1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
//! Character conversions.
use crate::char::TryFromCharError;
use crate::error::Error;
use crate::fmt;
use crate::mem::transmute;
use crate::str::FromStr;
use crate::ub_checks::assert_unsafe_precondition;
/// Converts a `u32` to a `char`. See [`char::from_u32`].
#[must_use]
#[inline]
pub(super) const fn from_u32(i: u32) -> Option<char> {
// FIXME: once Result::ok is const fn, use it here
match char_try_from_u32(i) {
Ok(c) => Some(c),
Err(_) => None,
}
}
/// Converts a `u32` to a `char`, ignoring validity. See [`char::from_u32_unchecked`].
#[inline]
#[must_use]
pub(super) const unsafe fn from_u32_unchecked(i: u32) -> char {
// SAFETY: the caller must guarantee that `i` is a valid char value.
unsafe {
assert_unsafe_precondition!(
check_language_ub,
"invalid value for `char`",
(i: u32 = i) => char_try_from_u32(i).is_ok()
);
transmute(i)
}
}
#[stable(feature = "char_convert", since = "1.13.0")]
impl From<char> for u32 {
/// Converts a [`char`] into a [`u32`].
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let c = 'c';
/// let u = u32::from(c);
/// assert!(4 == mem::size_of_val(&u))
/// ```
#[inline]
fn from(c: char) -> Self {
c as u32
}
}
#[stable(feature = "more_char_conversions", since = "1.51.0")]
impl From<char> for u64 {
/// Converts a [`char`] into a [`u64`].
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let c = '👤';
/// let u = u64::from(c);
/// assert!(8 == mem::size_of_val(&u))
/// ```
#[inline]
fn from(c: char) -> Self {
// The char is casted to the value of the code point, then zero-extended to 64 bit.
// See [https://doc.rust-lang.org/reference/expressions/operator-expr.html#semantics]
c as u64
}
}
#[stable(feature = "more_char_conversions", since = "1.51.0")]
impl From<char> for u128 {
/// Converts a [`char`] into a [`u128`].
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let c = '⚙';
/// let u = u128::from(c);
/// assert!(16 == mem::size_of_val(&u))
/// ```
#[inline]
fn from(c: char) -> Self {
// The char is casted to the value of the code point, then zero-extended to 128 bit.
// See [https://doc.rust-lang.org/reference/expressions/operator-expr.html#semantics]
c as u128
}
}
/// Maps a `char` with code point in U+0000..=U+00FF to a byte in 0x00..=0xFF with same value,
/// failing if the code point is greater than U+00FF.
///
/// See [`impl From<u8> for char`](char#impl-From<u8>-for-char) for details on the encoding.
#[stable(feature = "u8_from_char", since = "1.59.0")]
impl TryFrom<char> for u8 {
type Error = TryFromCharError;
/// Tries to convert a [`char`] into a [`u8`].
///
/// # Examples
///
/// ```
/// let a = 'ÿ'; // U+00FF
/// let b = 'Ā'; // U+0100
/// assert_eq!(u8::try_from(a), Ok(0xFF_u8));
/// assert!(u8::try_from(b).is_err());
/// ```
#[inline]
fn try_from(c: char) -> Result<u8, Self::Error> {
u8::try_from(u32::from(c)).map_err(|_| TryFromCharError(()))
}
}
/// Maps a `char` with code point in U+0000..=U+FFFF to a `u16` in 0x0000..=0xFFFF with same value,
/// failing if the code point is greater than U+FFFF.
///
/// This corresponds to the UCS-2 encoding, as specified in ISO/IEC 10646:2003.
#[stable(feature = "u16_from_char", since = "1.74.0")]
impl TryFrom<char> for u16 {
type Error = TryFromCharError;
/// Tries to convert a [`char`] into a [`u16`].
///
/// # Examples
///
/// ```
/// let trans_rights = '⚧'; // U+26A7
/// let ninjas = '🥷'; // U+1F977
/// assert_eq!(u16::try_from(trans_rights), Ok(0x26A7_u16));
/// assert!(u16::try_from(ninjas).is_err());
/// ```
#[inline]
fn try_from(c: char) -> Result<u16, Self::Error> {
u16::try_from(u32::from(c)).map_err(|_| TryFromCharError(()))
}
}
/// Maps a byte in 0x00..=0xFF to a `char` whose code point has the same value, in U+0000..=U+00FF.
///
/// Unicode is designed such that this effectively decodes bytes
/// with the character encoding that IANA calls ISO-8859-1.
/// This encoding is compatible with ASCII.
///
/// Note that this is different from ISO/IEC 8859-1 a.k.a. ISO 8859-1 (with one less hyphen),
/// which leaves some "blanks", byte values that are not assigned to any character.
/// ISO-8859-1 (the IANA one) assigns them to the C0 and C1 control codes.
///
/// Note that this is *also* different from Windows-1252 a.k.a. code page 1252,
/// which is a superset ISO/IEC 8859-1 that assigns some (not all!) blanks
/// to punctuation and various Latin characters.
///
/// To confuse things further, [on the Web](https://encoding.spec.whatwg.org/)
/// `ascii`, `iso-8859-1`, and `windows-1252` are all aliases
/// for a superset of Windows-1252 that fills the remaining blanks with corresponding
/// C0 and C1 control codes.
#[stable(feature = "char_convert", since = "1.13.0")]
impl From<u8> for char {
/// Converts a [`u8`] into a [`char`].
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let u = 32 as u8;
/// let c = char::from(u);
/// assert!(4 == mem::size_of_val(&c))
/// ```
#[inline]
fn from(i: u8) -> Self {
i as char
}
}
/// An error which can be returned when parsing a char.
///
/// This `struct` is created when using the [`char::from_str`] method.
#[stable(feature = "char_from_str", since = "1.20.0")]
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct ParseCharError {
kind: CharErrorKind,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum CharErrorKind {
EmptyString,
TooManyChars,
}
#[stable(feature = "char_from_str", since = "1.20.0")]
impl Error for ParseCharError {
#[allow(deprecated)]
fn description(&self) -> &str {
match self.kind {
CharErrorKind::EmptyString => "cannot parse char from empty string",
CharErrorKind::TooManyChars => "too many characters in string",
}
}
}
#[stable(feature = "char_from_str", since = "1.20.0")]
impl fmt::Display for ParseCharError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
#[allow(deprecated)]
self.description().fmt(f)
}
}
#[stable(feature = "char_from_str", since = "1.20.0")]
impl FromStr for char {
type Err = ParseCharError;
#[inline]
fn from_str(s: &str) -> Result<Self, Self::Err> {
let mut chars = s.chars();
match (chars.next(), chars.next()) {
(None, _) => Err(ParseCharError { kind: CharErrorKind::EmptyString }),
(Some(c), None) => Ok(c),
_ => Err(ParseCharError { kind: CharErrorKind::TooManyChars }),
}
}
}
#[inline]
const fn char_try_from_u32(i: u32) -> Result<char, CharTryFromError> {
// This is an optimized version of the check
// (i > MAX as u32) || (i >= 0xD800 && i <= 0xDFFF),
// which can also be written as
// i >= 0x110000 || (i >= 0xD800 && i < 0xE000).
//
// The XOR with 0xD800 permutes the ranges such that 0xD800..0xE000 is
// mapped to 0x0000..0x0800, while keeping all the high bits outside 0xFFFF the same.
// In particular, numbers >= 0x110000 stay in this range.
//
// Subtracting 0x800 causes 0x0000..0x0800 to wrap, meaning that a single
// unsigned comparison against 0x110000 - 0x800 will detect both the wrapped
// surrogate range as well as the numbers originally larger than 0x110000.
//
if (i ^ 0xD800).wrapping_sub(0x800) >= 0x110000 - 0x800 {
Err(CharTryFromError(()))
} else {
// SAFETY: checked that it's a legal unicode value
Ok(unsafe { transmute(i) })
}
}
#[stable(feature = "try_from", since = "1.34.0")]
impl TryFrom<u32> for char {
type Error = CharTryFromError;
#[inline]
fn try_from(i: u32) -> Result<Self, Self::Error> {
char_try_from_u32(i)
}
}
/// The error type returned when a conversion from [`prim@u32`] to [`prim@char`] fails.
///
/// This `struct` is created by the [`char::try_from<u32>`](char#impl-TryFrom<u32>-for-char) method.
/// See its documentation for more.
#[stable(feature = "try_from", since = "1.34.0")]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct CharTryFromError(());
#[stable(feature = "try_from", since = "1.34.0")]
impl fmt::Display for CharTryFromError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
"converted integer out of range for `char`".fmt(f)
}
}
/// Converts a digit in the given radix to a `char`. See [`char::from_digit`].
#[inline]
#[must_use]
pub(super) const fn from_digit(num: u32, radix: u32) -> Option<char> {
if radix > 36 {
panic!("from_digit: radix is too high (maximum 36)");
}
if num < radix {
let num = num as u8;
if num < 10 { Some((b'0' + num) as char) } else { Some((b'a' + num - 10) as char) }
} else {
None
}
}