core/cell/
lazy.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
use super::UnsafeCell;
use crate::hint::unreachable_unchecked;
use crate::ops::Deref;
use crate::{fmt, mem};

enum State<T, F> {
    Uninit(F),
    Init(T),
    Poisoned,
}

/// A value which is initialized on the first access.
///
/// For a thread-safe version of this struct, see [`std::sync::LazyLock`].
///
/// [`std::sync::LazyLock`]: ../../std/sync/struct.LazyLock.html
///
/// # Examples
///
/// ```
/// use std::cell::LazyCell;
///
/// let lazy: LazyCell<i32> = LazyCell::new(|| {
///     println!("initializing");
///     92
/// });
/// println!("ready");
/// println!("{}", *lazy);
/// println!("{}", *lazy);
///
/// // Prints:
/// //   ready
/// //   initializing
/// //   92
/// //   92
/// ```
#[stable(feature = "lazy_cell", since = "1.80.0")]
pub struct LazyCell<T, F = fn() -> T> {
    state: UnsafeCell<State<T, F>>,
}

impl<T, F: FnOnce() -> T> LazyCell<T, F> {
    /// Creates a new lazy value with the given initializing function.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::LazyCell;
    ///
    /// let hello = "Hello, World!".to_string();
    ///
    /// let lazy = LazyCell::new(|| hello.to_uppercase());
    ///
    /// assert_eq!(&*lazy, "HELLO, WORLD!");
    /// ```
    #[inline]
    #[stable(feature = "lazy_cell", since = "1.80.0")]
    #[rustc_const_stable(feature = "lazy_cell", since = "1.80.0")]
    pub const fn new(f: F) -> LazyCell<T, F> {
        LazyCell { state: UnsafeCell::new(State::Uninit(f)) }
    }

    /// Consumes this `LazyCell` returning the stored value.
    ///
    /// Returns `Ok(value)` if `Lazy` is initialized and `Err(f)` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(lazy_cell_into_inner)]
    ///
    /// use std::cell::LazyCell;
    ///
    /// let hello = "Hello, World!".to_string();
    ///
    /// let lazy = LazyCell::new(|| hello.to_uppercase());
    ///
    /// assert_eq!(&*lazy, "HELLO, WORLD!");
    /// assert_eq!(LazyCell::into_inner(lazy).ok(), Some("HELLO, WORLD!".to_string()));
    /// ```
    #[unstable(feature = "lazy_cell_into_inner", issue = "125623")]
    pub const fn into_inner(this: Self) -> Result<T, F> {
        match this.state.into_inner() {
            State::Init(data) => Ok(data),
            State::Uninit(f) => Err(f),
            State::Poisoned => panic_poisoned(),
        }
    }

    /// Forces the evaluation of this lazy value and returns a reference to
    /// the result.
    ///
    /// This is equivalent to the `Deref` impl, but is explicit.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cell::LazyCell;
    ///
    /// let lazy = LazyCell::new(|| 92);
    ///
    /// assert_eq!(LazyCell::force(&lazy), &92);
    /// assert_eq!(&*lazy, &92);
    /// ```
    #[inline]
    #[stable(feature = "lazy_cell", since = "1.80.0")]
    pub fn force(this: &LazyCell<T, F>) -> &T {
        // SAFETY:
        // This invalidates any mutable references to the data. The resulting
        // reference lives either until the end of the borrow of `this` (in the
        // initialized case) or is invalidated in `really_init` (in the
        // uninitialized case; `really_init` will create and return a fresh reference).
        let state = unsafe { &*this.state.get() };
        match state {
            State::Init(data) => data,
            // SAFETY: The state is uninitialized.
            State::Uninit(_) => unsafe { LazyCell::really_init(this) },
            State::Poisoned => panic_poisoned(),
        }
    }

    /// Forces the evaluation of this lazy value and returns a mutable reference to
    /// the result.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(lazy_get)]
    /// use std::cell::LazyCell;
    ///
    /// let mut lazy = LazyCell::new(|| 92);
    ///
    /// let p = LazyCell::force_mut(&mut lazy);
    /// assert_eq!(*p, 92);
    /// *p = 44;
    /// assert_eq!(*lazy, 44);
    /// ```
    #[inline]
    #[unstable(feature = "lazy_get", issue = "129333")]
    pub fn force_mut(this: &mut LazyCell<T, F>) -> &mut T {
        #[cold]
        /// # Safety
        /// May only be called when the state is `Uninit`.
        unsafe fn really_init_mut<T, F: FnOnce() -> T>(state: &mut State<T, F>) -> &mut T {
            // INVARIANT: Always valid, but the value may not be dropped.
            struct PoisonOnPanic<T, F>(*mut State<T, F>);
            impl<T, F> Drop for PoisonOnPanic<T, F> {
                #[inline]
                fn drop(&mut self) {
                    // SAFETY: Invariant states it is valid, and we don't drop the old value.
                    unsafe {
                        self.0.write(State::Poisoned);
                    }
                }
            }

            let State::Uninit(f) = state else {
                // `unreachable!()` here won't optimize out because the function is cold.
                // SAFETY: Precondition.
                unsafe { unreachable_unchecked() };
            };
            // SAFETY: We never drop the state after we read `f`, and we write a valid value back
            // in any case, panic or success. `f` can't access the `LazyCell` because it is mutably
            // borrowed.
            let f = unsafe { core::ptr::read(f) };
            // INVARIANT: Initiated from mutable reference, don't drop because we read it.
            let guard = PoisonOnPanic(state);
            let data = f();
            // SAFETY: `PoisonOnPanic` invariant, and we don't drop the old value.
            unsafe {
                core::ptr::write(guard.0, State::Init(data));
            }
            core::mem::forget(guard);
            let State::Init(data) = state else { unreachable!() };
            data
        }

        let state = this.state.get_mut();
        match state {
            State::Init(data) => data,
            // SAFETY: `state` is `Uninit`.
            State::Uninit(_) => unsafe { really_init_mut(state) },
            State::Poisoned => panic_poisoned(),
        }
    }

    /// # Safety
    /// May only be called when the state is `Uninit`.
    #[cold]
    unsafe fn really_init(this: &LazyCell<T, F>) -> &T {
        // SAFETY:
        // This function is only called when the state is uninitialized,
        // so no references to `state` can exist except for the reference
        // in `force`, which is invalidated here and not accessed again.
        let state = unsafe { &mut *this.state.get() };
        // Temporarily mark the state as poisoned. This prevents reentrant
        // accesses and correctly poisons the cell if the closure panicked.
        let State::Uninit(f) = mem::replace(state, State::Poisoned) else { unreachable!() };

        let data = f();

        // SAFETY:
        // If the closure accessed the cell through something like a reentrant
        // mutex, but caught the panic resulting from the state being poisoned,
        // the mutable borrow for `state` will be invalidated, so we need to
        // go through the `UnsafeCell` pointer here. The state can only be
        // poisoned at this point, so using `write` to skip the destructor
        // of `State` should help the optimizer.
        unsafe { this.state.get().write(State::Init(data)) };

        // SAFETY:
        // The previous references were invalidated by the `write` call above,
        // so do a new shared borrow of the state instead.
        let state = unsafe { &*this.state.get() };
        let State::Init(data) = state else { unreachable!() };
        data
    }
}

impl<T, F> LazyCell<T, F> {
    /// Returns a reference to the value if initialized, or `None` if not.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(lazy_get)]
    ///
    /// use std::cell::LazyCell;
    ///
    /// let mut lazy = LazyCell::new(|| 92);
    ///
    /// assert_eq!(LazyCell::get_mut(&mut lazy), None);
    /// let _ = LazyCell::force(&lazy);
    /// *LazyCell::get_mut(&mut lazy).unwrap() = 44;
    /// assert_eq!(*lazy, 44);
    /// ```
    #[inline]
    #[unstable(feature = "lazy_get", issue = "129333")]
    pub fn get_mut(this: &mut LazyCell<T, F>) -> Option<&mut T> {
        let state = this.state.get_mut();
        match state {
            State::Init(data) => Some(data),
            _ => None,
        }
    }

    /// Returns a mutable reference to the value if initialized, or `None` if not.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(lazy_get)]
    ///
    /// use std::cell::LazyCell;
    ///
    /// let lazy = LazyCell::new(|| 92);
    ///
    /// assert_eq!(LazyCell::get(&lazy), None);
    /// let _ = LazyCell::force(&lazy);
    /// assert_eq!(LazyCell::get(&lazy), Some(&92));
    /// ```
    #[inline]
    #[unstable(feature = "lazy_get", issue = "129333")]
    pub fn get(this: &LazyCell<T, F>) -> Option<&T> {
        // SAFETY:
        // This is sound for the same reason as in `force`: once the state is
        // initialized, it will not be mutably accessed again, so this reference
        // will stay valid for the duration of the borrow to `self`.
        let state = unsafe { &*this.state.get() };
        match state {
            State::Init(data) => Some(data),
            _ => None,
        }
    }
}

#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T, F: FnOnce() -> T> Deref for LazyCell<T, F> {
    type Target = T;
    #[inline]
    fn deref(&self) -> &T {
        LazyCell::force(self)
    }
}

#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T: Default> Default for LazyCell<T> {
    /// Creates a new lazy value using `Default` as the initializing function.
    #[inline]
    fn default() -> LazyCell<T> {
        LazyCell::new(T::default)
    }
}

#[stable(feature = "lazy_cell", since = "1.80.0")]
impl<T: fmt::Debug, F> fmt::Debug for LazyCell<T, F> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut d = f.debug_tuple("LazyCell");
        match LazyCell::get(self) {
            Some(data) => d.field(data),
            None => d.field(&format_args!("<uninit>")),
        };
        d.finish()
    }
}

#[cold]
#[inline(never)]
const fn panic_poisoned() -> ! {
    panic!("LazyCell instance has previously been poisoned")
}