rustc_next_trait_solver/solve/eval_ctxt/canonical.rs
1//! Canonicalization is used to separate some goal from its context,
2//! throwing away unnecessary information in the process.
3//!
4//! This is necessary to cache goals containing inference variables
5//! and placeholders without restricting them to the current `InferCtxt`.
6//!
7//! Canonicalization is fairly involved, for more details see the relevant
8//! section of the [rustc-dev-guide][c].
9//!
10//! [c]: https://rustc-dev-guide.rust-lang.org/solve/canonicalization.html
11
12use std::iter;
13
14use rustc_index::IndexVec;
15use rustc_type_ir::data_structures::HashSet;
16use rustc_type_ir::inherent::*;
17use rustc_type_ir::relate::solver_relating::RelateExt;
18use rustc_type_ir::{
19 self as ty, Canonical, CanonicalVarValues, InferCtxtLike, Interner, TypeFoldable,
20};
21use tracing::{debug, instrument, trace};
22
23use crate::canonicalizer::Canonicalizer;
24use crate::delegate::SolverDelegate;
25use crate::resolve::eager_resolve_vars;
26use crate::solve::eval_ctxt::CurrentGoalKind;
27use crate::solve::{
28 CanonicalInput, CanonicalResponse, Certainty, EvalCtxt, ExternalConstraintsData, Goal,
29 MaybeCause, NestedNormalizationGoals, NoSolution, PredefinedOpaquesData, QueryInput,
30 QueryResult, Response, inspect, response_no_constraints_raw,
31};
32
33trait ResponseT<I: Interner> {
34 fn var_values(&self) -> CanonicalVarValues<I>;
35}
36
37impl<I: Interner> ResponseT<I> for Response<I> {
38 fn var_values(&self) -> CanonicalVarValues<I> {
39 self.var_values
40 }
41}
42
43impl<I: Interner, T> ResponseT<I> for inspect::State<I, T> {
44 fn var_values(&self) -> CanonicalVarValues<I> {
45 self.var_values
46 }
47}
48
49impl<D, I> EvalCtxt<'_, D>
50where
51 D: SolverDelegate<Interner = I>,
52 I: Interner,
53{
54 /// Canonicalizes the goal remembering the original values
55 /// for each bound variable.
56 ///
57 /// This expects `goal` and `opaque_types` to be eager resolved.
58 pub(super) fn canonicalize_goal(
59 &self,
60 goal: Goal<I, I::Predicate>,
61 opaque_types: Vec<(ty::OpaqueTypeKey<I>, I::Ty)>,
62 ) -> (Vec<I::GenericArg>, CanonicalInput<I, I::Predicate>) {
63 let mut orig_values = Default::default();
64 let canonical = Canonicalizer::canonicalize_input(
65 self.delegate,
66 &mut orig_values,
67 QueryInput {
68 goal,
69 predefined_opaques_in_body: self
70 .cx()
71 .mk_predefined_opaques_in_body(PredefinedOpaquesData { opaque_types }),
72 },
73 );
74 let query_input = ty::CanonicalQueryInput { canonical, typing_mode: self.typing_mode() };
75 (orig_values, query_input)
76 }
77
78 /// To return the constraints of a canonical query to the caller, we canonicalize:
79 ///
80 /// - `var_values`: a map from bound variables in the canonical goal to
81 /// the values inferred while solving the instantiated goal.
82 /// - `external_constraints`: additional constraints which aren't expressible
83 /// using simple unification of inference variables.
84 ///
85 /// This takes the `shallow_certainty` which represents whether we're confident
86 /// that the final result of the current goal only depends on the nested goals.
87 ///
88 /// In case this is `Certainty::Maybe`, there may still be additional nested goals
89 /// or inference constraints required for this candidate to be hold. The candidate
90 /// always requires all already added constraints and nested goals.
91 #[instrument(level = "trace", skip(self), ret)]
92 pub(in crate::solve) fn evaluate_added_goals_and_make_canonical_response(
93 &mut self,
94 shallow_certainty: Certainty,
95 ) -> QueryResult<I> {
96 self.inspect.make_canonical_response(shallow_certainty);
97
98 let goals_certainty = self.try_evaluate_added_goals()?;
99 assert_eq!(
100 self.tainted,
101 Ok(()),
102 "EvalCtxt is tainted -- nested goals may have been dropped in a \
103 previous call to `try_evaluate_added_goals!`"
104 );
105
106 // We only check for leaks from universes which were entered inside
107 // of the query.
108 self.delegate.leak_check(self.max_input_universe).map_err(|NoSolution| {
109 trace!("failed the leak check");
110 NoSolution
111 })?;
112
113 let (certainty, normalization_nested_goals) =
114 match (self.current_goal_kind, shallow_certainty) {
115 // When normalizing, we've replaced the expected term with an unconstrained
116 // inference variable. This means that we dropped information which could
117 // have been important. We handle this by instead returning the nested goals
118 // to the caller, where they are then handled. We only do so if we do not
119 // need to recompute the `NormalizesTo` goal afterwards to avoid repeatedly
120 // uplifting its nested goals. This is the case if the `shallow_certainty` is
121 // `Certainty::Yes`.
122 (CurrentGoalKind::NormalizesTo, Certainty::Yes) => {
123 let goals = std::mem::take(&mut self.nested_goals);
124 // As we return all ambiguous nested goals, we can ignore the certainty
125 // returned by `self.try_evaluate_added_goals()`.
126 if goals.is_empty() {
127 assert!(matches!(goals_certainty, Certainty::Yes));
128 }
129 (
130 Certainty::Yes,
131 NestedNormalizationGoals(
132 goals.into_iter().map(|(s, g, _)| (s, g)).collect(),
133 ),
134 )
135 }
136 _ => {
137 let certainty = shallow_certainty.and(goals_certainty);
138 (certainty, NestedNormalizationGoals::empty())
139 }
140 };
141
142 if let Certainty::Maybe(cause @ MaybeCause::Overflow { keep_constraints: false, .. }) =
143 certainty
144 {
145 // If we have overflow, it's probable that we're substituting a type
146 // into itself infinitely and any partial substitutions in the query
147 // response are probably not useful anyways, so just return an empty
148 // query response.
149 //
150 // This may prevent us from potentially useful inference, e.g.
151 // 2 candidates, one ambiguous and one overflow, which both
152 // have the same inference constraints.
153 //
154 // Changing this to retain some constraints in the future
155 // won't be a breaking change, so this is good enough for now.
156 return Ok(self.make_ambiguous_response_no_constraints(cause));
157 }
158
159 let external_constraints =
160 self.compute_external_query_constraints(certainty, normalization_nested_goals);
161 let (var_values, mut external_constraints) =
162 eager_resolve_vars(self.delegate, (self.var_values, external_constraints));
163
164 // Remove any trivial or duplicated region constraints once we've resolved regions
165 let mut unique = HashSet::default();
166 external_constraints.region_constraints.retain(|outlives| {
167 outlives.0.as_region().is_none_or(|re| re != outlives.1) && unique.insert(*outlives)
168 });
169
170 let canonical = Canonicalizer::canonicalize_response(
171 self.delegate,
172 self.max_input_universe,
173 &mut Default::default(),
174 Response {
175 var_values,
176 certainty,
177 external_constraints: self.cx().mk_external_constraints(external_constraints),
178 },
179 );
180
181 // HACK: We bail with overflow if the response would have too many non-region
182 // inference variables. This tends to only happen if we encounter a lot of
183 // ambiguous alias types which get replaced with fresh inference variables
184 // during generalization. This prevents hangs caused by an exponential blowup,
185 // see tests/ui/traits/next-solver/coherence-alias-hang.rs.
186 match self.current_goal_kind {
187 // We don't do so for `NormalizesTo` goals as we erased the expected term and
188 // bailing with overflow here would prevent us from detecting a type-mismatch,
189 // causing a coherence error in diesel, see #131969. We still bail with overflow
190 // when later returning from the parent AliasRelate goal.
191 CurrentGoalKind::NormalizesTo => {}
192 CurrentGoalKind::Misc | CurrentGoalKind::CoinductiveTrait => {
193 let num_non_region_vars = canonical
194 .variables
195 .iter()
196 .filter(|c| !c.is_region() && c.is_existential())
197 .count();
198 if num_non_region_vars > self.cx().recursion_limit() {
199 debug!(?num_non_region_vars, "too many inference variables -> overflow");
200 return Ok(self.make_ambiguous_response_no_constraints(MaybeCause::Overflow {
201 suggest_increasing_limit: true,
202 keep_constraints: false,
203 }));
204 }
205 }
206 }
207
208 Ok(canonical)
209 }
210
211 /// Constructs a totally unconstrained, ambiguous response to a goal.
212 ///
213 /// Take care when using this, since often it's useful to respond with
214 /// ambiguity but return constrained variables to guide inference.
215 pub(in crate::solve) fn make_ambiguous_response_no_constraints(
216 &self,
217 maybe_cause: MaybeCause,
218 ) -> CanonicalResponse<I> {
219 response_no_constraints_raw(
220 self.cx(),
221 self.max_input_universe,
222 self.variables,
223 Certainty::Maybe(maybe_cause),
224 )
225 }
226
227 /// Computes the region constraints and *new* opaque types registered when
228 /// proving a goal.
229 ///
230 /// If an opaque was already constrained before proving this goal, then the
231 /// external constraints do not need to record that opaque, since if it is
232 /// further constrained by inference, that will be passed back in the var
233 /// values.
234 #[instrument(level = "trace", skip(self), ret)]
235 fn compute_external_query_constraints(
236 &self,
237 certainty: Certainty,
238 normalization_nested_goals: NestedNormalizationGoals<I>,
239 ) -> ExternalConstraintsData<I> {
240 // We only return region constraints once the certainty is `Yes`. This
241 // is necessary as we may drop nested goals on ambiguity, which may result
242 // in unconstrained inference variables in the region constraints. It also
243 // prevents us from emitting duplicate region constraints, avoiding some
244 // unnecessary work. This slightly weakens the leak check in case it uses
245 // region constraints from an ambiguous nested goal. This is tested in both
246 // `tests/ui/higher-ranked/leak-check/leak-check-in-selection-5-ambig.rs` and
247 // `tests/ui/higher-ranked/leak-check/leak-check-in-selection-6-ambig-unify.rs`.
248 let region_constraints = if certainty == Certainty::Yes {
249 self.delegate.make_deduplicated_outlives_constraints()
250 } else {
251 Default::default()
252 };
253
254 // We only return *newly defined* opaque types from canonical queries.
255 //
256 // Constraints for any existing opaque types are already tracked by changes
257 // to the `var_values`.
258 let opaque_types = self
259 .delegate
260 .clone_opaque_types_added_since(self.initial_opaque_types_storage_num_entries);
261
262 ExternalConstraintsData { region_constraints, opaque_types, normalization_nested_goals }
263 }
264
265 /// After calling a canonical query, we apply the constraints returned
266 /// by the query using this function.
267 ///
268 /// This happens in three steps:
269 /// - we instantiate the bound variables of the query response
270 /// - we unify the `var_values` of the response with the `original_values`
271 /// - we apply the `external_constraints` returned by the query, returning
272 /// the `normalization_nested_goals`
273 pub(super) fn instantiate_and_apply_query_response(
274 &mut self,
275 param_env: I::ParamEnv,
276 original_values: &[I::GenericArg],
277 response: CanonicalResponse<I>,
278 ) -> (NestedNormalizationGoals<I>, Certainty) {
279 let instantiation = Self::compute_query_response_instantiation_values(
280 self.delegate,
281 &original_values,
282 &response,
283 self.origin_span,
284 );
285
286 let Response { var_values, external_constraints, certainty } =
287 self.delegate.instantiate_canonical(response, instantiation);
288
289 Self::unify_query_var_values(
290 self.delegate,
291 param_env,
292 &original_values,
293 var_values,
294 self.origin_span,
295 );
296
297 let ExternalConstraintsData {
298 region_constraints,
299 opaque_types,
300 normalization_nested_goals,
301 } = &*external_constraints;
302
303 self.register_region_constraints(region_constraints);
304 self.register_new_opaque_types(opaque_types);
305
306 (normalization_nested_goals.clone(), certainty)
307 }
308
309 /// This returns the canonical variable values to instantiate the bound variables of
310 /// the canonical response. This depends on the `original_values` for the
311 /// bound variables.
312 fn compute_query_response_instantiation_values<T: ResponseT<I>>(
313 delegate: &D,
314 original_values: &[I::GenericArg],
315 response: &Canonical<I, T>,
316 span: I::Span,
317 ) -> CanonicalVarValues<I> {
318 // FIXME: Longterm canonical queries should deal with all placeholders
319 // created inside of the query directly instead of returning them to the
320 // caller.
321 let prev_universe = delegate.universe();
322 let universes_created_in_query = response.max_universe.index();
323 for _ in 0..universes_created_in_query {
324 delegate.create_next_universe();
325 }
326
327 let var_values = response.value.var_values();
328 assert_eq!(original_values.len(), var_values.len());
329
330 // If the query did not make progress with constraining inference variables,
331 // we would normally create a new inference variables for bound existential variables
332 // only then unify this new inference variable with the inference variable from
333 // the input.
334 //
335 // We therefore instantiate the existential variable in the canonical response with the
336 // inference variable of the input right away, which is more performant.
337 let mut opt_values = IndexVec::from_elem_n(None, response.variables.len());
338 for (original_value, result_value) in
339 iter::zip(original_values, var_values.var_values.iter())
340 {
341 match result_value.kind() {
342 ty::GenericArgKind::Type(t) => {
343 if let ty::Bound(debruijn, b) = t.kind() {
344 assert_eq!(debruijn, ty::INNERMOST);
345 opt_values[b.var()] = Some(*original_value);
346 }
347 }
348 ty::GenericArgKind::Lifetime(r) => {
349 if let ty::ReBound(debruijn, br) = r.kind() {
350 assert_eq!(debruijn, ty::INNERMOST);
351 opt_values[br.var()] = Some(*original_value);
352 }
353 }
354 ty::GenericArgKind::Const(c) => {
355 if let ty::ConstKind::Bound(debruijn, bv) = c.kind() {
356 assert_eq!(debruijn, ty::INNERMOST);
357 opt_values[bv.var()] = Some(*original_value);
358 }
359 }
360 }
361 }
362
363 let var_values = delegate.cx().mk_args_from_iter(
364 response.variables.iter().enumerate().map(|(index, var_kind)| {
365 if var_kind.universe() != ty::UniverseIndex::ROOT {
366 // A variable from inside a binder of the query. While ideally these shouldn't
367 // exist at all (see the FIXME at the start of this method), we have to deal with
368 // them for now.
369 delegate.instantiate_canonical_var_with_infer(var_kind, span, |idx| {
370 prev_universe + idx.index()
371 })
372 } else if var_kind.is_existential() {
373 // As an optimization we sometimes avoid creating a new inference variable here.
374 //
375 // All new inference variables we create start out in the current universe of the caller.
376 // This is conceptually wrong as these inference variables would be able to name
377 // more placeholders then they should be able to. However the inference variables have
378 // to "come from somewhere", so by equating them with the original values of the caller
379 // later on, we pull them down into their correct universe again.
380 if let Some(v) = opt_values[ty::BoundVar::from_usize(index)] {
381 v
382 } else {
383 delegate
384 .instantiate_canonical_var_with_infer(var_kind, span, |_| prev_universe)
385 }
386 } else {
387 // For placeholders which were already part of the input, we simply map this
388 // universal bound variable back the placeholder of the input.
389 original_values[var_kind.expect_placeholder_index()]
390 }
391 }),
392 );
393
394 CanonicalVarValues { var_values }
395 }
396
397 /// Unify the `original_values` with the `var_values` returned by the canonical query..
398 ///
399 /// This assumes that this unification will always succeed. This is the case when
400 /// applying a query response right away. However, calling a canonical query, doing any
401 /// other kind of trait solving, and only then instantiating the result of the query
402 /// can cause the instantiation to fail. This is not supported and we ICE in this case.
403 ///
404 /// We always structurally instantiate aliases. Relating aliases needs to be different
405 /// depending on whether the alias is *rigid* or not. We're only really able to tell
406 /// whether an alias is rigid by using the trait solver. When instantiating a response
407 /// from the solver we assume that the solver correctly handled aliases and therefore
408 /// always relate them structurally here.
409 #[instrument(level = "trace", skip(delegate))]
410 fn unify_query_var_values(
411 delegate: &D,
412 param_env: I::ParamEnv,
413 original_values: &[I::GenericArg],
414 var_values: CanonicalVarValues<I>,
415 span: I::Span,
416 ) {
417 assert_eq!(original_values.len(), var_values.len());
418
419 for (&orig, response) in iter::zip(original_values, var_values.var_values.iter()) {
420 let goals =
421 delegate.eq_structurally_relating_aliases(param_env, orig, response, span).unwrap();
422 assert!(goals.is_empty());
423 }
424 }
425
426 fn register_region_constraints(
427 &mut self,
428 outlives: &[ty::OutlivesPredicate<I, I::GenericArg>],
429 ) {
430 for &ty::OutlivesPredicate(lhs, rhs) in outlives {
431 match lhs.kind() {
432 ty::GenericArgKind::Lifetime(lhs) => self.register_region_outlives(lhs, rhs),
433 ty::GenericArgKind::Type(lhs) => self.register_ty_outlives(lhs, rhs),
434 ty::GenericArgKind::Const(_) => panic!("const outlives: {lhs:?}: {rhs:?}"),
435 }
436 }
437 }
438
439 fn register_new_opaque_types(&mut self, opaque_types: &[(ty::OpaqueTypeKey<I>, I::Ty)]) {
440 for &(key, ty) in opaque_types {
441 let prev = self.delegate.register_hidden_type_in_storage(key, ty, self.origin_span);
442 // We eagerly resolve inference variables when computing the query response.
443 // This can cause previously distinct opaque type keys to now be structurally equal.
444 //
445 // To handle this, we store any duplicate entries in a separate list to check them
446 // at the end of typeck/borrowck. We could alternatively eagerly equate the hidden
447 // types here. However, doing so is difficult as it may result in nested goals and
448 // any errors may make it harder to track the control flow for diagnostics.
449 if let Some(prev) = prev {
450 self.delegate.add_duplicate_opaque_type(key, prev, self.origin_span);
451 }
452 }
453 }
454}
455
456/// Used by proof trees to be able to recompute intermediate actions while
457/// evaluating a goal. The `var_values` not only include the bound variables
458/// of the query input, but also contain all unconstrained inference vars
459/// created while evaluating this goal.
460pub(in crate::solve) fn make_canonical_state<D, T, I>(
461 delegate: &D,
462 var_values: &[I::GenericArg],
463 max_input_universe: ty::UniverseIndex,
464 data: T,
465) -> inspect::CanonicalState<I, T>
466where
467 D: SolverDelegate<Interner = I>,
468 I: Interner,
469 T: TypeFoldable<I>,
470{
471 let var_values = CanonicalVarValues { var_values: delegate.cx().mk_args(var_values) };
472 let state = inspect::State { var_values, data };
473 let state = eager_resolve_vars(delegate, state);
474 Canonicalizer::canonicalize_response(delegate, max_input_universe, &mut vec![], state)
475}
476
477// FIXME: needs to be pub to be accessed by downstream
478// `rustc_trait_selection::solve::inspect::analyse`.
479pub fn instantiate_canonical_state<D, I, T: TypeFoldable<I>>(
480 delegate: &D,
481 span: I::Span,
482 param_env: I::ParamEnv,
483 orig_values: &mut Vec<I::GenericArg>,
484 state: inspect::CanonicalState<I, T>,
485) -> T
486where
487 D: SolverDelegate<Interner = I>,
488 I: Interner,
489{
490 // In case any fresh inference variables have been created between `state`
491 // and the previous instantiation, extend `orig_values` for it.
492 orig_values.extend(
493 state.value.var_values.var_values.as_slice()[orig_values.len()..]
494 .iter()
495 .map(|&arg| delegate.fresh_var_for_kind_with_span(arg, span)),
496 );
497
498 let instantiation =
499 EvalCtxt::compute_query_response_instantiation_values(delegate, orig_values, &state, span);
500
501 let inspect::State { var_values, data } = delegate.instantiate_canonical(state, instantiation);
502
503 EvalCtxt::unify_query_var_values(delegate, param_env, orig_values, var_values, span);
504 data
505}