1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
//! Arbitrary-precision decimal class for fallback algorithms.
//!
//! This is only used if the fast-path (native floats) and
//! the Eisel-Lemire algorithm are unable to unambiguously
//! determine the float.
//!
//! The technique used is "Simple Decimal Conversion", developed
//! by Nigel Tao and Ken Thompson. A detailed description of the
//! algorithm can be found in "ParseNumberF64 by Simple Decimal Conversion",
//! available online: <https://nigeltao.github.io/blog/2020/parse-number-f64-simple.html>.

use crate::num::dec2flt::common::{is_8digits, parse_digits, ByteSlice, ByteSliceMut};

#[derive(Clone)]
pub struct Decimal {
    /// The number of significant digits in the decimal.
    pub num_digits: usize,
    /// The offset of the decimal point in the significant digits.
    pub decimal_point: i32,
    /// If the number of significant digits stored in the decimal is truncated.
    pub truncated: bool,
    /// Buffer of the raw digits, in the range [0, 9].
    pub digits: [u8; Self::MAX_DIGITS],
}

impl Default for Decimal {
    fn default() -> Self {
        Self { num_digits: 0, decimal_point: 0, truncated: false, digits: [0; Self::MAX_DIGITS] }
    }
}

impl Decimal {
    /// The maximum number of digits required to unambiguously round a float.
    ///
    /// For a double-precision IEEE-754 float, this required 767 digits,
    /// so we store the max digits + 1.
    ///
    /// We can exactly represent a float in radix `b` from radix 2 if
    /// `b` is divisible by 2. This function calculates the exact number of
    /// digits required to exactly represent that float.
    ///
    /// According to the "Handbook of Floating Point Arithmetic",
    /// for IEEE754, with emin being the min exponent, p2 being the
    /// precision, and b being the radix, the number of digits follows as:
    ///
    /// `−emin + p2 + ⌊(emin + 1) log(2, b) − log(1 − 2^(−p2), b)⌋`
    ///
    /// For f32, this follows as:
    ///     emin = -126
    ///     p2 = 24
    ///
    /// For f64, this follows as:
    ///     emin = -1022
    ///     p2 = 53
    ///
    /// In Python:
    ///     `-emin + p2 + math.floor((emin+ 1)*math.log(2, b)-math.log(1-2**(-p2), b))`
    pub const MAX_DIGITS: usize = 768;
    /// The max digits that can be exactly represented in a 64-bit integer.
    pub const MAX_DIGITS_WITHOUT_OVERFLOW: usize = 19;
    pub const DECIMAL_POINT_RANGE: i32 = 2047;

    /// Append a digit to the buffer.
    pub fn try_add_digit(&mut self, digit: u8) {
        if self.num_digits < Self::MAX_DIGITS {
            self.digits[self.num_digits] = digit;
        }
        self.num_digits += 1;
    }

    /// Trim trailing zeros from the buffer.
    pub fn trim(&mut self) {
        // All of the following calls to `Decimal::trim` can't panic because:
        //
        //  1. `parse_decimal` sets `num_digits` to a max of `Decimal::MAX_DIGITS`.
        //  2. `right_shift` sets `num_digits` to `write_index`, which is bounded by `num_digits`.
        //  3. `left_shift` `num_digits` to a max of `Decimal::MAX_DIGITS`.
        //
        // Trim is only called in `right_shift` and `left_shift`.
        debug_assert!(self.num_digits <= Self::MAX_DIGITS);
        while self.num_digits != 0 && self.digits[self.num_digits - 1] == 0 {
            self.num_digits -= 1;
        }
    }

    pub fn round(&self) -> u64 {
        if self.num_digits == 0 || self.decimal_point < 0 {
            return 0;
        } else if self.decimal_point > 18 {
            return 0xFFFF_FFFF_FFFF_FFFF_u64;
        }
        let dp = self.decimal_point as usize;
        let mut n = 0_u64;
        for i in 0..dp {
            n *= 10;
            if i < self.num_digits {
                n += self.digits[i] as u64;
            }
        }
        let mut round_up = false;
        if dp < self.num_digits {
            round_up = self.digits[dp] >= 5;
            if self.digits[dp] == 5 && dp + 1 == self.num_digits {
                round_up = self.truncated || ((dp != 0) && (1 & self.digits[dp - 1] != 0))
            }
        }
        if round_up {
            n += 1;
        }
        n
    }

    /// Computes decimal * 2^shift.
    pub fn left_shift(&mut self, shift: usize) {
        if self.num_digits == 0 {
            return;
        }
        let num_new_digits = number_of_digits_decimal_left_shift(self, shift);
        let mut read_index = self.num_digits;
        let mut write_index = self.num_digits + num_new_digits;
        let mut n = 0_u64;
        while read_index != 0 {
            read_index -= 1;
            write_index -= 1;
            n += (self.digits[read_index] as u64) << shift;
            let quotient = n / 10;
            let remainder = n - (10 * quotient);
            if write_index < Self::MAX_DIGITS {
                self.digits[write_index] = remainder as u8;
            } else if remainder > 0 {
                self.truncated = true;
            }
            n = quotient;
        }
        while n > 0 {
            write_index -= 1;
            let quotient = n / 10;
            let remainder = n - (10 * quotient);
            if write_index < Self::MAX_DIGITS {
                self.digits[write_index] = remainder as u8;
            } else if remainder > 0 {
                self.truncated = true;
            }
            n = quotient;
        }
        self.num_digits += num_new_digits;
        if self.num_digits > Self::MAX_DIGITS {
            self.num_digits = Self::MAX_DIGITS;
        }
        self.decimal_point += num_new_digits as i32;
        self.trim();
    }

    /// Computes decimal * 2^-shift.
    pub fn right_shift(&mut self, shift: usize) {
        let mut read_index = 0;
        let mut write_index = 0;
        let mut n = 0_u64;
        while (n >> shift) == 0 {
            if read_index < self.num_digits {
                n = (10 * n) + self.digits[read_index] as u64;
                read_index += 1;
            } else if n == 0 {
                return;
            } else {
                while (n >> shift) == 0 {
                    n *= 10;
                    read_index += 1;
                }
                break;
            }
        }
        self.decimal_point -= read_index as i32 - 1;
        if self.decimal_point < -Self::DECIMAL_POINT_RANGE {
            // `self = Self::Default()`, but without the overhead of clearing `digits`.
            self.num_digits = 0;
            self.decimal_point = 0;
            self.truncated = false;
            return;
        }
        let mask = (1_u64 << shift) - 1;
        while read_index < self.num_digits {
            let new_digit = (n >> shift) as u8;
            n = (10 * (n & mask)) + self.digits[read_index] as u64;
            read_index += 1;
            self.digits[write_index] = new_digit;
            write_index += 1;
        }
        while n > 0 {
            let new_digit = (n >> shift) as u8;
            n = 10 * (n & mask);
            if write_index < Self::MAX_DIGITS {
                self.digits[write_index] = new_digit;
                write_index += 1;
            } else if new_digit > 0 {
                self.truncated = true;
            }
        }
        self.num_digits = write_index;
        self.trim();
    }
}

/// Parse a big integer representation of the float as a decimal.
pub fn parse_decimal(mut s: &[u8]) -> Decimal {
    let mut d = Decimal::default();
    let start = s;
    s = s.skip_chars(b'0');
    parse_digits(&mut s, |digit| d.try_add_digit(digit));
    if s.first_is(b'.') {
        s = s.advance(1);
        let first = s;
        // Skip leading zeros.
        if d.num_digits == 0 {
            s = s.skip_chars(b'0');
        }
        while s.len() >= 8 && d.num_digits + 8 < Decimal::MAX_DIGITS {
            // SAFETY: s is at least 8 bytes.
            let v = unsafe { s.read_u64_unchecked() };
            if !is_8digits(v) {
                break;
            }
            // SAFETY: d.num_digits + 8 is less than d.digits.len()
            unsafe {
                d.digits[d.num_digits..].write_u64_unchecked(v - 0x3030_3030_3030_3030);
            }
            d.num_digits += 8;
            s = s.advance(8);
        }
        parse_digits(&mut s, |digit| d.try_add_digit(digit));
        d.decimal_point = s.len() as i32 - first.len() as i32;
    }
    if d.num_digits != 0 {
        // Ignore the trailing zeros if there are any
        let mut n_trailing_zeros = 0;
        for &c in start[..(start.len() - s.len())].iter().rev() {
            if c == b'0' {
                n_trailing_zeros += 1;
            } else if c != b'.' {
                break;
            }
        }
        d.decimal_point += n_trailing_zeros as i32;
        d.num_digits -= n_trailing_zeros;
        d.decimal_point += d.num_digits as i32;
        if d.num_digits > Decimal::MAX_DIGITS {
            d.truncated = true;
            d.num_digits = Decimal::MAX_DIGITS;
        }
    }
    if s.first_is2(b'e', b'E') {
        s = s.advance(1);
        let mut neg_exp = false;
        if s.first_is(b'-') {
            neg_exp = true;
            s = s.advance(1);
        } else if s.first_is(b'+') {
            s = s.advance(1);
        }
        let mut exp_num = 0_i32;
        parse_digits(&mut s, |digit| {
            if exp_num < 0x10000 {
                exp_num = 10 * exp_num + digit as i32;
            }
        });
        d.decimal_point += if neg_exp { -exp_num } else { exp_num };
    }
    for i in d.num_digits..Decimal::MAX_DIGITS_WITHOUT_OVERFLOW {
        d.digits[i] = 0;
    }
    d
}

fn number_of_digits_decimal_left_shift(d: &Decimal, mut shift: usize) -> usize {
    #[rustfmt::skip]
    const TABLE: [u16; 65] = [
        0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817, 0x181D, 0x2024,
        0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067, 0x3073, 0x3080, 0x388E, 0x389C,
        0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF, 0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169,
        0x5180, 0x5998, 0x59B0, 0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B,
        0x72AA, 0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC, 0x8C02,
        0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C, 0x051C, 0x051C,
    ];
    #[rustfmt::skip]
    const TABLE_POW5: [u8; 0x051C] = [
        5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3, 9, 0, 6, 2, 5, 1,
        9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8, 1, 2, 5, 2, 4, 4, 1, 4, 0, 6, 2, 5,
        1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1, 0, 3, 5, 1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2,
        5, 1, 5, 2, 5, 8, 7, 8, 9, 0, 6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, 3, 8, 1, 4, 6,
        9, 7, 2, 6, 5, 6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, 8, 1, 2, 5, 9, 5, 3, 6, 7, 4, 3, 1,
        6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, 7, 1, 5, 8, 2, 0, 3, 1, 2, 5, 2, 3, 8, 4, 1, 8, 5, 7, 9,
        1, 0, 1, 5, 6, 2, 5, 1, 1, 9, 2, 0, 9, 2, 8, 9, 5, 5, 0, 7, 8, 1, 2, 5, 5, 9, 6, 0, 4, 6,
        4, 4, 7, 7, 5, 3, 9, 0, 6, 2, 5, 2, 9, 8, 0, 2, 3, 2, 2, 3, 8, 7, 6, 9, 5, 3, 1, 2, 5, 1,
        4, 9, 0, 1, 1, 6, 1, 1, 9, 3, 8, 4, 7, 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8, 0, 5, 9, 6, 9, 2,
        3, 8, 2, 8, 1, 2, 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4, 6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, 6,
        2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5, 7, 0, 3, 1, 2, 5, 9, 3, 1, 3, 2, 2, 5, 7, 4, 6, 1, 5,
        4, 7, 8, 5, 1, 5, 6, 2, 5, 4, 6, 5, 6, 6, 1, 2, 8, 7, 3, 0, 7, 7, 3, 9, 2, 5, 7, 8, 1, 2,
        5, 2, 3, 2, 8, 3, 0, 6, 4, 3, 6, 5, 3, 8, 6, 9, 6, 2, 8, 9, 0, 6, 2, 5, 1, 1, 6, 4, 1, 5,
        3, 2, 1, 8, 2, 6, 9, 3, 4, 8, 1, 4, 4, 5, 3, 1, 2, 5, 5, 8, 2, 0, 7, 6, 6, 0, 9, 1, 3, 4,
        6, 7, 4, 0, 7, 2, 2, 6, 5, 6, 2, 5, 2, 9, 1, 0, 3, 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6,
        1, 3, 2, 8, 1, 2, 5, 1, 4, 5, 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8, 0, 6, 6, 4, 0,
        6, 2, 5, 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9, 0, 3, 3, 2, 0, 3, 1, 2, 5, 3,
        6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2, 9, 5, 1, 6, 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8,
        9, 8, 9, 4, 0, 3, 5, 4, 5, 8, 5, 6, 4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4,
        7, 0, 1, 7, 7, 2, 9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, 3, 5,
        0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5, 2, 2, 7, 3, 7, 3, 6, 7, 5,
        4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, 9, 7, 6, 5, 6, 2, 5, 1, 1, 3, 6, 8, 6, 8, 3, 7,
        7, 2, 1, 6, 1, 6, 0, 2, 9, 7, 3, 9, 3, 7, 9, 8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8,
        8, 6, 0, 8, 0, 8, 0, 1, 4, 8, 6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, 2, 8, 4, 2, 1, 7, 0,
        9, 4, 3, 0, 4, 0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, 9, 7, 0, 7, 0, 3, 1, 2, 5, 1, 4, 2, 1, 0,
        8, 5, 4, 7, 1, 5, 2, 0, 2, 0, 0, 3, 7, 1, 7, 4, 2, 2, 4, 8, 5, 3, 5, 1, 5, 6, 2, 5, 7, 1,
        0, 5, 4, 2, 7, 3, 5, 7, 6, 0, 1, 0, 0, 1, 8, 5, 8, 7, 1, 1, 2, 4, 2, 6, 7, 5, 7, 8, 1, 2,
        5, 3, 5, 5, 2, 7, 1, 3, 6, 7, 8, 8, 0, 0, 5, 0, 0, 9, 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8,
        9, 0, 6, 2, 5, 1, 7, 7, 6, 3, 5, 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4, 6, 7, 7, 8, 1, 0,
        6, 6, 8, 9, 4, 5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1, 9, 7, 0, 0, 1, 2, 5, 2, 3, 2, 3, 3,
        8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5, 6, 2, 5, 4, 4, 4, 0, 8, 9, 2, 0, 9, 8, 5, 0, 0, 6, 2,
        6, 1, 6, 1, 6, 9, 4, 5, 2, 6, 6, 7, 2, 3, 6, 3, 2, 8, 1, 2, 5, 2, 2, 2, 0, 4, 4, 6, 0, 4,
        9, 2, 5, 0, 3, 1, 3, 0, 8, 0, 8, 4, 7, 2, 6, 3, 3, 3, 6, 1, 8, 1, 6, 4, 0, 6, 2, 5, 1, 1,
        1, 0, 2, 2, 3, 0, 2, 4, 6, 2, 5, 1, 5, 6, 5, 4, 0, 4, 2, 3, 6, 3, 1, 6, 6, 8, 0, 9, 0, 8,
        2, 0, 3, 1, 2, 5, 5, 5, 5, 1, 1, 1, 5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5,
        8, 3, 4, 0, 4, 5, 4, 1, 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5, 6, 2, 8, 9, 1,
        3, 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8, 1, 2, 5, 1, 3, 8, 7, 7, 7, 8,
        7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9, 5, 3, 9, 5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0,
        6, 2, 5, 6, 9, 3, 8, 8, 9, 3, 9, 0, 3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2,
        5, 5, 6, 7, 6, 2, 6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, 6, 1, 4, 1,
        8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, 6, 5, 6, 2, 5, 1, 7, 3, 4, 7, 2,
        3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, 4, 4, 1, 1, 9, 2, 4, 4, 8, 1, 3, 9, 1, 9, 0, 6, 7, 3,
        8, 2, 8, 1, 2, 5, 8, 6, 7, 3, 6, 1, 7, 3, 7, 9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, 6, 2,
        2, 4, 0, 6, 9, 5, 9, 5, 3, 3, 6, 9, 1, 4, 0, 6, 2, 5,
    ];

    shift &= 63;
    let x_a = TABLE[shift];
    let x_b = TABLE[shift + 1];
    let num_new_digits = (x_a >> 11) as _;
    let pow5_a = (0x7FF & x_a) as usize;
    let pow5_b = (0x7FF & x_b) as usize;
    let pow5 = &TABLE_POW5[pow5_a..];
    for (i, &p5) in pow5.iter().enumerate().take(pow5_b - pow5_a) {
        if i >= d.num_digits {
            return num_new_digits - 1;
        } else if d.digits[i] == p5 {
            continue;
        } else if d.digits[i] < p5 {
            return num_new_digits - 1;
        } else {
            return num_new_digits;
        }
    }
    num_new_digits
}