1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
//! Character conversions.

use crate::char::TryFromCharError;
use crate::error::Error;
use crate::fmt;
use crate::mem::transmute;
use crate::str::FromStr;
use crate::ub_checks::assert_unsafe_precondition;

/// Converts a `u32` to a `char`. See [`char::from_u32`].
#[must_use]
#[inline]
pub(super) const fn from_u32(i: u32) -> Option<char> {
    // FIXME: once Result::ok is const fn, use it here
    match char_try_from_u32(i) {
        Ok(c) => Some(c),
        Err(_) => None,
    }
}

/// Converts a `u32` to a `char`, ignoring validity. See [`char::from_u32_unchecked`].
#[inline]
#[must_use]
pub(super) const unsafe fn from_u32_unchecked(i: u32) -> char {
    // SAFETY: the caller must guarantee that `i` is a valid char value.
    unsafe {
        assert_unsafe_precondition!(
            check_language_ub,
            "invalid value for `char`",
            (i: u32 = i) => char_try_from_u32(i).is_ok()
        );
        transmute(i)
    }
}

#[stable(feature = "char_convert", since = "1.13.0")]
impl From<char> for u32 {
    /// Converts a [`char`] into a [`u32`].
    ///
    /// # Examples
    ///
    /// ```
    /// use std::mem;
    ///
    /// let c = 'c';
    /// let u = u32::from(c);
    /// assert!(4 == mem::size_of_val(&u))
    /// ```
    #[inline]
    fn from(c: char) -> Self {
        c as u32
    }
}

#[stable(feature = "more_char_conversions", since = "1.51.0")]
impl From<char> for u64 {
    /// Converts a [`char`] into a [`u64`].
    ///
    /// # Examples
    ///
    /// ```
    /// use std::mem;
    ///
    /// let c = '👤';
    /// let u = u64::from(c);
    /// assert!(8 == mem::size_of_val(&u))
    /// ```
    #[inline]
    fn from(c: char) -> Self {
        // The char is casted to the value of the code point, then zero-extended to 64 bit.
        // See [https://doc.rust-lang.org/reference/expressions/operator-expr.html#semantics]
        c as u64
    }
}

#[stable(feature = "more_char_conversions", since = "1.51.0")]
impl From<char> for u128 {
    /// Converts a [`char`] into a [`u128`].
    ///
    /// # Examples
    ///
    /// ```
    /// use std::mem;
    ///
    /// let c = '⚙';
    /// let u = u128::from(c);
    /// assert!(16 == mem::size_of_val(&u))
    /// ```
    #[inline]
    fn from(c: char) -> Self {
        // The char is casted to the value of the code point, then zero-extended to 128 bit.
        // See [https://doc.rust-lang.org/reference/expressions/operator-expr.html#semantics]
        c as u128
    }
}

/// Maps a `char` with code point in U+0000..=U+00FF to a byte in 0x00..=0xFF with same value,
/// failing if the code point is greater than U+00FF.
///
/// See [`impl From<u8> for char`](char#impl-From<u8>-for-char) for details on the encoding.
#[stable(feature = "u8_from_char", since = "1.59.0")]
impl TryFrom<char> for u8 {
    type Error = TryFromCharError;

    /// Tries to convert a [`char`] into a [`u8`].
    ///
    /// # Examples
    ///
    /// ```
    /// let a = 'ÿ'; // U+00FF
    /// let b = 'Ā'; // U+0100
    /// assert_eq!(u8::try_from(a), Ok(0xFF_u8));
    /// assert!(u8::try_from(b).is_err());
    /// ```
    #[inline]
    fn try_from(c: char) -> Result<u8, Self::Error> {
        u8::try_from(u32::from(c)).map_err(|_| TryFromCharError(()))
    }
}

/// Maps a `char` with code point in U+0000..=U+FFFF to a `u16` in 0x0000..=0xFFFF with same value,
/// failing if the code point is greater than U+FFFF.
///
/// This corresponds to the UCS-2 encoding, as specified in ISO/IEC 10646:2003.
#[stable(feature = "u16_from_char", since = "1.74.0")]
impl TryFrom<char> for u16 {
    type Error = TryFromCharError;

    /// Tries to convert a [`char`] into a [`u16`].
    ///
    /// # Examples
    ///
    /// ```
    /// let trans_rights = '⚧'; // U+26A7
    /// let ninjas = '🥷'; // U+1F977
    /// assert_eq!(u16::try_from(trans_rights), Ok(0x26A7_u16));
    /// assert!(u16::try_from(ninjas).is_err());
    /// ```
    #[inline]
    fn try_from(c: char) -> Result<u16, Self::Error> {
        u16::try_from(u32::from(c)).map_err(|_| TryFromCharError(()))
    }
}

/// Maps a byte in 0x00..=0xFF to a `char` whose code point has the same value, in U+0000..=U+00FF.
///
/// Unicode is designed such that this effectively decodes bytes
/// with the character encoding that IANA calls ISO-8859-1.
/// This encoding is compatible with ASCII.
///
/// Note that this is different from ISO/IEC 8859-1 a.k.a. ISO 8859-1 (with one less hyphen),
/// which leaves some "blanks", byte values that are not assigned to any character.
/// ISO-8859-1 (the IANA one) assigns them to the C0 and C1 control codes.
///
/// Note that this is *also* different from Windows-1252 a.k.a. code page 1252,
/// which is a superset ISO/IEC 8859-1 that assigns some (not all!) blanks
/// to punctuation and various Latin characters.
///
/// To confuse things further, [on the Web](https://encoding.spec.whatwg.org/)
/// `ascii`, `iso-8859-1`, and `windows-1252` are all aliases
/// for a superset of Windows-1252 that fills the remaining blanks with corresponding
/// C0 and C1 control codes.
#[stable(feature = "char_convert", since = "1.13.0")]
impl From<u8> for char {
    /// Converts a [`u8`] into a [`char`].
    ///
    /// # Examples
    ///
    /// ```
    /// use std::mem;
    ///
    /// let u = 32 as u8;
    /// let c = char::from(u);
    /// assert!(4 == mem::size_of_val(&c))
    /// ```
    #[inline]
    fn from(i: u8) -> Self {
        i as char
    }
}

/// An error which can be returned when parsing a char.
///
/// This `struct` is created when using the [`char::from_str`] method.
#[stable(feature = "char_from_str", since = "1.20.0")]
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct ParseCharError {
    kind: CharErrorKind,
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum CharErrorKind {
    EmptyString,
    TooManyChars,
}

#[stable(feature = "char_from_str", since = "1.20.0")]
impl Error for ParseCharError {
    #[allow(deprecated)]
    fn description(&self) -> &str {
        match self.kind {
            CharErrorKind::EmptyString => "cannot parse char from empty string",
            CharErrorKind::TooManyChars => "too many characters in string",
        }
    }
}

#[stable(feature = "char_from_str", since = "1.20.0")]
impl fmt::Display for ParseCharError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        #[allow(deprecated)]
        self.description().fmt(f)
    }
}

#[stable(feature = "char_from_str", since = "1.20.0")]
impl FromStr for char {
    type Err = ParseCharError;

    #[inline]
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let mut chars = s.chars();
        match (chars.next(), chars.next()) {
            (None, _) => Err(ParseCharError { kind: CharErrorKind::EmptyString }),
            (Some(c), None) => Ok(c),
            _ => Err(ParseCharError { kind: CharErrorKind::TooManyChars }),
        }
    }
}

#[inline]
const fn char_try_from_u32(i: u32) -> Result<char, CharTryFromError> {
    // This is an optimized version of the check
    // (i > MAX as u32) || (i >= 0xD800 && i <= 0xDFFF),
    // which can also be written as
    // i >= 0x110000 || (i >= 0xD800 && i < 0xE000).
    //
    // The XOR with 0xD800 permutes the ranges such that 0xD800..0xE000 is
    // mapped to 0x0000..0x0800, while keeping all the high bits outside 0xFFFF the same.
    // In particular, numbers >= 0x110000 stay in this range.
    //
    // Subtracting 0x800 causes 0x0000..0x0800 to wrap, meaning that a single
    // unsigned comparison against 0x110000 - 0x800 will detect both the wrapped
    // surrogate range as well as the numbers originally larger than 0x110000.
    //
    if (i ^ 0xD800).wrapping_sub(0x800) >= 0x110000 - 0x800 {
        Err(CharTryFromError(()))
    } else {
        // SAFETY: checked that it's a legal unicode value
        Ok(unsafe { transmute(i) })
    }
}

#[stable(feature = "try_from", since = "1.34.0")]
impl TryFrom<u32> for char {
    type Error = CharTryFromError;

    #[inline]
    fn try_from(i: u32) -> Result<Self, Self::Error> {
        char_try_from_u32(i)
    }
}

/// The error type returned when a conversion from [`prim@u32`] to [`prim@char`] fails.
///
/// This `struct` is created by the [`char::try_from<u32>`](char#impl-TryFrom<u32>-for-char) method.
/// See its documentation for more.
#[stable(feature = "try_from", since = "1.34.0")]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct CharTryFromError(());

#[stable(feature = "try_from", since = "1.34.0")]
impl fmt::Display for CharTryFromError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        "converted integer out of range for `char`".fmt(f)
    }
}

/// Converts a digit in the given radix to a `char`. See [`char::from_digit`].
#[inline]
#[must_use]
pub(super) const fn from_digit(num: u32, radix: u32) -> Option<char> {
    if radix > 36 {
        panic!("from_digit: radix is too high (maximum 36)");
    }
    if num < radix {
        let num = num as u8;
        if num < 10 { Some((b'0' + num) as char) } else { Some((b'a' + num - 10) as char) }
    } else {
        None
    }
}