1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
//! Defines the `IntoIter` owned iterator for arrays.

use crate::num::NonZeroUsize;
use crate::{
    fmt,
    iter::{self, ExactSizeIterator, FusedIterator, TrustedLen},
    mem::{self, MaybeUninit},
    ops::{IndexRange, Range},
    ptr,
};

/// A by-value [array] iterator.
#[stable(feature = "array_value_iter", since = "1.51.0")]
#[rustc_insignificant_dtor]
pub struct IntoIter<T, const N: usize> {
    /// This is the array we are iterating over.
    ///
    /// Elements with index `i` where `alive.start <= i < alive.end` have not
    /// been yielded yet and are valid array entries. Elements with indices `i
    /// < alive.start` or `i >= alive.end` have been yielded already and must
    /// not be accessed anymore! Those dead elements might even be in a
    /// completely uninitialized state!
    ///
    /// So the invariants are:
    /// - `data[alive]` is alive (i.e. contains valid elements)
    /// - `data[..alive.start]` and `data[alive.end..]` are dead (i.e. the
    ///   elements were already read and must not be touched anymore!)
    data: [MaybeUninit<T>; N],

    /// The elements in `data` that have not been yielded yet.
    ///
    /// Invariants:
    /// - `alive.end <= N`
    ///
    /// (And the `IndexRange` type requires `alive.start <= alive.end`.)
    alive: IndexRange,
}

// Note: the `#[rustc_skip_array_during_method_dispatch]` on `trait IntoIterator`
// hides this implementation from explicit `.into_iter()` calls on editions < 2021,
// so those calls will still resolve to the slice implementation, by reference.
#[stable(feature = "array_into_iter_impl", since = "1.53.0")]
impl<T, const N: usize> IntoIterator for [T; N] {
    type Item = T;
    type IntoIter = IntoIter<T, N>;

    /// Creates a consuming iterator, that is, one that moves each value out of
    /// the array (from start to end). The array cannot be used after calling
    /// this unless `T` implements `Copy`, so the whole array is copied.
    ///
    /// Arrays have special behavior when calling `.into_iter()` prior to the
    /// 2021 edition -- see the [array] Editions section for more information.
    ///
    /// [array]: prim@array
    fn into_iter(self) -> Self::IntoIter {
        // SAFETY: The transmute here is actually safe. The docs of `MaybeUninit`
        // promise:
        //
        // > `MaybeUninit<T>` is guaranteed to have the same size and alignment
        // > as `T`.
        //
        // The docs even show a transmute from an array of `MaybeUninit<T>` to
        // an array of `T`.
        //
        // With that, this initialization satisfies the invariants.

        // FIXME(LukasKalbertodt): actually use `mem::transmute` here, once it
        // works with const generics:
        //     `mem::transmute::<[T; N], [MaybeUninit<T>; N]>(array)`
        //
        // Until then, we can use `mem::transmute_copy` to create a bitwise copy
        // as a different type, then forget `array` so that it is not dropped.
        unsafe {
            let iter = IntoIter { data: mem::transmute_copy(&self), alive: IndexRange::zero_to(N) };
            mem::forget(self);
            iter
        }
    }
}

impl<T, const N: usize> IntoIter<T, N> {
    /// Creates a new iterator over the given `array`.
    #[stable(feature = "array_value_iter", since = "1.51.0")]
    #[deprecated(since = "1.59.0", note = "use `IntoIterator::into_iter` instead")]
    pub fn new(array: [T; N]) -> Self {
        IntoIterator::into_iter(array)
    }

    /// Creates an iterator over the elements in a partially-initialized buffer.
    ///
    /// If you have a fully-initialized array, then use [`IntoIterator`].
    /// But this is useful for returning partial results from unsafe code.
    ///
    /// # Safety
    ///
    /// - The `buffer[initialized]` elements must all be initialized.
    /// - The range must be canonical, with `initialized.start <= initialized.end`.
    /// - The range must be in-bounds for the buffer, with `initialized.end <= N`.
    ///   (Like how indexing `[0][100..100]` fails despite the range being empty.)
    ///
    /// It's sound to have more elements initialized than mentioned, though that
    /// will most likely result in them being leaked.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(array_into_iter_constructors)]
    /// #![feature(maybe_uninit_uninit_array_transpose)]
    /// #![feature(maybe_uninit_uninit_array)]
    /// use std::array::IntoIter;
    /// use std::mem::MaybeUninit;
    ///
    /// # // Hi!  Thanks for reading the code. This is restricted to `Copy` because
    /// # // otherwise it could leak. A fully-general version this would need a drop
    /// # // guard to handle panics from the iterator, but this works for an example.
    /// fn next_chunk<T: Copy, const N: usize>(
    ///     it: &mut impl Iterator<Item = T>,
    /// ) -> Result<[T; N], IntoIter<T, N>> {
    ///     let mut buffer = MaybeUninit::uninit_array();
    ///     let mut i = 0;
    ///     while i < N {
    ///         match it.next() {
    ///             Some(x) => {
    ///                 buffer[i].write(x);
    ///                 i += 1;
    ///             }
    ///             None => {
    ///                 // SAFETY: We've initialized the first `i` items
    ///                 unsafe {
    ///                     return Err(IntoIter::new_unchecked(buffer, 0..i));
    ///                 }
    ///             }
    ///         }
    ///     }
    ///
    ///     // SAFETY: We've initialized all N items
    ///     unsafe { Ok(buffer.transpose().assume_init()) }
    /// }
    ///
    /// let r: [_; 4] = next_chunk(&mut (10..16)).unwrap();
    /// assert_eq!(r, [10, 11, 12, 13]);
    /// let r: IntoIter<_, 40> = next_chunk(&mut (10..16)).unwrap_err();
    /// assert_eq!(r.collect::<Vec<_>>(), vec![10, 11, 12, 13, 14, 15]);
    /// ```
    #[unstable(feature = "array_into_iter_constructors", issue = "91583")]
    #[rustc_const_unstable(feature = "const_array_into_iter_constructors", issue = "91583")]
    pub const unsafe fn new_unchecked(
        buffer: [MaybeUninit<T>; N],
        initialized: Range<usize>,
    ) -> Self {
        // SAFETY: one of our safety conditions is that the range is canonical.
        let alive = unsafe { IndexRange::new_unchecked(initialized.start, initialized.end) };
        Self { data: buffer, alive }
    }

    /// Creates an iterator over `T` which returns no elements.
    ///
    /// If you just need an empty iterator, then use
    /// [`iter::empty()`](crate::iter::empty) instead.
    /// And if you need an empty array, use `[]`.
    ///
    /// But this is useful when you need an `array::IntoIter<T, N>` *specifically*.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(array_into_iter_constructors)]
    /// use std::array::IntoIter;
    ///
    /// let empty = IntoIter::<i32, 3>::empty();
    /// assert_eq!(empty.len(), 0);
    /// assert_eq!(empty.as_slice(), &[]);
    ///
    /// let empty = IntoIter::<std::convert::Infallible, 200>::empty();
    /// assert_eq!(empty.len(), 0);
    /// ```
    ///
    /// `[1, 2].into_iter()` and `[].into_iter()` have different types
    /// ```should_fail,edition2021
    /// #![feature(array_into_iter_constructors)]
    /// use std::array::IntoIter;
    ///
    /// pub fn get_bytes(b: bool) -> IntoIter<i8, 4> {
    ///     if b {
    ///         [1, 2, 3, 4].into_iter()
    ///     } else {
    ///         [].into_iter() // error[E0308]: mismatched types
    ///     }
    /// }
    /// ```
    ///
    /// But using this method you can get an empty iterator of appropriate size:
    /// ```edition2021
    /// #![feature(array_into_iter_constructors)]
    /// use std::array::IntoIter;
    ///
    /// pub fn get_bytes(b: bool) -> IntoIter<i8, 4> {
    ///     if b {
    ///         [1, 2, 3, 4].into_iter()
    ///     } else {
    ///         IntoIter::empty()
    ///     }
    /// }
    ///
    /// assert_eq!(get_bytes(true).collect::<Vec<_>>(), vec![1, 2, 3, 4]);
    /// assert_eq!(get_bytes(false).collect::<Vec<_>>(), vec![]);
    /// ```
    #[unstable(feature = "array_into_iter_constructors", issue = "91583")]
    #[rustc_const_unstable(feature = "const_array_into_iter_constructors", issue = "91583")]
    pub const fn empty() -> Self {
        let buffer = MaybeUninit::uninit_array();
        let initialized = 0..0;

        // SAFETY: We're telling it that none of the elements are initialized,
        // which is trivially true. And ∀N: usize, 0 <= N.
        unsafe { Self::new_unchecked(buffer, initialized) }
    }

    /// Returns an immutable slice of all elements that have not been yielded
    /// yet.
    #[stable(feature = "array_value_iter", since = "1.51.0")]
    pub fn as_slice(&self) -> &[T] {
        // SAFETY: We know that all elements within `alive` are properly initialized.
        unsafe {
            let slice = self.data.get_unchecked(self.alive.clone());
            MaybeUninit::slice_assume_init_ref(slice)
        }
    }

    /// Returns a mutable slice of all elements that have not been yielded yet.
    #[stable(feature = "array_value_iter", since = "1.51.0")]
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        // SAFETY: We know that all elements within `alive` are properly initialized.
        unsafe {
            let slice = self.data.get_unchecked_mut(self.alive.clone());
            MaybeUninit::slice_assume_init_mut(slice)
        }
    }
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> Iterator for IntoIter<T, N> {
    type Item = T;
    fn next(&mut self) -> Option<Self::Item> {
        // Get the next index from the front.
        //
        // Increasing `alive.start` by 1 maintains the invariant regarding
        // `alive`. However, due to this change, for a short time, the alive
        // zone is not `data[alive]` anymore, but `data[idx..alive.end]`.
        self.alive.next().map(|idx| {
            // Read the element from the array.
            // SAFETY: `idx` is an index into the former "alive" region of the
            // array. Reading this element means that `data[idx]` is regarded as
            // dead now (i.e. do not touch). As `idx` was the start of the
            // alive-zone, the alive zone is now `data[alive]` again, restoring
            // all invariants.
            unsafe { self.data.get_unchecked(idx).assume_init_read() }
        })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }

    #[inline]
    fn fold<Acc, Fold>(mut self, init: Acc, mut fold: Fold) -> Acc
    where
        Fold: FnMut(Acc, Self::Item) -> Acc,
    {
        let data = &mut self.data;
        iter::ByRefSized(&mut self.alive).fold(init, |acc, idx| {
            // SAFETY: idx is obtained by folding over the `alive` range, which implies the
            // value is currently considered alive but as the range is being consumed each value
            // we read here will only be read once and then considered dead.
            fold(acc, unsafe { data.get_unchecked(idx).assume_init_read() })
        })
    }

    fn count(self) -> usize {
        self.len()
    }

    fn last(mut self) -> Option<Self::Item> {
        self.next_back()
    }

    fn advance_by(&mut self, n: usize) -> Result<(), NonZeroUsize> {
        // This also moves the start, which marks them as conceptually "dropped",
        // so if anything goes bad then our drop impl won't double-free them.
        let range_to_drop = self.alive.take_prefix(n);
        let remaining = n - range_to_drop.len();

        // SAFETY: These elements are currently initialized, so it's fine to drop them.
        unsafe {
            let slice = self.data.get_unchecked_mut(range_to_drop);
            ptr::drop_in_place(MaybeUninit::slice_assume_init_mut(slice));
        }

        NonZeroUsize::new(remaining).map_or(Ok(()), Err)
    }
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> DoubleEndedIterator for IntoIter<T, N> {
    fn next_back(&mut self) -> Option<Self::Item> {
        // Get the next index from the back.
        //
        // Decreasing `alive.end` by 1 maintains the invariant regarding
        // `alive`. However, due to this change, for a short time, the alive
        // zone is not `data[alive]` anymore, but `data[alive.start..=idx]`.
        self.alive.next_back().map(|idx| {
            // Read the element from the array.
            // SAFETY: `idx` is an index into the former "alive" region of the
            // array. Reading this element means that `data[idx]` is regarded as
            // dead now (i.e. do not touch). As `idx` was the end of the
            // alive-zone, the alive zone is now `data[alive]` again, restoring
            // all invariants.
            unsafe { self.data.get_unchecked(idx).assume_init_read() }
        })
    }

    #[inline]
    fn rfold<Acc, Fold>(mut self, init: Acc, mut rfold: Fold) -> Acc
    where
        Fold: FnMut(Acc, Self::Item) -> Acc,
    {
        let data = &mut self.data;
        iter::ByRefSized(&mut self.alive).rfold(init, |acc, idx| {
            // SAFETY: idx is obtained by folding over the `alive` range, which implies the
            // value is currently considered alive but as the range is being consumed each value
            // we read here will only be read once and then considered dead.
            rfold(acc, unsafe { data.get_unchecked(idx).assume_init_read() })
        })
    }

    fn advance_back_by(&mut self, n: usize) -> Result<(), NonZeroUsize> {
        // This also moves the end, which marks them as conceptually "dropped",
        // so if anything goes bad then our drop impl won't double-free them.
        let range_to_drop = self.alive.take_suffix(n);
        let remaining = n - range_to_drop.len();

        // SAFETY: These elements are currently initialized, so it's fine to drop them.
        unsafe {
            let slice = self.data.get_unchecked_mut(range_to_drop);
            ptr::drop_in_place(MaybeUninit::slice_assume_init_mut(slice));
        }

        NonZeroUsize::new(remaining).map_or(Ok(()), Err)
    }
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> Drop for IntoIter<T, N> {
    fn drop(&mut self) {
        // SAFETY: This is safe: `as_mut_slice` returns exactly the sub-slice
        // of elements that have not been moved out yet and that remain
        // to be dropped.
        unsafe { ptr::drop_in_place(self.as_mut_slice()) }
    }
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> ExactSizeIterator for IntoIter<T, N> {
    fn len(&self) -> usize {
        self.alive.len()
    }
    fn is_empty(&self) -> bool {
        self.alive.is_empty()
    }
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> FusedIterator for IntoIter<T, N> {}

// The iterator indeed reports the correct length. The number of "alive"
// elements (that will still be yielded) is the length of the range `alive`.
// This range is decremented in length in either `next` or `next_back`. It is
// always decremented by 1 in those methods, but only if `Some(_)` is returned.
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
unsafe impl<T, const N: usize> TrustedLen for IntoIter<T, N> {}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T: Clone, const N: usize> Clone for IntoIter<T, N> {
    fn clone(&self) -> Self {
        // Note, we don't really need to match the exact same alive range, so
        // we can just clone into offset 0 regardless of where `self` is.
        let mut new = Self { data: MaybeUninit::uninit_array(), alive: IndexRange::zero_to(0) };

        // Clone all alive elements.
        for (src, dst) in iter::zip(self.as_slice(), &mut new.data) {
            // Write a clone into the new array, then update its alive range.
            // If cloning panics, we'll correctly drop the previous items.
            dst.write(src.clone());
            // This addition cannot overflow as we're iterating a slice
            new.alive = IndexRange::zero_to(new.alive.end() + 1);
        }

        new
    }
}

#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T: fmt::Debug, const N: usize> fmt::Debug for IntoIter<T, N> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Only print the elements that were not yielded yet: we cannot
        // access the yielded elements anymore.
        f.debug_tuple("IntoIter").field(&self.as_slice()).finish()
    }
}