1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
// Based on
// https://github.com/matthieu-m/rfc2580/blob/b58d1d3cba0d4b5e859d3617ea2d0943aaa31329/examples/thin.rs
// by matthieu-m
use crate::alloc::{self, Layout, LayoutError};
use core::error::Error;
use core::fmt::{self, Debug, Display, Formatter};
use core::marker::PhantomData;
#[cfg(not(no_global_oom_handling))]
use core::marker::Unsize;
use core::mem;
use core::ops::{Deref, DerefMut};
use core::ptr::Pointee;
use core::ptr::{self, NonNull};
/// ThinBox.
///
/// A thin pointer for heap allocation, regardless of T.
///
/// # Examples
///
/// ```
/// #![feature(thin_box)]
/// use std::boxed::ThinBox;
///
/// let five = ThinBox::new(5);
/// let thin_slice = ThinBox::<[i32]>::new_unsize([1, 2, 3, 4]);
///
/// use std::mem::{size_of, size_of_val};
/// let size_of_ptr = size_of::<*const ()>();
/// assert_eq!(size_of_ptr, size_of_val(&five));
/// assert_eq!(size_of_ptr, size_of_val(&thin_slice));
/// ```
#[unstable(feature = "thin_box", issue = "92791")]
pub struct ThinBox<T: ?Sized> {
// This is essentially `WithHeader<<T as Pointee>::Metadata>`,
// but that would be invariant in `T`, and we want covariance.
ptr: WithOpaqueHeader,
_marker: PhantomData<T>,
}
/// `ThinBox<T>` is `Send` if `T` is `Send` because the data is owned.
#[unstable(feature = "thin_box", issue = "92791")]
unsafe impl<T: ?Sized + Send> Send for ThinBox<T> {}
/// `ThinBox<T>` is `Sync` if `T` is `Sync` because the data is owned.
#[unstable(feature = "thin_box", issue = "92791")]
unsafe impl<T: ?Sized + Sync> Sync for ThinBox<T> {}
#[unstable(feature = "thin_box", issue = "92791")]
impl<T> ThinBox<T> {
/// Moves a type to the heap with its [`Metadata`] stored in the heap allocation instead of on
/// the stack.
///
/// # Examples
///
/// ```
/// #![feature(thin_box)]
/// use std::boxed::ThinBox;
///
/// let five = ThinBox::new(5);
/// ```
///
/// [`Metadata`]: core::ptr::Pointee::Metadata
#[cfg(not(no_global_oom_handling))]
pub fn new(value: T) -> Self {
let meta = ptr::metadata(&value);
let ptr = WithOpaqueHeader::new(meta, value);
ThinBox { ptr, _marker: PhantomData }
}
}
#[unstable(feature = "thin_box", issue = "92791")]
impl<Dyn: ?Sized> ThinBox<Dyn> {
/// Moves a type to the heap with its [`Metadata`] stored in the heap allocation instead of on
/// the stack.
///
/// # Examples
///
/// ```
/// #![feature(thin_box)]
/// use std::boxed::ThinBox;
///
/// let thin_slice = ThinBox::<[i32]>::new_unsize([1, 2, 3, 4]);
/// ```
///
/// [`Metadata`]: core::ptr::Pointee::Metadata
#[cfg(not(no_global_oom_handling))]
pub fn new_unsize<T>(value: T) -> Self
where
T: Unsize<Dyn>,
{
let meta = ptr::metadata(&value as &Dyn);
let ptr = WithOpaqueHeader::new(meta, value);
ThinBox { ptr, _marker: PhantomData }
}
}
#[unstable(feature = "thin_box", issue = "92791")]
impl<T: ?Sized + Debug> Debug for ThinBox<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Debug::fmt(self.deref(), f)
}
}
#[unstable(feature = "thin_box", issue = "92791")]
impl<T: ?Sized + Display> Display for ThinBox<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Display::fmt(self.deref(), f)
}
}
#[unstable(feature = "thin_box", issue = "92791")]
impl<T: ?Sized> Deref for ThinBox<T> {
type Target = T;
fn deref(&self) -> &T {
let value = self.data();
let metadata = self.meta();
let pointer = ptr::from_raw_parts(value as *const (), metadata);
unsafe { &*pointer }
}
}
#[unstable(feature = "thin_box", issue = "92791")]
impl<T: ?Sized> DerefMut for ThinBox<T> {
fn deref_mut(&mut self) -> &mut T {
let value = self.data();
let metadata = self.meta();
let pointer = ptr::from_raw_parts_mut::<T>(value as *mut (), metadata);
unsafe { &mut *pointer }
}
}
#[unstable(feature = "thin_box", issue = "92791")]
impl<T: ?Sized> Drop for ThinBox<T> {
fn drop(&mut self) {
unsafe {
let value = self.deref_mut();
let value = value as *mut T;
self.with_header().drop::<T>(value);
}
}
}
#[unstable(feature = "thin_box", issue = "92791")]
impl<T: ?Sized> ThinBox<T> {
fn meta(&self) -> <T as Pointee>::Metadata {
// Safety:
// - NonNull and valid.
unsafe { *self.with_header().header() }
}
fn data(&self) -> *mut u8 {
self.with_header().value()
}
fn with_header(&self) -> &WithHeader<<T as Pointee>::Metadata> {
// SAFETY: both types are transparent to `NonNull<u8>`
unsafe { &*((&self.ptr) as *const WithOpaqueHeader as *const WithHeader<_>) }
}
}
/// A pointer to type-erased data, guaranteed to either be:
/// 1. `NonNull::dangling()`, in the case where both the pointee (`T`) and
/// metadata (`H`) are ZSTs.
/// 2. A pointer to a valid `T` that has a header `H` directly before the
/// pointed-to location.
#[repr(transparent)]
struct WithHeader<H>(NonNull<u8>, PhantomData<H>);
/// An opaque representation of `WithHeader<H>` to avoid the
/// projection invariance of `<T as Pointee>::Metadata`.
#[repr(transparent)]
struct WithOpaqueHeader(NonNull<u8>);
impl WithOpaqueHeader {
#[cfg(not(no_global_oom_handling))]
fn new<H, T>(header: H, value: T) -> Self {
let ptr = WithHeader::new(header, value);
Self(ptr.0)
}
}
impl<H> WithHeader<H> {
#[cfg(not(no_global_oom_handling))]
fn new<T>(header: H, value: T) -> WithHeader<H> {
let value_layout = Layout::new::<T>();
let Ok((layout, value_offset)) = Self::alloc_layout(value_layout) else {
// We pass an empty layout here because we do not know which layout caused the
// arithmetic overflow in `Layout::extend` and `handle_alloc_error` takes `Layout` as
// its argument rather than `Result<Layout, LayoutError>`, also this function has been
// stable since 1.28 ._.
//
// On the other hand, look at this gorgeous turbofish!
alloc::handle_alloc_error(Layout::new::<()>());
};
unsafe {
// Note: It's UB to pass a layout with a zero size to `alloc::alloc`, so
// we use `layout.dangling()` for this case, which should have a valid
// alignment for both `T` and `H`.
let ptr = if layout.size() == 0 {
// Some paranoia checking, mostly so that the ThinBox tests are
// more able to catch issues.
debug_assert!(
value_offset == 0 && mem::size_of::<T>() == 0 && mem::size_of::<H>() == 0
);
layout.dangling()
} else {
let ptr = alloc::alloc(layout);
if ptr.is_null() {
alloc::handle_alloc_error(layout);
}
// Safety:
// - The size is at least `aligned_header_size`.
let ptr = ptr.add(value_offset) as *mut _;
NonNull::new_unchecked(ptr)
};
let result = WithHeader(ptr, PhantomData);
ptr::write(result.header(), header);
ptr::write(result.value().cast(), value);
result
}
}
// Safety:
// - Assumes that either `value` can be dereferenced, or is the
// `NonNull::dangling()` we use when both `T` and `H` are ZSTs.
unsafe fn drop<T: ?Sized>(&self, value: *mut T) {
struct DropGuard<H> {
ptr: NonNull<u8>,
value_layout: Layout,
_marker: PhantomData<H>,
}
impl<H> Drop for DropGuard<H> {
fn drop(&mut self) {
unsafe {
// SAFETY: Layout must have been computable if we're in drop
let (layout, value_offset) =
WithHeader::<H>::alloc_layout(self.value_layout).unwrap_unchecked();
// Note: Don't deallocate if the layout size is zero, because the pointer
// didn't come from the allocator.
if layout.size() != 0 {
alloc::dealloc(self.ptr.as_ptr().sub(value_offset), layout);
} else {
debug_assert!(
value_offset == 0
&& mem::size_of::<H>() == 0
&& self.value_layout.size() == 0
);
}
}
}
}
unsafe {
// `_guard` will deallocate the memory when dropped, even if `drop_in_place` unwinds.
let _guard = DropGuard {
ptr: self.0,
value_layout: Layout::for_value_raw(value),
_marker: PhantomData::<H>,
};
// We only drop the value because the Pointee trait requires that the metadata is copy
// aka trivially droppable.
ptr::drop_in_place::<T>(value);
}
}
fn header(&self) -> *mut H {
// Safety:
// - At least `size_of::<H>()` bytes are allocated ahead of the pointer.
// - We know that H will be aligned because the middle pointer is aligned to the greater
// of the alignment of the header and the data and the header size includes the padding
// needed to align the header. Subtracting the header size from the aligned data pointer
// will always result in an aligned header pointer, it just may not point to the
// beginning of the allocation.
let hp = unsafe { self.0.as_ptr().sub(Self::header_size()) as *mut H };
debug_assert!(hp.is_aligned());
hp
}
fn value(&self) -> *mut u8 {
self.0.as_ptr()
}
const fn header_size() -> usize {
mem::size_of::<H>()
}
fn alloc_layout(value_layout: Layout) -> Result<(Layout, usize), LayoutError> {
Layout::new::<H>().extend(value_layout)
}
}
#[unstable(feature = "thin_box", issue = "92791")]
impl<T: ?Sized + Error> Error for ThinBox<T> {
fn source(&self) -> Option<&(dyn Error + 'static)> {
self.deref().source()
}
}