(arg))),
736 };
737 if binder {
738 // FIXME(compiler-errors): this could be improved by suggesting lifting
739 // this up to the trait, at least before this becomes real syntax.
740 // e.g. `Trait<for<'a> Assoc = Ty>` -> `for<'a> Trait<Assoc = Ty>`
741 return Err(self.dcx().struct_span_err(
742 arg_span,
743 "`for<...>` is not allowed on associated type bounds",
744 ));
745 }
746 let kind = if self.eat(exp!(Colon)) {
747 AssocItemConstraintKind::Bound { bounds: self.parse_generic_bounds()? }
748 } else if self.eat(exp!(Eq)) {
749 self.parse_assoc_equality_term(
750 ident,
751 gen_args.as_ref(),
752 self.prev_token.span,
753 )?
754 } else {
755 unreachable!();
756 };
757
758 let span = lo.to(self.prev_token.span);
759
760 let constraint =
761 AssocItemConstraint { id: ast::DUMMY_NODE_ID, ident, gen_args, kind, span };
762 Ok(Some(AngleBracketedArg::Constraint(constraint)))
763 } else {
764 // we only want to suggest `:` and `=` in contexts where the previous token
765 // is an ident and the current token or the next token is an ident
766 if self.prev_token.is_ident()
767 && (self.token.is_ident() || self.look_ahead(1, |token| token.is_ident()))
768 {
769 self.check(exp!(Colon));
770 self.check(exp!(Eq));
771 }
772 Ok(Some(AngleBracketedArg::Arg(arg)))
773 }
774 }
775 _ => Ok(None),
776 }
777 }
778
779 /// Parse the term to the right of an associated item equality constraint.
780 ///
781 /// That is, parse `$term` in `Item = $term` where `$term` is a type or
782 /// a const expression (wrapped in curly braces if complex).
783 fn parse_assoc_equality_term(
784 &mut self,
785 ident: Ident,
786 gen_args: Option<&GenericArgs>,
787 eq: Span,
788 ) -> PResult<'a, AssocItemConstraintKind> {
789 let arg = self.parse_generic_arg(None)?;
790 let span = ident.span.to(self.prev_token.span);
791 let term = match arg {
792 Some(GenericArg::Type(ty)) => ty.into(),
793 Some(GenericArg::Const(c)) => {
794 self.psess.gated_spans.gate(sym::associated_const_equality, span);
795 c.into()
796 }
797 Some(GenericArg::Lifetime(lt)) => {
798 let guar = self.dcx().emit_err(errors::LifetimeInEqConstraint {
799 span: lt.ident.span,
800 lifetime: lt.ident,
801 binding_label: span,
802 colon_sugg: gen_args
803 .map_or(ident.span, |args| args.span())
804 .between(lt.ident.span),
805 });
806 self.mk_ty(lt.ident.span, ast::TyKind::Err(guar)).into()
807 }
808 None => {
809 let after_eq = eq.shrink_to_hi();
810 let before_next = self.token.span.shrink_to_lo();
811 let mut err = self
812 .dcx()
813 .struct_span_err(after_eq.to(before_next), "missing type to the right of `=`");
814 if matches!(self.token.kind, token::Comma | token::Gt) {
815 err.span_suggestion(
816 self.psess.source_map().next_point(eq).to(before_next),
817 "to constrain the associated type, add a type after `=`",
818 " TheType",
819 Applicability::HasPlaceholders,
820 );
821 err.span_suggestion(
822 eq.to(before_next),
823 format!("remove the `=` if `{ident}` is a type"),
824 "",
825 Applicability::MaybeIncorrect,
826 )
827 } else {
828 err.span_label(
829 self.token.span,
830 format!("expected type, found {}", super::token_descr(&self.token)),
831 )
832 };
833 return Err(err);
834 }
835 };
836 Ok(AssocItemConstraintKind::Equality { term })
837 }
838
839 /// We do not permit arbitrary expressions as const arguments. They must be one of:
840 /// - An expression surrounded in `{}`.
841 /// - A literal.
842 /// - A numeric literal prefixed by `-`.
843 /// - A single-segment path.
844 pub(super) fn expr_is_valid_const_arg(&self, expr: &Box<rustc_ast::Expr>) -> bool {
845 match &expr.kind {
846 ast::ExprKind::Block(_, _)
847 | ast::ExprKind::Lit(_)
848 | ast::ExprKind::IncludedBytes(..) => true,
849 ast::ExprKind::Unary(ast::UnOp::Neg, expr) => {
850 matches!(expr.kind, ast::ExprKind::Lit(_))
851 }
852 // We can only resolve single-segment paths at the moment, because multi-segment paths
853 // require type-checking: see `visit_generic_arg` in `src/librustc_resolve/late.rs`.
854 ast::ExprKind::Path(None, path)
855 if let [segment] = path.segments.as_slice()
856 && segment.args.is_none() =>
857 {
858 true
859 }
860 _ => false,
861 }
862 }
863
864 /// Parse a const argument, e.g. `<3>`. It is assumed the angle brackets will be parsed by
865 /// the caller.
866 pub(super) fn parse_const_arg(&mut self) -> PResult<'a, AnonConst> {
867 // Parse const argument.
868 let value = if self.token.kind == token::OpenBrace {
869 self.parse_expr_block(None, self.token.span, BlockCheckMode::Default)?
870 } else {
871 self.handle_unambiguous_unbraced_const_arg()?
872 };
873 Ok(AnonConst { id: ast::DUMMY_NODE_ID, value })
874 }
875
876 /// Parse a generic argument in a path segment.
877 /// This does not include constraints, e.g., `Item = u8`, which is handled in `parse_angle_arg`.
878 pub(super) fn parse_generic_arg(
879 &mut self,
880 ty_generics: Option<&Generics>,
881 ) -> PResult<'a, Option<GenericArg>> {
882 let mut attr_span: Option<Span> = None;
883 if self.token == token::Pound && self.look_ahead(1, |t| *t == token::OpenBracket) {
884 let attrs_wrapper = self.parse_outer_attributes()?;
885 let raw_attrs = attrs_wrapper.take_for_recovery(self.psess);
886 attr_span = Some(raw_attrs[0].span.to(raw_attrs.last().unwrap().span));
887 }
888 let start = self.token.span;
889 let arg = if self.check_lifetime() && self.look_ahead(1, |t| !t.is_like_plus()) {
890 // Parse lifetime argument.
891 GenericArg::Lifetime(self.expect_lifetime())
892 } else if self.check_const_arg() {
893 // Parse const argument.
894 GenericArg::Const(self.parse_const_arg()?)
895 } else if self.check_type() {
896 // Parse type argument.
897
898 // Proactively create a parser snapshot enabling us to rewind and try to reparse the
899 // input as a const expression in case we fail to parse a type. If we successfully
900 // do so, we will report an error that it needs to be wrapped in braces.
901 let mut snapshot = None;
902 if self.may_recover() && self.token.can_begin_expr() {
903 snapshot = Some(self.create_snapshot_for_diagnostic());
904 }
905
906 match self.parse_ty() {
907 Ok(ty) => {
908 // Since the type parser recovers from some malformed slice and array types and
909 // successfully returns a type, we need to look for `TyKind::Err`s in the
910 // type to determine if error recovery has occurred and if the input is not a
911 // syntactically valid type after all.
912 if let ast::TyKind::Slice(inner_ty) | ast::TyKind::Array(inner_ty, _) = &ty.kind
913 && let ast::TyKind::Err(_) = inner_ty.kind
914 && let Some(snapshot) = snapshot
915 && let Some(expr) =
916 self.recover_unbraced_const_arg_that_can_begin_ty(snapshot)
917 {
918 return Ok(Some(
919 self.dummy_const_arg_needs_braces(
920 self.dcx()
921 .struct_span_err(expr.span, "invalid const generic expression"),
922 expr.span,
923 ),
924 ));
925 }
926
927 GenericArg::Type(ty)
928 }
929 Err(err) => {
930 if let Some(snapshot) = snapshot
931 && let Some(expr) =
932 self.recover_unbraced_const_arg_that_can_begin_ty(snapshot)
933 {
934 return Ok(Some(self.dummy_const_arg_needs_braces(err, expr.span)));
935 }
936 // Try to recover from possible `const` arg without braces.
937 return self.recover_const_arg(start, err).map(Some);
938 }
939 }
940 } else if self.token.is_keyword(kw::Const) {
941 return self.recover_const_param_declaration(ty_generics);
942 } else if let Some(attr_span) = attr_span {
943 let diag = self.dcx().create_err(AttributeOnEmptyType { span: attr_span });
944 return Err(diag);
945 } else {
946 // Fall back by trying to parse a const-expr expression. If we successfully do so,
947 // then we should report an error that it needs to be wrapped in braces.
948 let snapshot = self.create_snapshot_for_diagnostic();
949 let attrs = self.parse_outer_attributes()?;
950 match self.parse_expr_res(Restrictions::CONST_EXPR, attrs) {
951 Ok((expr, _)) => {
952 return Ok(Some(self.dummy_const_arg_needs_braces(
953 self.dcx().struct_span_err(expr.span, "invalid const generic expression"),
954 expr.span,
955 )));
956 }
957 Err(err) => {
958 self.restore_snapshot(snapshot);
959 err.cancel();
960 return Ok(None);
961 }
962 }
963 };
964
965 if let Some(attr_span) = attr_span {
966 let guar = self.dcx().emit_err(AttributeOnGenericArg {
967 span: attr_span,
968 fix_span: attr_span.until(arg.span()),
969 });
970 return Ok(Some(match arg {
971 GenericArg::Type(_) => GenericArg::Type(self.mk_ty(attr_span, TyKind::Err(guar))),
972 GenericArg::Const(_) => {
973 let error_expr = self.mk_expr(attr_span, ExprKind::Err(guar));
974 GenericArg::Const(AnonConst { id: ast::DUMMY_NODE_ID, value: error_expr })
975 }
976 GenericArg::Lifetime(lt) => GenericArg::Lifetime(lt),
977 }));
978 }
979
980 Ok(Some(arg))
981 }
982
983 /// Given a arg inside of generics, we try to destructure it as if it were the LHS in
984 /// `LHS = ...`, i.e. an associated item binding.
985 /// This returns a bool indicating if there are any `for<'a, 'b>` binder args, the
986 /// identifier, and any GAT arguments.
987 fn get_ident_from_generic_arg(
988 &self,
989 gen_arg: &GenericArg,
990 ) -> Result<(bool, Ident, Option<GenericArgs>), ()> {
991 if let GenericArg::Type(ty) = gen_arg {
992 if let ast::TyKind::Path(qself, path) = &ty.kind
993 && qself.is_none()
994 && let [seg] = path.segments.as_slice()
995 {
996 return Ok((false, seg.ident, seg.args.as_deref().cloned()));
997 } else if let ast::TyKind::TraitObject(bounds, ast::TraitObjectSyntax::None) = &ty.kind
998 && let [ast::GenericBound::Trait(trait_ref)] = bounds.as_slice()
999 && trait_ref.modifiers == ast::TraitBoundModifiers::NONE
1000 && let [seg] = trait_ref.trait_ref.path.segments.as_slice()
1001 {
1002 return Ok((true, seg.ident, seg.args.as_deref().cloned()));
1003 }
1004 }
1005 Err(())
1006 }
1007}