1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
//! Constants for the `f16` half-precision floating point type.
//!
//! *[See also the `f16` primitive type][f16].*
//!
//! Mathematically significant numbers are provided in the `consts` sub-module.
//!
//! For the constants defined directly in this module
//! (as distinct from those defined in the `consts` sub-module),
//! new code should instead use the associated constants
//! defined directly on the `f16` type.
#![unstable(feature = "f16", issue = "116909")]
use crate::mem;
/// Basic mathematical constants.
#[unstable(feature = "f16", issue = "116909")]
pub mod consts {}
#[cfg(not(test))]
impl f16 {
// FIXME(f16_f128): almost everything in this `impl` is missing examples and a const
// implementation. Add these once we can run code on all platforms and have f16/f128 in CTFE.
/// Returns `true` if this value is NaN.
#[inline]
#[must_use]
#[unstable(feature = "f16", issue = "116909")]
#[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
pub const fn is_nan(self) -> bool {
self != self
}
/// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
/// positive sign bit and positive infinity. Note that IEEE 754 doesn't assign any
/// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that
/// the bit pattern of NaNs are conserved over arithmetic operations, the result of
/// `is_sign_positive` on a NaN might produce an unexpected result in some cases.
/// See [explanation of NaN as a special value](f32) for more info.
#[inline]
#[must_use]
#[unstable(feature = "f128", issue = "116909")]
pub fn is_sign_positive(self) -> bool {
!self.is_sign_negative()
}
/// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
/// negative sign bit and negative infinity. Note that IEEE 754 doesn't assign any
/// meaning to the sign bit in case of a NaN, and as Rust doesn't guarantee that
/// the bit pattern of NaNs are conserved over arithmetic operations, the result of
/// `is_sign_negative` on a NaN might produce an unexpected result in some cases.
/// See [explanation of NaN as a special value](f32) for more info.
#[inline]
#[must_use]
#[unstable(feature = "f128", issue = "116909")]
pub fn is_sign_negative(self) -> bool {
// IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
// applies to zeros and NaNs as well.
// SAFETY: This is just transmuting to get the sign bit, it's fine.
(self.to_bits() & (1 << 15)) != 0
}
/// Raw transmutation to `u16`.
///
/// This is currently identical to `transmute::<f16, u16>(self)` on all platforms.
///
/// See [`from_bits`](#method.from_bits) for some discussion of the
/// portability of this operation (there are almost no issues).
///
/// Note that this function is distinct from `as` casting, which attempts to
/// preserve the *numeric* value, and not the bitwise value.
#[inline]
#[unstable(feature = "f16", issue = "116909")]
#[must_use = "this returns the result of the operation, without modifying the original"]
pub fn to_bits(self) -> u16 {
// SAFETY: `u16` is a plain old datatype so we can always... uh...
// ...look, just pretend you forgot what you just read.
// Stability concerns.
unsafe { mem::transmute(self) }
}
/// Raw transmutation from `u16`.
///
/// This is currently identical to `transmute::<u16, f16>(v)` on all platforms.
/// It turns out this is incredibly portable, for two reasons:
///
/// * Floats and Ints have the same endianness on all supported platforms.
/// * IEEE 754 very precisely specifies the bit layout of floats.
///
/// However there is one caveat: prior to the 2008 version of IEEE 754, how
/// to interpret the NaN signaling bit wasn't actually specified. Most platforms
/// (notably x86 and ARM) picked the interpretation that was ultimately
/// standardized in 2008, but some didn't (notably MIPS). As a result, all
/// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
///
/// Rather than trying to preserve signaling-ness cross-platform, this
/// implementation favors preserving the exact bits. This means that
/// any payloads encoded in NaNs will be preserved even if the result of
/// this method is sent over the network from an x86 machine to a MIPS one.
///
/// If the results of this method are only manipulated by the same
/// architecture that produced them, then there is no portability concern.
///
/// If the input isn't NaN, then there is no portability concern.
///
/// If you don't care about signalingness (very likely), then there is no
/// portability concern.
///
/// Note that this function is distinct from `as` casting, which attempts to
/// preserve the *numeric* value, and not the bitwise value.
#[inline]
#[must_use]
#[unstable(feature = "f16", issue = "116909")]
pub fn from_bits(v: u16) -> Self {
// SAFETY: `u16` is a plain old datatype so we can always... uh...
// ...look, just pretend you forgot what you just read.
// Stability concerns.
unsafe { mem::transmute(v) }
}
}